Skip to content
2000
image of Attenuated Salmonella Carrying IL-21-siRNA-CCR2 Co-expression Plasmid Enhances Anti-tumor Immune Response in Lung Cancer-bearing Mice

Abstract

Introduction

There is an urgent and ongoing need to develop effective therapeutic strategies for lung cancer. CCR2 is considered a valid target for lung cancer treatment. However, single-target-oriented monotherapy frequently fails to yield satisfactory results, and multi-target therapy has become the current trend. IL-21 exerts anti-tumor effects across various cancers, including lung cancer. Whether the combination of CCR2-targeted therapy and IL-21 exerts a stronger anti-tumor effect remains to be verified.

Methods

Mouse Lewis lung cancer cells and pre-constructed IL-21-siRNA-CCR2 plasmid were used. Annexin V-FITC, flow cytometry, Western blot, Ki67 IHC, immunofluorescence, and TUNEL assay were used to analyze apoptosis, immune cells, proteins, and proliferation.

Results

Compared with single-agent treatments, combination treatment significantly inhibited CCR2 expression, enhanced IL-21 expression, and slowed tumor growth in mouse lung cancer tissues. Further analysis demonstrated that this treatment effectively increased the infiltration of CD4+ and CD8+ T lymphocytes in tumor tissues, elevated the proportion of M1 macrophages while reducing that of M2 macrophages, and notably increased the percentages of CD4+ T lymphocytes and NK cells in mouse spleens.

Discussion

The combination treatment not only directly suppressed the proliferation of tumor cells but also enhanced the overall anti-tumor immune response in tumor-bearing mice. In subsequent studies, it will be further verified that the efficacy of this treatment is in a variety of tumor cell lines.

Conclusion

The combination of IL-21 and CCR2 blockade exerts a synergistic anti-lung-cancer effect.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232407110251015103908
2025-10-27
2025-12-14
Loading full text...

Full text loading...

/deliver/fulltext/cgt/10.2174/0115665232407110251015103908/BMS-CGT-2025-103.html?itemId=/content/journals/cgt/10.2174/0115665232407110251015103908&mimeType=html&fmt=ahah

