Skip to content
2000
image of Revolution of Traditional Chinese Medicine in Anticancer Therapy, Applications and Future Perspective

Abstract

Background

The battle against cancer has gained the interest of various researchers, scientists, pharmacologists, and pharmaceutical intervenors in China. Cancer is a leading cause of death worldwide, and the exploration of Traditional Chinese medicine plays an active role in modern medicine and patients with tumors.

Methods

The literature search was done in PubMed, Web of Science, Scopus, PubChem, Google Scholar, SCI, and various online data sources. The review summarizes the pharmacology and applications of TCM as an adjuvant cancer therapeutic.

Results

More than 75% of cancer cases are treated using herbal remedies and alternative therapies like TCM in China. Researchers have focused on Western medicines for inhibiting cancer cell growth, apoptosis, and metastasis, with applications of TCM medicines in cancer patients. Furthermore, the complementary and alternative therapies used for cancer patients in China are helpful for cancer-fatigue patients with a combination of chemotherapy and radiotherapy.

Discussion

TCM is a promising strategy for researchers and provides a solid foundation for formulating future hypotheses for studies on TCM-based cancer therapy with fewer side effects and improving patient health.

Conclusion

TCM anticancer progress regulates immune responses and the role of natural killer cells, T and B cells, innate immunity, macrophages, and CD4+ lymphocytes. Additionally, chemopreventive measures in TCM nanotherapeutics shed light on underlying cancer mechanisms and cancer-suppressing genes, promoting the survival of cancer-affected patients in China. Further, it provides newer insights into the therapeutic effects of traditional Chinese medicine in controlling cancer cell growth, cancer stem cells, DNA methylation, apoptosis, and improving patient compliance, promoting health.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232394088250930165852
2025-10-15
2025-12-14
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Chen W. Zheng R. Zuo T. Zeng H. Zhang S. He J. National cancer incidence and mortality in China, 2012. Chin. J. Cancer Res. 2016 28 1 1 11 10.3978/j.issn.1000‑9604.2016.02.08 27041922
    [Google Scholar]
  3. Tiwari B. Jones A.E. Abrams J.M. Transposons, p53 and genome security. Trends Genet. 2018 34 11 846 855 10.1016/j.tig.2018.08.003 30195581
    [Google Scholar]
  4. Turnbull C. Sud A. Houlston R.S. Cancer genetics, precision prevention and a call to action. Nat. Genet. 2018 50 9 1212 1218 10.1038/s41588‑018‑0202‑0 30158684
    [Google Scholar]
  5. Lapidot T. Sirard C. Vormoor J. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994 367 645 10.1038/367645a0 7509044
    [Google Scholar]
  6. Vlashi E. Pajonk F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin. Cancer Biol. 2015 31 28 35 10.1016/j.semcancer.2014.07.001 25025713
    [Google Scholar]
  7. Zigler M. Shir A. Levitzki A. Targeted cancer immunotherapy. Curr. Opin. Pharmacol. 2013 13 4 504 510 10.1016/j.coph.2013.04.003 23648271
    [Google Scholar]
  8. Ribas A. Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science 2018 359 6382 1350 1355 10.1126/science.aar4060 29567705
    [Google Scholar]
  9. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013 342 6165 1432 1433 10.1126/science.342.6165.1432 24357284
    [Google Scholar]
  10. Lee S. Han S. Park J.S. Herb mixture C5E aggravates doxorubicin-induced apoptosis of human breast cancer cell lines. J. Korean Soc. Appl. Biol. Chem. 2013 56 5 567 573 10.1007/s13765‑013‑3195‑5
    [Google Scholar]
  11. Cai Y. Luo Q. Sun M. Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004 74 17 2157 2184 10.1016/j.lfs.2003.09.047 14969719
    [Google Scholar]
  12. Cho Y.R. Kim J.K. Kim J.H. Oh J.S. Seo D.W. Ligularia fischeri regulates lung cancer cell proliferation and migration through down-regulation of epidermal growth factor receptor and integrin β1 expression. Genes Genomics 2013 35 6 741 746 10.1007/s13258‑013‑0124‑2
    [Google Scholar]
  13. Tian Y. Gong G.Y. Ma L.L. Wang Z.Q. Song D. Fang M.Y. Anti-cancer effects of Polyphyllin I: An update in 5 years. Chem. Biol. Interact. 2020 316 108936 10.1016/j.cbi.2019.108936 31870841
    [Google Scholar]
  14. Sawah E.A. Marchion D.C. Xiong Y. The Chinese herb polyphyllin D sensitizes ovarian cancer cells to cisplatin-induced growth arrest. J. Cancer Res. Clin. Oncol. 2015 141 2 237 242 10.1007/s00432‑014‑1797‑x 25164128