References

  1. Kiri S. Ryba T. Cancer, metastasis, and the epigenome. Mol. Cancer 2024 23 1 154 10.1186/s12943‑024‑02069‑w 39095874
    [Google Scholar]
  2. Sonkin D. Thomas A. Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024 286-287 18 24 10.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  3. Hartley G.W. Roach K.E. Nithman R.W. Physical therapist management of patients with suspected or confirmed osteoporosis: A clinical practice guideline from the academy of geriatric physical therapy. J. Geriatr. Phys. Ther. 2022 44 2 E106 E119 10.1519/JPT.0000000000000346 35384943
    [Google Scholar]
  4. Ye H. Liao W. Pan J. Shi Y. Wang Q. Immune checkpoint blockade for cancer therapy: current progress and perspectives. J. Zhejiang Univ. Sci. B 2025 26 3 203 226 10.1631/jzus.B2300492 40082201
    [Google Scholar]
  5. Chau C.H. Steeg P.S. Figg W.D. Antibody–drug conjugates for cancer. Lancet 2019 394 10200 793 804 10.1016/S0140‑6736(19)31774‑X 31478503
    [Google Scholar]
  6. Ma R. Li Z. Chiocca E.A. Caligiuri M.A. Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer 2023 9 2 122 139 10.1016/j.trecan.2022.10.003 36402738
    [Google Scholar]
  7. Brudno J.N. Maus M.V. Hinrichs C.S. CAR T cells and T-cell therapies for cancer. JAMA 2024 332 22 1924 1935 10.1001/jama.2024.19462 39495525
    [Google Scholar]
  8. Malacopol A.T. Holst P.J. Cancer vaccines: Recent insights and future directions. Int. J. Mol. Sci. 2024 25 20 11256 10.3390/ijms252011256 39457036
    [Google Scholar]
  9. Meyer M.L. Peters S. Mok T.S. Lung cancer research and treatment: global perspectives and strategic calls to action. Ann. Oncol. 2024 35 12 1088 1104 10.1016/j.annonc.2024.10.006 39413875
    [Google Scholar]
  10. Li Y. Yan B. He S. Advances and challenges in the treatment of lung cancer. Biomed. Pharmacother. 2023 169 115891 10.1016/j.biopha.2023.115891
    [Google Scholar]
  11. Schabath M.B. Cote M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomarkers Prev. 2019 28 10 1563 1579 10.1158/1055‑9965.EPI‑19‑0221 31575553
    [Google Scholar]
  12. Liu H. Wang P. CRISPR screening and cell line IC50 data reveal novel key genes for trametinib resistance. Clin. Exp. Med. 2024 25 1 21 10.1007/s10238‑024‑01538‑2 39708249
    [Google Scholar]
  13. Li Y. Wang N. Huang Y. CircMYBL1 suppressed acquired resistance to osimertinib in non-small-cell lung cancer. Cancer Genet. 2024 284-285 34 42 10.1016/j.cancergen.2024.04.001 38626533
    [Google Scholar]
  14. Lung cancer treatment: 20 years of progress. Lancet 2024 403 10445 2663 10.1016/S0140‑6736(24)01299‑6 38908864
    [Google Scholar]
  15. Cunha L.L. Morari E.C. Guihen A.C.T. Infiltration of a mixture of immune cells may be related to good prognosis in patients with differentiated thyroid carcinoma. Clin. Endocrinol. (Oxf.) 2012 77 6 918 925 10.1111/j.1365‑2265.2012.04482.x 22738343
    [Google Scholar]
  16. Bruni D. Angell H.K. Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020 20 11 662 680 10.1038/s41568‑020‑0285‑7 32753728
    [Google Scholar]
  17. Jochems C. Schlom J. Tumor-infiltrating immune cells and prognosis: The potential link between conventional cancer therapy and immunity. Exp. Biol. Med. (Maywood) 2011 236 5 567 579 10.1258/ebm.2011.011007 21486861
    [Google Scholar]
  18. Sarnaik A.A. Hwu P. Mulé J.J. Pilon-Thomas S. Tumor-infiltrating lymphocytes: A new hope. Cancer Cell 2024 42 8 1315 1318 10.1016/j.ccell.2024.06.015 39029463
    [Google Scholar]
  19. Propper D.J. Balkwill F.R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 2022 19 4 237 253 10.1038/s41571‑021‑00588‑9 34997230
    [Google Scholar]
  20. Xu M. Wang Y. Xia R. Wei Y. Wei X. Role of the CCL2‐CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif. 2021 54 10 e13115 10.1111/cpr.13115 34464477
    [Google Scholar]
  21. Hao Q. Vadgama J.V. Wang P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun. Signal. 2020 18 1 82 10.1186/s12964‑020‑00589‑8 32471499
    [Google Scholar]
  22. Zhang J. Lu Y. Pienta K.J. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J. Natl. Cancer Inst. 2010 102 8 522 528 10.1093/jnci/djq044 20233997
    [Google Scholar]
  23. Izumi K. Fang L.Y. Mizokami A. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2‐induced STAT3 activation. EMBO Mol. Med. 2013 5 9 1383 1401 10.1002/emmm.201202367 23982944
    [Google Scholar]
  24. Yasui H. Kajiyama H. Tamauchi S. CCL2 secreted from cancer-associated mesothelial cells promotes peritoneal metastasis of ovarian cancer cells through the P38-MAPK pathway. Clin. Exp. Metastasis 2020 37 1 145 158 10.1007/s10585‑019‑09993‑y 31541326
    [Google Scholar]
  25. Pozzi S. Satchi-Fainaro R. The role of CCL2/CCR2 axis in cancer and inflammation: The next frontier in nanomedicine. Adv. Drug Deliv. Rev. 2024 209 115318 10.1016/j.addr.2024.115318 38643840
    [Google Scholar]
  26. An J. Xue Y. Long M. Zhang G. Zhang J. Su H. Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget 2017 8 24 39230 39240 10.18632/oncotarget.16837 28424406
    [Google Scholar]
  27. Pienta K.J. Machiels J.P. Schrijvers D. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest. New Drugs 2013 31 3 760 768 10.1007/s10637‑012‑9869‑8 22907596
    [Google Scholar]
  28. Setten R.L. Rossi J.J. Han S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019 18 6 421 446 10.1038/s41573‑019‑0017‑4 30846871
    [Google Scholar]
  29. Kristen A.V. Ajroud-Driss S. Conceição I. Gorevic P. Kyriakides T. Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener. Dis. Manag. 2019 9 1 5 23 10.2217/nmt‑2018‑0033 30480471
    [Google Scholar]
  30. Rosenson R.S. Gaudet D. Hegele R.A. Zodasiran, an RNAi therapeutic targeting ANGPTL3, for mixed hyperlipidemia. N. Engl. J. Med. 2024 391 10 913 925 10.1056/NEJMoa2404147 38809174
    [Google Scholar]
  31. Camps-Fajol C. Cavero D. Minguillón J. Surrallés J. Targeting protein-protein interactions in drug discovery: Modulators approved or in clinical trials for cancer treatment. Pharmacol. Res. 2025 211 107544 10.1016/j.phrs.2024.107544 39667542
    [Google Scholar]
  32. Noel M. O’Reilly E.M. Wolpin B.M. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/] gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. New Drugs 2020 38 3 800 811 10.1007/s10637‑019‑00830‑3 31297636
    [Google Scholar]
  33. Spolski R. Leonard W.J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 2008 26 1 57 79 10.1146/annurev.immunol.26.021607.090316 17953510
    [Google Scholar]
  34. Spolski R. Leonard W.J. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr. Opin. Immunol. 2008 20 3 295 301 10.1016/j.coi.2008.02.004 18554883
    [Google Scholar]
  35. Fu Z.Q. Zhou Q. Zhu S. Liu W. Anti-tumor mechanism of IL-21 used alone and in combination with 5-fluorouracil in vitro on human gastric cancer cells. J. Biol. Regul. Homeost. Agents 2018 32 3 619 625 29921390
    [Google Scholar]
  36. Chen C. Liu X. Ren Y. Interleukin 21 treatment in a murine model as a novel potential cytokine immunotherapy for colon cancer. Adv. Clin. Exp. Med. 2018 27 5 583 589 10.17219/acem/68703 29616746
    [Google Scholar]
  37. Zhang Y. Wang J. Ren M. Gene therapy of ovarian cancer using IL-21-secreting human umbilical cord mesenchymal stem cells in nude mice. J. Ovarian Res. 2014 7 1 8 10.1186/1757‑2215‑7‑8 24444073
    [Google Scholar]
  38. Davis I.D. Skrumsager B.K. Cebon J. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin. Cancer Res. 2007 13 12 3630 3636 10.1158/1078‑0432.CCR‑07‑0410 17575227
    [Google Scholar]