    [Google Scholar]
  15. Wang Y. Chen J. Li Z. Luteolin and Quercetin combination therapy: Enhanced inhibition of H157 human lung cancer cells. Pharmacol Res Mod Chin Med 2024 12 100479 10.1016/j.prmcm.2024.100479
    [Google Scholar]
  16. Lu J.J. Dang Y.Y. Huang M. Xu W.S. Chen X.P. Wang Y.T. Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae – A review. J. Ethnopharmacol. 2012 143 2 406 411 10.1016/j.jep.2012.07.009 22820242
    [Google Scholar]
  17. Chen X. Pei L. Zhong Z. Guo J. Zhang Q. Wang Y. Anti-tumor potential of ethanol extract of Curcuma phaeocaulis Valeton against breast cancer cells. Phytomedicine 2011 18 14 1238 1243 10.1016/j.phymed.2011.06.017 21795032
    [Google Scholar]
  18. Zhang J. Liu L. Wang J. Ren B. Zhang L. Li W. Formononetin, an isoflavone from Astragalus membranaceus inhibits proliferation and metastasis of ovarian cancer cells. J. Ethnopharmacol. 2018 221 91 99 10.1016/j.jep.2018.04.014 29660466
    [Google Scholar]
  19. Du Y. Feng J. Wang R. Zhang H. Liu J. Effects of flavonoids from Potamogeton crispus L. on proliferation, migration, and invasion of human ovarian cancer cells. PLoS One 2015 10 6 0130685 10.1371/journal.pone.0130685 26098839
    [Google Scholar]
  20. Xiao Q. Zhu W. Feng W. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front. Pharmacol. 2019 9 1534 10.3389/fphar.2018.01534 30687096
    [Google Scholar]
  21. Šimůnek T. Štěrba M. Popelová O. Adamcová M. Hrdina R. Geršl V. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep. 2009 61 1 154 171 10.1016/S1734‑1140(09)70018‑0 19307704
    [Google Scholar]
  22. Matos L.C. Machado J.P. Monteiro F.J. Greten H.J. Understanding traditional Chinese medicine therapeutics: An overview of the basics and clinical applications. Health Care (Don Mills) 2021 9 257 10.3390/healthcare9030257 33804485
    [Google Scholar]
  23. Chen X.P. Li W. Xiao X.F. Zhang L.L. Liu C.X. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin. J. Nat. Med. 2013 11 6 577 587 10.1016/S1875‑5364(13)60067‑9 24345498
    [Google Scholar]
  24. Chiu S.C. Chiu T.L. Huang S.Y. Potential therapeutic effects of N-butylidenephthalide from Radix Angelica Sinensis (Danggui) in human bladder cancer cells. BMC Complement. Altern. Med. 2017 17 1 523 10.1186/s12906‑017‑2034‑3 29207978
    [Google Scholar]
  25. Zhang W. Yang Y. Li X. Angelica polysaccharides inhibit the growth and promote the apoptosis of U251 glioma cells in vitro and in vivo. Phytomedicine 2017 33 21 27 10.1016/j.phymed.2017.06.007 28887916
    [Google Scholar]
  26. Wang H.H. Li D.C. Sun L. Study on the pharmacodynamic components and pharmacological effects of astragalus. Chinese Prescription Drugs 2018 16 22 23
    [Google Scholar]
  27. Qu X.L. Zeng Y. Yao L. Astragaloside iv down-regulates the expression of PD-1 and PD-L1 on the inhibition of hela cell invasion and migration in cervical cancer. J. Immunol. 2018 34 850 855
    [Google Scholar]
  28. Li W. Kuang Y. Meng L.F. Mechanism of astragaloside iv on the proliferation, migration and invasion of hela cells in cervical cancer. Pharm Clin Trad Chin Med 2018 34 39 42
    [Google Scholar]
  29. Zhou R. Chen H. Chen J. Chen X. Wen Y. Xu L. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement. Altern. Med. 2018 18 1 83 10.1186/s12906‑018‑2148‑2 29523109
    [Google Scholar]
  30. Park H.J. Park S.H. Induction of apoptosis by Ethyl Acetate Fraction of Astragalus membranaceus in human non-small cell lung cancer cells:-apoptosis induction by Astragalus membranaceus. J. Pharmacopuncture 2018 21 4 268 276 10.3831/KPI.2018.21.030 30652053
    [Google Scholar]
  31. Duan L.F. Zhang X.Q. Research progress of astragalus polysaccharide as an immunotherapy for leukemia. Chin Med Guide 2017 23 74 76
    [Google Scholar]
  32. Wu C.Y. Ke Y. Zeng Y.F. Zhang Y.W. Yu H.J. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells. Cancer Cell Int. 2017 17 1 115 10.1186/s12935‑017‑0487‑6 29225515
    [Google Scholar]
  33. Brand E.J. Zhao Z. Cannabis in Chinese medicine: Are some traditional indications referenced in ancient literature related to cannabinoids? Front. Pharmacol. 2017 8 108 10.3389/fphar.2017.00108 28344554
    [Google Scholar]
  34. Bifulco M. Laezza C. Pisanti S. Gazzerro P. Cannabinoids and cancer: Pros and cons of an antitumour strategy. Br. J. Pharmacol. 2006 148 2 123 135 10.1038/sj.bjp.0706632 16501583
    [Google Scholar]
  35. Petersen G. Moesgaard B. Schmid P.C. Endocannabinoid metabolism in human glioblastomas and meningiomas compared to human non‐tumour brain tissue. J. Neurochem. 2005 93 2 299 309 10.1111/j.1471‑4159.2005.03013.x 15816853
    [Google Scholar]
  36. Schmid P.C. Wold L.E. Krebsbach R.J. Berdyshev E.V. Schmid H.H.O. Anandamide and other N ‐acylethanolamines in human tumors. Lipids 2002 37 9 907 912 10.1007/s11745‑002‑0978‑z 12458627
    [Google Scholar]
  37. Pagotto U. Marsicano G. Fezza F. Normal human pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and synthesize endogenous cannabinoids: First evidence for a direct role of cannabinoids on hormone modulation at the human pituitary level. J. Clin. Endocrinol. Metab. 2001 86 6 2687 2696 11397872
    [Google Scholar]
  38. Nithipatikom K. Endsley M.P. Isbell M.A. 2-arachidonoylglycerol: A novel inhibitor of androgen-independent prostate cancer cell invasion. Cancer Res. 2004 64 24 8826 8830 10.1158/0008‑5472.CAN‑04‑3136 15604240
    [Google Scholar]
  39. Sánchez C. de Ceballos M.L. Gomez del Pulgar T. Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res. 2001 61 15 5784 5789 11479216
    [Google Scholar]
  40. Ellert-Miklaszewska A. Grajkowska W. Gabrusiewicz K. Kaminska B. Konarska L. Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors. Brain Res. 2007 1137 1 161 169 10.1016/j.brainres.2006.12.060 17239827
    [Google Scholar]
  41. Hashemi M. Bashi S. Zali A. The expression level of cannabinoid receptors type 1 and 2 in the different types of astrocytomas. Mol. Biol. Rep. 2020 47 7 5461 5467 10.1007/s11033‑020‑05636‑8 32623617
    [Google Scholar]
  42. Pećina-Šlaus N. Kafka A. Varošanec A.M. Expression patterns of Wnt signaling component, secreted frizzled-related protein 3 in astrocytoma and glioblastoma. Mol. Med. Rep. 2016 13 5 4245 4251 10.3892/mmr.2016.5061 27035837
    [Google Scholar]
  43. Choucair N. Saker Z. Kheir Eddine H. Immunohistochemical assessment of cannabinoid type-1 receptor (CB1R) and its correlation with clinicopathological parameters in glioma. Pathologica 2022 114 2 128 137 10.32074/1591‑951X‑294 35481563
    [Google Scholar]
  44. Piñeiro R. Maffucci T. Falasca M. The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene 2011 30 2 142 152 10.1038/onc.2010.417 20838378
    [Google Scholar]
  45. Pati S. Krishna S. Lee J.H. Effects of high-fat diet and age on the blood lipidome and circulating endocannabinoids of female C57BL/6 mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018 1863 1 26 39 10.1016/j.bbalip.2017.09.011 28986283
    [Google Scholar]
  46. Milian L. Mata M. Alcacer J. Cannabinoid receptor expression in non-small cell lung cancer. Effectiveness of tetrahydrocannabinol and cannabidiol inhibiting cell proliferation and epithelial-mesenchymal transition in vitro. PLoS One 2020 15 2 0228909 10.1371/journal.pone.0228909 32049991
    [Google Scholar]
  47. Preet A. Qamri Z. Nasser M.W. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev. Res. 2011 4 1 65 75 10.1158/1940‑6207.CAPR‑10‑0181 21097714
    [Google Scholar]
  48. Winkler K. Ramer R. Dithmer S. Ivanov I. Merkord J. Hinz B. Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells. Oncotarget 2016 7 12 15047 15064 10.18632/oncotarget.7592 26930716
    [Google Scholar]
  49. Sayers E.W. Bolton E.E. Brister J.R. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022 50 D1 D20 D26 10.1093/nar/gkab1112 34850941
    [Google Scholar]
  50. Lee T.T.Y. Hill M.N. Hillard C.J. Gorzalka B.B. Temporal changes in N ‐acylethanolamine content and metabolism throughout the peri‐adolescent period. Synapse 2013 67 1 4 10 10.1002/syn.21609 22987804
    [Google Scholar]
  51. Pagano G. Shyamsunder P. Verma R.S. Lyakhovich A. Damaged mitochondria in Fanconi anemia - An isolated event or a general phenomenon? Oncoscience 2014 1 4 287 295 10.18632/oncoscience.29 25594021
    [Google Scholar]
  52. Zhao H. Zhao Z. Yang J. Fang X. Li H. Cannabinoid receptor 2 is upregulated in melanoma. J. Cancer Res. Ther. 2012 8 4 549 554 10.4103/0973‑1482.106534 23361273
    [Google Scholar]
  53. Baba Y. Funakoshi T. Mori M. Expression of monoacylglycerol lipase as a marker of tumour invasion and progression in malignant melanoma. J. Eur. Acad. Dermatol. Venereol. 2017 31 12 2038 2045 10.1111/jdv.14455 28681540
    [Google Scholar]
  54. Xian X. Tang L. Wu C. Huang L. miR-23b-3p and miR-130a-5p affect cell growth, migration and invasion by targeting CB1R via the Wnt/β-catenin signaling pathway in gastric carcinoma. OncoTargets Ther. 2018 11 7503 7512 10.2147/OTT.S181706 30498363
    [Google Scholar]
  55. Morin-Buote J. Ennour-Idrissi K. Poirier É. Association of breast tumour expression of cannabinoid receptors CBR1 and CBR2 with prognostic factors and survival in breast cancer patients. J. Pers. Med. 2021 11 9 852 10.3390/jpm11090852 34575629