  39. Xue D. Yang P. Wei Q. Li X. Lin L. Lin T. IL 21/IL 21R inhibit tumor growth and invasion in non small cell lung cancer cells via suppressing Wnt/β catenin signaling and PD L1 expression. Int. J. Mol. Med. 2019 44 5 1697 1706 10.3892/ijmm.2019.4354 31573051
    [Google Scholar]
  40. Chen W. Zhu Y. Zhang Z. Sun X. Advances in Salmonella Typhimurium-based drug delivery system for cancer therapy. Adv. Drug Deliv. Rev. 2022 185 114295 10.1016/j.addr.2022.114295 35429576
    [Google Scholar]
  41. Wang D. Wei X. Kalvakolanu D.V. Guo B. Zhang L. Perspectives on oncolytic salmonella in cancer immunotherapy—A promising strategy. Front. Immunol. 2021 12 615930 10.3389/fimmu.2021.615930 33717106
    [Google Scholar]
  42. Rosenberg S.A. Spiess P.J. Kleiner D.E. Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J. Immunother. 2002 25 3 218 225 10.1097/00002371‑200205000‑00004 12000863
    [Google Scholar]
  43. Morrissey D. O’Sullivan G. Tangney M. Tumour targeting with systemically administered bacteria. Curr. Gene Ther. 2010 10 1 3 14 10.2174/156652310790945575 20156191
    [Google Scholar]
  44. Thamm D.H. Kurzman I.D. King I. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: Phase I evaluation. Clin. Cancer Res. 2005 11 13 4827 4834 10.1158/1078‑0432.CCR‑04‑2510 16000580
    [Google Scholar]
  45. Forbes N.S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 2010 10 11 785 794 10.1038/nrc2934 20944664
    [Google Scholar]
  46. Guan G. Zhao M. Liu L. Salmonella typhimurium mediated delivery of Apoptin in human laryngeal cancer. Int. J. Med. Sci. 2013 10 12 1639 1648 10.7150/ijms.6960 24155656
    [Google Scholar]
  47. Wang W. Xu H. Ye Q. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat. Biomed. Eng. 2022 6 1 44 53 10.1038/s41551‑021‑00834‑6 35058589
    [Google Scholar]
  48. Shen T. Su Y. Wang D. HIF2α drives ccRCC metastasis through transcriptional activation of methylation-controlled J protein and enhanced prolegumain secretion. Cell Death Dis. 2025 16 1 93 10.1038/s41419‑025‑07432‑3 39948060
    [Google Scholar]
  49. Lv C. Zeng Q. Qi L. Sodium selenite induces autophagy and apoptosis in cervical cancer cells via mitochondrial ROS-Activated AMPK/mTOR/FOXO3a pathway. Antioxidants 2024 13 8 1004 10.3390/antiox13081004 39199249
    [Google Scholar]
  50. Kaloni D. Diepstraten S.T. Strasser A. Kelly G.L. BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis 2023 28 1-2 20 38 10.1007/s10495‑022‑01780‑7 36342579
    [Google Scholar]
  51. Tian Z. Hou X. Liu W. Targeted blocking of CCR2 and CXCR2 improves the efficacy of transarterial chemoembolization of hepatocarcinoma. Cancer Cell Int. 2022 22 1 362 10.1186/s12935‑022‑02771‑z 36403057
    [Google Scholar]
  52. Wei T. Lei M. Jiang H. Attenuated salmonella carrying IL-21 overexpression plasmid enhances radiotherapy efficacy in a preclinical model of melanoma. Int. Immunopharmacol. 2025 154 114590 10.1016/j.intimp.2025.114590 40174337
    [Google Scholar]
  53. Leonard W.J. Spolski R. Interleukin-21: A modulator of lymphoid proliferation, apoptosis and differentiation. Nat. Rev. Immunol. 2005 5 9 688 698 10.1038/nri1688 16138102
    [Google Scholar]
  54. Wang L-N. Cui Y-X. Ruge F. Jiang W.G. Interleukin 21 and its receptor play a role in proliferation, migration and invasion of breast cancer cells. Cancer Genomics Proteomics 2015 12 5 211 221 26417024
    [Google Scholar]
  55. Hu Q.Q. Wen Z.F. Huang Q.T. Li Q. Zhai Z.M. Li Y.L. CC chemokine receptor 2 (CCR2) expression promotes diffuse large B-Cell lymphoma survival and invasion. Lab. Invest. 2022 102 12 1377 1388 10.1038/s41374‑022‑00824‑5 35851856
    [Google Scholar]
  56. Xu L. Yu Sun F. Xian Li G. Correlation between Spectral CT Parameters and Ki67 expression in hepatocellular carcinoma. Curr Med Imaging 2023 20 e15734056227641 10.2174/0115734056227641231004042735 37881085
    [Google Scholar]