    [Google Scholar]
  56. Pérez-Gómez E. Andradas C. Blasco-Benito S. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J. Natl. Cancer Inst. 2015 107 6 djv077 10.1093/jnci/djv077 25855725
    [Google Scholar]
  57. Elbaz M. Ahirwar D. Ravi J. Nasser M.W. Ganju R.K. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer. Oncotarget 2017 8 18 29668 29678 10.18632/oncotarget.9408 27213582
    [Google Scholar]
  58. Nasser M.W. Qamri Z. Deol Y.S. Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS One 2011 6 9 23901 10.1371/journal.pone.0023901 21915267
    [Google Scholar]
  59. Zhou X. Guo X. Song Y. Zhu C. Zou W. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol. Sin. 2018 39 3 459 471 10.1038/aps.2017.157 29188802
    [Google Scholar]
  60. Andradas C. Blasco-Benito S. Castillo-Lluva S. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer. Oncotarget 2016 7 30 47565 47575 10.18632/oncotarget.10206 27340777
    [Google Scholar]
  61. Ye L. Zhang B. Seviour E.G. Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer. Cancer Lett. 2011 307 1 6 17 10.1016/j.canlet.2011.03.007 21543155
    [Google Scholar]
  62. Grill M. Högenauer C. Blesl A. Members of the endocannabinoid system are distinctly regulated in inflammatory bowel disease and colorectal cancer. Sci. Rep. 2019 9 1 2358 10.1038/s41598‑019‑38865‑4 30787385
    [Google Scholar]
  63. Kargl J. Andersen L. Hasenöhrl C. GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis. Br. J. Pharmacol. 2016 173 1 142 154 10.1111/bph.13345 26436760
    [Google Scholar]
  64. Hasenoehrl C. Feuersinger D. Sturm E.M. G protein‐coupled receptor GPR55 promotes colorectal cancer and has opposing effects to cannabinoid receptor 1. Int. J. Cancer 2018 142 1 121 132 10.1002/ijc.31030 28875496
    [Google Scholar]
  65. Cianchi F. Papucci L. Schiavone N. Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells. Clin. Cancer Res. 2008 14 23 7691 7700 10.1158/1078‑0432.CCR‑08‑0799 19047095
    [Google Scholar]
  66. Goswami S. Ali A. Prasad M.E. Singh P. Pharmacological significance of Catharanthus roseus in cancer management: A review. Pharmacol Res Mod Chin Med 2024 11 100444 10.1016/j.prmcm.2024.100444
    [Google Scholar]
  67. do Carmo Pimentel Batitucci M. Dutra J.C. de Oliveira J.B. Bioprospection and clinical investigations of immunomodulatory molecules. In: Plants and Phytomolecules for Immunomodulation: Recent Trends and Advances. Singapore Springer Nature 2022 53 81 10.1007/978‑981‑16‑8117‑2_3
    [Google Scholar]
  68. Patel M. Horgan P.G. McMillan D.C. Edwards J. NF-κB pathways in the development and progression of colorectal cancer. Transl. Res. 2018 197 43 56 10.1016/j.trsl.2018.02.002 29550444
    [Google Scholar]
  69. Soleimani A. Rahmani F. Ferns G.A. Ryzhikov M. Avan A. Hassanian S.M. Role of the NF-κB signaling pathway in the pathogenesis of colorectal cancer. Gene 2020 726 144132 10.1016/j.gene.2019.144132 31669643
    [Google Scholar]
  70. Grunert M. Gottschalk K. Kapahnke J. Gündisch S. Kieser A. Jeremias I. The adaptor protein FADD and the initiator caspase-8 mediate activation of NF-κB by TRAIL. Cell Death Dis. 2012 3 10 414 10.1038/cddis.2012.154 23096115
    [Google Scholar]
  71. Annese T. Tamma R. De Giorgis M. Ribatti D. microRNAs biogenesis, functions and role in tumor angiogenesis. Front. Oncol. 2020 10 581007 10.3389/fonc.2020.581007 33330058
    [Google Scholar]
  72. Reddy K.B. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015 15 1 38 10.1186/s12935‑015‑0185‑1 25960691
    [Google Scholar]
  73. Alnuqaydan A.M. Targeting micro-RNAs by natural products: A novel future therapeutic strategy to combat cancer. Am. J. Transl. Res. 2020 12 7 3531 3556 32774718
    [Google Scholar]
  74. Due H. Schönherz A.A. Ryø L. MicroRNA-155 controls vincristine sensitivity and predicts superior clinical outcome in diffuse large B-cell lymphoma. Blood Adv. 2019 3 7 1185 1196 10.1182/bloodadvances.2018029660 30967394
    [Google Scholar]
  75. Huang X. Shen Y. Liu M. Quantitative proteomics reveals that miR-155 regulates the PI3K-AKT pathway in diffuse large B-cell lymphoma. Am. J. Pathol. 2012 181 1 26 33 10.1016/j.ajpath.2012.03.013 22609116
    [Google Scholar]
  76. Wang D. Sang Y. Sun T. Emerging roles and mechanisms of microRNA 222 3p in human cancer (Review). Int. J. Oncol. 2021 58 5 20 10.3892/ijo.2021.5200 33760107
    [Google Scholar]
  77. Mavrogiannis A.V. Kokkinopoulou I. Kontos C.K. Sideris D.C. Effect of vinca alkaloids on the expression levels of microRNAs targeting apoptosis-related genes in breast cancer cell lines. Curr. Pharm. Biotechnol. 2019 19 13 1076 1086 10.2174/1389201019666181112103204 30417784
    [Google Scholar]
  78. Zhou Z.W. Long H.Z. Xu S.G. Therapeutic effects of natural products on cervical cancer: Based on inflammatory pathways. Front. Pharmacol. 2022 13 899208 10.3389/fphar.2022.899208 35645817
    [Google Scholar]
  79. Wang X. Deng J. Yuan J. Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells. Int. J. Oncol. 2017 51 2 467 477 10.3892/ijo.2017.4037 28627598
    [Google Scholar]
  80. Su J. Zhou X. Yin X. The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer. Biochem. Pharmacol. 2017 140 28 40 10.1016/j.bcp.2017.05.014 28535906
    [Google Scholar]
  81. Yadav R. Das J. Lalhlenmawia H. Tonk R.K. Singh L. Kumar D. Targeting cancer using phytoconstituents-based drug delivery. In:Advanced drug delivery Systems in the Management of cancer. Academic Pres 2021 499 508 10.1016/B978‑0‑323‑85503‑7.00033‑X
    [Google Scholar]
  82. Feng R.X. Cai R.G. Xie D.D. Effects of curcumin on proliferation and apoptosis of oral squamous cell carcinoma Tca8113 cells. J Chengdu Med Coll 2019 14 25 30
    [Google Scholar]
  83. Wei L.L. Wang J. Tan S. Effects of curcumin on the tumor marker molecular levels and the ability of cervical cancer cell producing nitric oxide of cervical subcutaneous transplantation in mice tumor model. Chin. J. Clin. Pharmacol. 2019 6 547 549
    [Google Scholar]
  84. Zolj S. Smith M.P. Goines J.C. Antiproliferative effects of a triterpene-enriched extract from lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), on human lung cancer cells. Int. J. Med. Mushrooms 2018 20 12 1173 1183 10.1615/IntJMedMushrooms.2018028823 30806298
    [Google Scholar]
  85. Qu L. Li S. Zhuo Y. Chen J. Qin X. Guo G. Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol. Lett. 2017 14 6 7467 7472 10.3892/ol.2017.7153 29344190
    [Google Scholar]
  86. Rios-Fuller T.J. Ortiz-Soto G. Lacourt-Ventura M. Ganoderma lucidum extract (GLE) impairs breast cancer stem cells by targeting the STAT3 pathway. Oncotarget 2018 9 89 35907 35921 10.18632/oncotarget.26294 30542507
    [Google Scholar]
  87. Martínez-Montemayor M.M. Ling T. Suárez-Arroyo I.J. Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anti-cancer activities in vitro. Front. Pharmacol. 2019 10 115 10.3389/fphar.2019.00115 30837881
    [Google Scholar]
  88. Yu J. Wang J. Yang J. New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer. Phytomedicine 2024 122 155088 10.1016/j.phymed.2023.155088 37844377
    [Google Scholar]
  89. Chen P. Liu Y. Wen Y. Zhou C. Non‐small cell lung cancer in China. Cancer Commun. 2022 42 10 937 970 10.1002/cac2.12359 36075878
    [Google Scholar]
  90. Wang M. Li R. Bai M. Zhou X. Exploration of Ginkgo biloba leaves on non-small cell lung cancer based on network pharmacology and molecular docking. Medicine 2024 103 9 37218 10.1097/MD.0000000000037218 38428907
    [Google Scholar]
  91. Ahmed H.H. Shousha W.G. El-Mezayen H.A. El-Toumy S.A. Sayed A.H. Ramadan A.R. Biochemical and molecular evidences for the antitumor potential of Ginkgo biloba leaves extract in rodents. Acta Biochim. Pol. 2017 64 1 25 33 27741326
    [Google Scholar]
  92. Qian Y. Xia L. Shi W. Sun J.J. Sun Y.Q. The effect of EGB on proliferation of gastric carcinoma SGC7901 cells. Clin. Transl. Oncol. 2016 18 5 521 526 10.1007/s12094‑015‑1399‑3 26489423
    [Google Scholar]
  93. Han D. Cao C. Su Y. Ginkgo biloba exocarp extracts inhibits angiogenesis and its effects on Wnt/β-catenin-VEGF signaling pathway in Lewis lung cancer. J. Ethnopharmacol. 2016 192 406 412 10.1016/j.jep.2016.09.018 27649680
    [Google Scholar]
  94. Jiang X. Sun S.F. Wang Y. Research progress on pharmacological action of liquorice. Chemical Industry Times 2017 31 25 28
    [Google Scholar]
  95. Shen H. Zeng G. Sun B. A polysaccharide from Glycyrrhiza inflata Licorice inhibits proliferation of human oral cancer cells by inducing apoptosis via mitochondrial pathway. Tumour Biol. 2015 36 6 4825 4831 10.1007/s13277‑015‑3135‑6 25663459
    [Google Scholar]
  96. Ayeka P.A. Bian Y. Githaiga P.M. Zhao Y. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice. BMC Complement. Altern. Med. 2017 17 1 536 10.1186/s12906‑017‑2030‑7 29246138
    [Google Scholar]
  97. Sharma R. Gatchie L. Williams I.S. Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme. Bioorg. Med. Chem. Lett. 2017 27 24 5400 5403 10.1016/j.bmcl.2017.11.013 29150398