  57. Zhang H. Chen L. Li L. Prediction and analysis of tumor infiltrating lymphocytes across 28 cancers by TILScout using deep learning. NPJ Precis. Oncol. 2025 9 1 76 10.1038/s41698‑025‑00866‑0 40108446
    [Google Scholar]
  58. Chen H. Deng C. Gao J. Integrative spatial analysis reveals tumor heterogeneity and immune colony niche related to clinical outcomes in small cell lung cancer. Cancer Cell 2025 43 3 519 536.e5 10.1016/j.ccell.2025.01.012 39983726
    [Google Scholar]
  59. Cao L. Che X. Qiu X. M2 macrophage infiltration into tumor islets leads to poor prognosis in non-small-cell lung cancer. Cancer Manag. Res. 2019 11 6125 6138 10.2147/CMAR.S199832 31308749
    [Google Scholar]
  60. Zhai Y. He X. Li Y. A splenic-targeted versatile antigen courier: iPSC wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. Sci. Adv. 2021 7 35 eabi6326 10.1126/sciadv.abi6326 34433569
    [Google Scholar]
  61. Tarhini A.A. Edington H. Butterfield L.H. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS One 2014 9 2 e87705 10.1371/journal.pone.0087705 24498358
    [Google Scholar]
  62. Siegel R.L. Kratzer T.B. Giaquinto A.N. Sung H. Jemal A. Cancer statistics, 2025. CA Cancer J. Clin. 2025 75 1 10 45 10.3322/caac.21871 39817679
    [Google Scholar]
  63. Joshi RM Telang B Soni G Khalife A Overview of perspectives on cancer, newer therapies, and future directions. Oncol Transl Med 2024 10 3
    [Google Scholar]
  64. Zhang L. Gao L. Zhao L. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 2007 67 12 5859 5864 10.1158/0008‑5472.CAN‑07‑0098 17575154
    [Google Scholar]
  65. Chen P. Li Y. Wei P. siRNA targeting PD-L1 delivered with attenuated Salmonella enhanced the anti-tumor effect of lenvatinib on mice bearing Hepatocellular carcinoma. Int. Immunopharmacol. 2022 111 109127 10.1016/j.intimp.2022.109127 35964407
    [Google Scholar]
  66. Ozga A.J. Chow M.T. Luster A.D. Chemokines and the immune response to cancer. Immunity 2021 54 5 859 874 10.1016/j.immuni.2021.01.012 33838745
    [Google Scholar]
  67. Marcuzzi E. Angioni R. Molon B. Calì B. Chemokines and chemokine receptors: Orchestrating tumor metastasization. Int. J. Mol. Sci. 2018 20 1 96 10.3390/ijms20010096 30591657
    [Google Scholar]
  68. Fei L. Ren X. Yu H. Zhan Y. Targeting the CCL2/CCR2 axis in cancer immunotherapy: One stone, three birds? Front. Immunol. 2021 12 771210 10.3389/fimmu.2021.771210 34804061
    [Google Scholar]
  69. Kim S. Jeong H. Ahn H.K. Increased CCL2/CCR2 axis promotes tumor progression by increasing M2 macrophages in MYC/BCL2 double-expressor DLBCL. Blood Adv. 2024 8 22 5773 5788 10.1182/bloodadvances.2024013699 39293078
    [Google Scholar]
  70. Wu X. Singh R. Hsu D.K. A small molecule CCR2 antagonist depletes tumor macrophages and synergizes with Anti–PD-1 in a murine model of cutaneous T-Cell lymphoma (CTCL). J. Invest. Dermatol. 2020 140 7 1390 1400.e4 10.1016/j.jid.2019.11.018 31945344
    [Google Scholar]
  71. Gao J. Wang A. Zhang M. RNAi targeting of CCR2 gene expression induces apoptosis and inhibits the proliferation, migration, and invasion of PC-3M cells. Oncol. Res. 2014 21 2 73 82 10.3727/096504013X13775486749173 24406043
    [Google Scholar]
  72. Chen J. Ji Z. Wu D. MYBL2 promotes cell proliferation and inhibits cell apoptosis via PI3K/AKT and BCL2/BAX/Cleaved-caspase-3 signaling pathway in gastric cancer cells. Sci. Rep. 2025 15 1 9148 10.1038/s41598‑025‑93022‑4 40097530
    [Google Scholar]
  73. Rafei M. Berchiche Y.A. Birman E. An engineered GM-CSF-CCL2 fusokine is a potent inhibitor of CCR2-driven inflammation as demonstrated in a murine model of inflammatory arthritis. J. Immunol. 2009 183 3 1759 1766 10.4049/jimmunol.0900523 19592643
    [Google Scholar]