    [Google Scholar]
  98. Che H.W. Yang H.N. Tan X.C. Research progress on the tumor cell inhibition activities of different extraction of Oldenlandia diffusa. Asia Pac Trad Med 2019 15 191 193
    [Google Scholar]
  99. Sunwoo Y.Y. Lee J.H. Jung H.Y. Oldenlandia diffusa promotes antiproliferative and apoptotic effects in a rat hepatocellular carcinoma with liver cirrhosis. Evid. Based Complement. Alternat. Med. 2015 2015 1 501508 10.1155/2015/501508 25852766
    [Google Scholar]
  100. Chung T.W. Choi H. Lee J.M. Oldenlandia diffusa suppresses metastatic potential through inhibiting matrix metalloproteinase-9 and intercellular adhesion molecule-1 expression via p38 and ERK1/2 MAPK pathways and induces apoptosis in human breast cancer MCF-7 cells. J. Ethnopharmacol. 2017 195 309 317 10.1016/j.jep.2016.11.036 27876502
    [Google Scholar]
  101. Guo H.M. Zhao D. Cao L. Hedyotis diffusa Willd promotes the apoptosis of lung cancer cells by inhibiting MAPK pathway. Pharm Clin Res 2019 27 5 9
    [Google Scholar]
  102. Nan X.H. Yu F. Tian H. Herba hedyotis diffusae induces human bladder cancer T24 cells apoptosis through inhibiting JAK2/STAT3 signaling pathways. J China Prescr Drug 2018 16 31 32
    [Google Scholar]
  103. Zhao Y.L. Application of hedyotis diffusa in tumor treatment. Gansu Sci Technol 2018 34 141 142
    [Google Scholar]
  104. Wong A.S.T. Che C.M. Leung K.W. Recent advances in ginseng as cancer therapeutics: A functional and mechanistic overview. Nat. Prod. Rep. 2015 32 2 256 272 10.1039/C4NP00080C 25347695
    [Google Scholar]
  105. Bedoui S. Herold M.J. Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 2020 21 11 678 695 10.1038/s41580‑020‑0270‑8 32873928
    [Google Scholar]
  106. Giaquinto A.N. Sung H. Miller K.D. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022 72 6 524 541 10.3322/caac.21754 36190501
    [Google Scholar]
  107. Yang Y. Nan Y. Du Y. Ginsenosides in cancer: Proliferation, metastasis, and drug resistance. Biomed. Pharmacother. 2024 177 117049 10.1016/j.biopha.2024.117049 38945081
    [Google Scholar]
  108. Aiello N.M. Kang Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 2019 216 5 1016 1026 10.1084/jem.20181827 30975895
    [Google Scholar]
  109. Park J.S. Park E.M. Kim D.H. Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 2009 209 1-2 40 49 10.1016/j.jneuroim.2009.01.020 19232442
    [Google Scholar]
  110. Kim S.H. Shim S.H. Choi D.S. Kim J.H. Kwon Y.B. Kwon J.K. Modulation of LPS-stimulated astroglial activation by ginseng total saponins. J. Ginseng Res. 2011 35 1 80 85 10.5142/jgr.2011.35.1.080
    [Google Scholar]
  111. Yu S.C. Li X.Y. Effect of ginsenoside on IL-1 beta and IL-6 mRNA expression in hippocampal neurons in chronic inflammation model of aged rats. Acta Pharmacol. Sin. 2000 21 10 915 918 11501043
    [Google Scholar]
  112. Fràter-Schröder M. Risau W. Hallmann R. Gautschi P. Böhlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc. Natl. Acad. Sci. USA 1987 84 15 5277 5281 10.1073/pnas.84.15.5277 2440047
    [Google Scholar]
  113. Chiarugi V. Magnelli L. Gallo O. Cox-2, iNOS and p53 as play-makers of tumor angiogenesis (review). Int. J. Mol. Med. 1998 2 6 715 719 10.3892/ijmm.2.6.715 9850741
    [Google Scholar]
  114. Wei L.H. Kuo M.L. Chen C.A. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 2003 22 10 1517 1527 10.1038/sj.onc.1206226 12629515
    [Google Scholar]
  115. Carmi Y. Dotan S. Rider P. The role of IL-1β in the early tumor cell-induced angiogenic response. J. Immunol. 2013 190 7 3500 3509 10.4049/jimmunol.1202769 23475218
    [Google Scholar]
  116. Zhang Y.X. Wang L. Xiao E.L. Ginsenoside-Rd exhibits anti-inflammatory activities through elevation of antioxidant enzyme activities and inhibition of JNK and ERK activation in vivo. Int. Immunopharmacol. 2013 17 4 1094 1100 10.1016/j.intimp.2013.10.013 24455777
    [Google Scholar]
  117. Jung J.S. Kim D.H. Kim H.S. Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFN-γ-stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem. Biophys. Res. Commun. 2010 397 2 323 328 10.1016/j.bbrc.2010.05.117 20510882
    [Google Scholar]
  118. Cervenak L. Morbidelli L. Donati D. Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood 2000 96 7 2568 2573 10.1182/blood.V96.7.2568 11001913
    [Google Scholar]
  119. Huang S. Ullrich S.E. Bar-Eli M. Regulation of tumor growth and metastasis by interleukin-10: The melanoma experience. J. Interferon Cytokine Res. 1999 19 7 697 703 10.1089/107999099313532 10454339
    [Google Scholar]
  120. Kundu N. Beaty T.L. Jackson M.J. Fulton A.M. Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. J. Natl. Cancer Inst. 1996 88 8 536 541 10.1093/jnci/88.8.536 8606382
    [Google Scholar]
  121. Qiao Y.J. Shang J.H. Wang D. Zhu H.T. Yang C.R. Zhang Y.J. Research of Panax spp. in Kunming Institute of Botany, CAS. Nat. Prod. Bioprospect. 2018 8 4 245 263 10.1007/s13659‑018‑0176‑8 29980943
    [Google Scholar]
  122. Wang T. Guo R. Zhou G. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J. Ethnopharmacol. 2016 188 234 258 10.1016/j.jep.2016.05.005 27154405
    [Google Scholar]
  123. Hsieh S.L. Hsieh S. Kuo Y.H. Wang J.J. Wang J.C. Wu C.C. Effects of Panax notoginseng on the metastasis of human colorectal cancer cells. Am. J. Chin. Med. 2016 44 4 851 870 10.1142/S0192415X16500476 27222068
    [Google Scholar]
  124. Wang P. Cui J. Du X. Panax notoginseng saponins (PNS) inhibits breast cancer metastasis. J. Ethnopharmacol. 2014 154 3 663 671 10.1016/j.jep.2014.04.037 24793216
    [Google Scholar]
  125. Kim B. Kim E.Y. Lee E.J. Panax notoginseng inhibits tumor growth through activating macrophage to M1 polarization. Am. J. Chin. Med. 2018 46 6 1369 1385 10.1142/S0192415X18500726 30168347
    [Google Scholar]
  126. Liu L. Zhang G.J. Lou Z.H. Research progress of active components of Salvia miltiorrhiza in preventing and treating malignant tumor. Chin J Trad Chin Med 2018 33 2472 2475
    [Google Scholar]
  127. Sung B. Chung H.S. Kim M. Cytotoxic effects of solvent-extracted active components of Salvia miltiorrhiza Bunge on human cancer cell lines. Exp. Ther. Med. 2015 9 4 1421 1428 10.3892/etm.2015.2252 25780445
    [Google Scholar]
  128. Kim J.M. Noh E.M. Song H.K. Salvia miltiorrhiza extract inhibits TPA-induced MMP-9 expression and invasion through the MAPK/AP-1 signaling pathway in human breast cancer MCF-7 cells. Oncol. Lett. 2017 14 3 3594 3600 10.3892/ol.2017.6638 28927117
    [Google Scholar]
  129. Wang Y.H. Xu X.Y. Yang S.Q. Research progress on pharmacological action and chemical component extraction of Sculellaria barbata. J Mudanjiang Med Univ 2017 38 116 118
    [Google Scholar]
  130. Zhang L. Ren B. Zhang J. Anti-tumor effect of Scutellaria barbata D. Don extracts on ovarian cancer and its phytochemicals characterisation. J. Ethnopharmacol. 2017 206 184 192 10.1016/j.jep.2017.05.032 28571726
    [Google Scholar]
  131. Shiau A.L. Shen Y.T. Hsieh J.L. Wu C.L. Lee C.H. Scutellaria barbata inhibits angiogenesis through downregulation of HIF‐1 α in lung tumor. Environ. Toxicol. 2014 29 4 363 370 10.1002/tox.21763 22331677
    [Google Scholar]
  132. Sun P. Sun D. Wang X. Effects of Scutellaria barbata polysaccharide on the proliferation, apoptosis and EMT of human colon cancer HT29 Cells. Carbohydr. Polym. 2017 167 90 96 10.1016/j.carbpol.2017.03.022 28433181
    [Google Scholar]
  133. Yadav N. Deshmukh R. Mazumder R. A comprehensive review on the use of traditional Chinese medicine for cancer treatment. Pharmacol Res Mod Chin Med 2024 11 100423 10.1016/j.prmcm.2024.100423
    [Google Scholar]
  134. Li F.J. Hu J.H. Ren X. Zhou C.M. Liu Q. Zhang Y.Q. Toad venom: A comprehensive review of chemical constituents, anticancer activities, and mechanisms. Arch Pharm 2021 354 7 2100060 10.1002/ardp.202100060 33887066
    [Google Scholar]
  135. Wang Z. Wen J. Zhang J. Ye M. Guo D. Simultaneous determination of four bufadienolides in human liver by high‐performance liquid chromatography. Biomed. Chromatogr. 2004 18 5 318 322 10.1002/bmc.322 15236440
    [Google Scholar]
  136. Wang D.L. Qi F.H. Xu H.L. Apoptosis-inducing activity of compounds screened and characterized from cinobufacini by bioassay-guided isolation. Mol. Med. Rep. 2010 3 4 717 722 21472305
    [Google Scholar]
  137. Qi F.H. Li A.Y. Lv H. Apoptosis-inducing effect of cinobufacini, Bufo bufo gargarizans Cantor skin extract, on human hepatoma cell line BEL-7402. Drug Discov. Ther. 2008 2 6 339 343 22504743
    [Google Scholar]
  138. Cui X. Inagaki Y. Xu H. Anti-hepatitis B virus activities of cinobufacini and its active components bufalin and cinobufagin in HepG2.2.15 cells. Biol. Pharm. Bull. 2010 33 10 1728 1732 10.1248/bpb.33.1728 20930383
    [Google Scholar]
  139. Gupta J. Sharma B. Sorout R. Singh R.G. Sharma M.C. Ginger (Zingiber officinale) in traditional Chinese medicine: A comprehensive review of its anti-inflammatory properties and clinical applications. Pharmacol Res Mod Chin Med 2024 100561
    [Google Scholar]
  140. Ballester P. Cerdá B. Arcusa R. Marhuenda J. Yamedjeu K. Zafrilla P. Effect of ginger on inflammatory diseases. Molecules 2022 27 21 7223 10.3390/molecules27217223 36364048