  74. Wu Y. Yu G. Jin K. Qian J. Advancing non-small cell lung cancer treatment: The power of combination immunotherapies. Front. Immunol. 2024 15 1349502 10.3389/fimmu.2024.1349502 39015563
    [Google Scholar]
  75. Kureshi C.T. Dougan S.K. Cytokines in cancer. Cancer Cell 2025 43 1 15 35 10.1016/j.ccell.2024.11.011 39672170
    [Google Scholar]
  76. Spolski R. Leonard W.J. Interleukin-21: A double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 2014 13 5 379 395 10.1038/nrd4296 24751819
    [Google Scholar]
  77. Søndergaard H. Skak K. IL‐21: roles in immunopathology and cancer therapy. Tissue Antigens 2009 74 6 467 479 10.1111/j.1399‑0039.2009.01382.x 19845910
    [Google Scholar]
  78. Chabab G. Bonnefoy N. Lafont V. IL-21 signaling in the tumor microenvironment. Adv. Exp. Med. Biol. 2020 1240 73 82 10.1007/978‑3‑030‑38315‑2_6 32060889
    [Google Scholar]
  79. Song P. Gao Z. Bao Y. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J. Hematol. Oncol. 2024 17 1 46 10.1186/s13045‑024‑01563‑4 38886806
    [Google Scholar]
  80. Lv Z. Wang C. Yuan T. Bone morphogenetic protein 9 regulates tumor growth of osteosarcoma cells through the Wnt/β-catenin pathway. Oncol. Rep. 2014 31 2 989 994 10.3892/or.2013.2931 24337584
    [Google Scholar]
  81. Zhao W. Wang X. Han L. SLC13A3 is a major effector downstream of activated β-catenin in liver cancer pathogenesis. Nat. Commun. 2024 15 1 7522 10.1038/s41467‑024‑51860‑2 39215042
    [Google Scholar]
  82. Dong Z. Ojha A. Barlow L. Luo L. Liu J.Y. Zhang J.T. The eIF3a translational control axis in the Wnt/β-catenin signaling pathway and colon tumorigenesis. Cancer Lett. 2024 605 217303 10.1016/j.canlet.2024.217303 39413959
    [Google Scholar]
  83. Yang X. Han F. Guo Y. Zhang X. TEMPORARY REMOVAL: ADAM10 promotes uveal melanoma development by regulating the Wnt/β-catenin pathway. Exp. Cell Res. 2025 114522 114522 10.1016/j.yexcr.2025.114522 40107442
    [Google Scholar]
  84. Gonzalez M.E. Brophy B. Eido A. CCN6 suppresses metaplastic breast carcinoma by antagonizing Wnt/β-catenin signaling to inhibit EZH2-Driven EMT. Cancer Res. 2024 84 19 3235 3249 10.1158/0008‑5472.CAN‑23‑4054 39024552
    [Google Scholar]
  85. Zhang S. Huang H. Handley M. Griffin N. Bai X. Shan F. A novel mechanism of lung cancer inhibition by methionine enkephalin through remodeling the immune status of the tumor microenvironment. Int. Immunopharmacol. 2021 99 107999 10.1016/j.intimp.2021.107999 34315116
    [Google Scholar]
  86. Hermans D. Gautam S. García-Cañaveras J.C. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8 + T cell stemness and antitumor immunity. Proc. Natl. Acad. Sci. USA 2020 117 11 6047 6055 10.1073/pnas.1920413117 32123114
    [Google Scholar]
  87. Xu M. Liu M. Du X. Intratumoral delivery of IL-21 overcomes Anti-Her2/Neu Resistance through shifting tumor-associated macrophages from M2 to M1 Phenotype. J. Immunol. 2015 194 10 4997 5006 10.4049/jimmunol.1402603 25876763
    [Google Scholar]
  88. Li R. Mukherjee M.B. Jin Z. The potential effect of general anesthetics in cancer surgery: Meta-analysis of postoperative metastasis and inflammatory cytokines. Cancers 2023 15 10 2759 10.3390/cancers15102759 37345096
    [Google Scholar]
  89. Brandt K. Singh P. Bulfonepaus S. Rückert R. Interleukin-21: A new modulator of immunity, infection, and cancer. Cytokine Growth Factor Rev. 2007 18 3-4 223 232 10.1016/j.cytogfr.2007.04.003 17509926
    [Google Scholar]
  90. Akamatsu N. Yamada Y. Hasegawa H. High IL-21 receptor expression and apoptosis induction by IL-21 in follicular lymphoma. Cancer Lett. 2007 256 2 196 206 10.1016/j.canlet.2007.06.001 17624663
    [Google Scholar]
  91. Goenka A. Khan F. Verma B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun. (Lond.) 2023 43 5 525 561 10.1002/cac2.12416 37005490
    [Google Scholar]
  92. Yi M. Li T. Niu M. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct. Target. Ther. 2024 9 1 176 10.1038/s41392‑024‑01868‑3 39034318
    [Google Scholar]
  93. Xia Y. Sun M. Huang H. Jin W.L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024 9 1 92 10.1038/s41392‑024‑01808‑1 38637540
    [Google Scholar]
  94. Peng C. Feng Z. Ou L. Syzygium aromaticum enhances innate immunity by triggering macrophage M1 polarization and alleviates Helicobacter pylori-induced inflammation. J. Funct. Foods 2023 107 105626 10.1016/j.jff.2023.105626
    [Google Scholar]
  95. Ou L. Liu H. Shi X. Terminalia chebula Retz. aqueous extract inhibits the Helicobacter pylori-induced inflammatory response by regulating the inflammasome signaling and ER-stress pathway. J. Ethnopharmacol. 2024 320 117428 10.1016/j.jep.2023.117428 37981121
    [Google Scholar]
  96. Zhiyi C Phei Er S. Integration in biomedical science 2024: Emerging trends in the post-pandemic era Science Open 2024 5 1 10.15212/bioi‑2024‑1001
    [Google Scholar]
  97. Mitchell L.A. Hansen R.J. Beaupre A.J. Gustafson D.L. Dow S.W. Optimized dosing of a CCR2 antagonist for amplification of vaccine immunity. Int. Immunopharmacol. 2013 15 2 357 363 10.1016/j.intimp.2012.11.016 23246255
    [Google Scholar]
  98. Aravindaram K. Wang P-H. Yin S-Y. Yang N-S. Tumor-associated antigen/IL-21-transduced dendritic cell vaccines enhance immunity and inhibit immunosuppressive cells in metastatic melanoma. Gene Ther. 2014 21 5 457 467 10.1038/gt.2014.12 24572790
    [Google Scholar]
  99. Yang M. Yang F. Chen W. Liu S. Qiu L. Chen J. Bacteria-mediated cancer therapies: Opportunities and challenges. Biomater. Sci. 2021 9 17 5732 5744 10.1039/D1BM00634G 34313267
    [Google Scholar]
  100. Low K.B. Ittensohn M. Luo X. Construction of VNP20009: A novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol. Med. 2004 90 47 60 14657558
    [Google Scholar]
  101. Toso J.F. Gill V.J. Hwu P. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 2002 20 1 142 152 10.1200/JCO.2002.20.1.142 11773163
    [Google Scholar]
  102. Schmitz-Winnenthal F.H. Hohmann N. Niethammer A.G. Anti-angiogenic activity of VXM01, an oral T-cell vaccine against VEGF receptor 2, in patients with advanced pancreatic cancer: A randomized, placebo-controlled, phase 1 trial. OncoImmunology 2015 4 4 e1001217 10.1080/2162402X.2014.1001217 26137397
    [Google Scholar]
  103. Kwon S.Y. Thi-Thu Ngo H. Son J. Hong Y. Min J.J. Exploiting bacteria for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2024 21 8 569 589 10.1038/s41571‑024‑00908‑9 38840029
    [Google Scholar]
  104. Deb D. Wu Y. Coker C. Harimoto T. Huang R. Danino T. Design of combination therapy for engineered bacterial therapeutics in non-small cell lung cancer. Sci. Rep. 2022 12 1 21551 10.1038/s41598‑022‑26105‑1 36513723
    [Google Scholar]
  105. Li R. Huang Y. Liu H. Dilger J.P. Lin J. Abstract 2162: Comparing volatile and intravenous anesthetics in a mouse model of breast cancer metastasis. Cancer Res. 2018 78 13 2162 2 10.1158/1538‑7445.AM2018‑2162
    [Google Scholar]
  106. Liu Y.B. Zhang L. Guo Y.X. Plasmid-based Survivin shRNA and GRIM-19 carried by attenuated Salmonella suppresses tumor cell growth. Asian J. Androl. 2012 14 4 536 545 10.1038/aja.2011.179 22580637
    [Google Scholar]
  107. Wan Y. Wang X. Liu T. Prognostic value of CCR2 as an immune indicator in lung adenocarcinoma: A study based on tumor‐infiltrating immune cell analysis. Cancer Med. 2021 10 12 4150 4163 10.1002/cam4.3931 33949150
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232407110251015103908
Loading
/content/journals/cgt/10.2174/0115665232407110251015103908
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: IL-21 ; siRNA ; Lung cancer ; immunotherapy ; CCR2 ; plasmid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test