    [Google Scholar]
  141. Grzanna R. Lindmark L. Frondoza C.G. Ginger--An herbal medicinal product with broad anti-inflammatory actions. J. Med. Food 2005 8 2 125 132 10.1089/jmf.2005.8.125 16117603
    [Google Scholar]
  142. Mashhadi N.S. Ghiasvand R. Askari G. Hariri M. Darvishi L. Mofid M.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int. J. Prev. Med. 2013 4 Suppl. 1 S36 S42 23717767
    [Google Scholar]
  143. Rao A.V. Agarwal S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 1999 19 2 305 323 10.1016/S0271‑5317(98)00193‑6
    [Google Scholar]
  144. Chen M.C. Mi F.L. Liao Z.X. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv. Drug Deliv. Rev. 2013 65 6 865 879 10.1016/j.addr.2012.10.010 23159541
    [Google Scholar]
  145. Yao M. McClements D.J. Xiao H. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Curr. Opin. Food Sci. 2015 2 14 19 10.1016/j.cofs.2014.12.005
    [Google Scholar]
  146. Liang K. Bae K.H. Lee F. Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery. J. Control. Release 2016 226 205 216 10.1016/j.jconrel.2016.02.004 26855049
    [Google Scholar]
  147. Li W. Yalcin M. Lin Q. Ardawi M.S.M. Mousa S.A. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery. J. Control. Release 2017 248 117 124 10.1016/j.jconrel.2017.01.009 28077264
    [Google Scholar]
  148. Shaikh J. Ankola D.D. Beniwal V. Singh D. Kumar M.N.V.R. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 2009 37 3-4 223 230 10.1016/j.ejps.2009.02.019 19491009
    [Google Scholar]
  149. Wu X. Yang H. Chen X. Nano-herb medicine and PDT induced synergistic immunotherapy for colon cancer treatment. Biomaterials 2021 269 120654 10.1016/j.biomaterials.2021.120654 33434712
    [Google Scholar]
  150. Xiong J. Jiang B. Luo Y. Multifunctional nanoparticles encapsulating Astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. Int. J. Nanomedicine 2020 15 4151 4169 10.2147/IJN.S246447 32606670
    [Google Scholar]
  151. Wang T. Wang J. Jiang H. Targeted regulation of tumor microenvironment through the inhibition of MDSCs by curcumin loaded self-assembled nano-filaments. Mater. Today Bio 2022 15 100304 10.1016/j.mtbio.2022.100304 35711288
    [Google Scholar]
  152. Sesarman A. Tefas L. Sylvester B. Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment. Drug Deliv. Transl. Res. 2019 9 1 260 272 10.1007/s13346‑018‑00598‑8 30421392
    [Google Scholar]
  153. Yu Z. Guo J. Hu M. Gao Y. Huang L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano 2020 14 4 4816 4828 10.1021/acsnano.0c00708 32188241
    [Google Scholar]
  154. Wang R. Zhao Y. Huang Z. Self-assembly of podophyllotoxin-loaded lipid bilayer nanoparticles for highly effective chemotherapy and immunotherapy via downregulation of programmed cell death ligand 1 production. ACS Nano 2022 16 3 3943 3954 10.1021/acsnano.1c09391 35166522
    [Google Scholar]
  155. Xu H. Hu M. Liu M. Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model. Biomaterials 2020 235 119769 10.1016/j.biomaterials.2020.119769 31986348
    [Google Scholar]
  156. Wang F. Su H. Xu D. Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat. Biomed. Eng. 2020 4 11 1090 1101 10.1038/s41551‑020‑0597‑7 32778697
    [Google Scholar]
  157. Liu Z. Zhao L. Liu H. Norcantharidin liposome emulsion hybrid delivery system enhances PD-1/PD-L1 immunotherapy by agonizing the non-canonical NF-κB pathway. Int. J. Pharm. 2022 628 122361 10.1016/j.ijpharm.2022.122361 36332828
    [Google Scholar]
  158. Wu S. Liu D. Li W. Enhancing TNBC Chemo-immunotherapy via combination reprogramming tumor immune microenvironment with Immunogenic Cell Death. Int. J. Pharm. 2021 598 120333 10.1016/j.ijpharm.2021.120333 33540008
    [Google Scholar]
  159. Zhang N. Liu S. Shi S. Solubilization and delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy. J. Control. Release 2020 320 168 178 10.1016/j.jconrel.2020.01.015 31926193
    [Google Scholar]
  160. Fan L. Zhang B. Xu A. Carrier-free, pure nanodrug formed by the self-assembly of an anticancer drug for cancer immune therapy. Mol. Pharm. 2018 15 6 2466 2478 10.1021/acs.molpharmaceut.8b00444 29727577
    [Google Scholar]
  161. Li J. Zhou S. Yu J. Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy. J. Control. Release 2021 335 306 319 10.1016/j.jconrel.2021.05.040 34081995
    [Google Scholar]
  162. Li J. Zhao M. Xu Y. Hu X. Dai Y. Wang D. Hybrid micelles codelivering shikonin and IDO-1 siRNA enhance immunotherapy by remodeling immunosuppressive tumor microenvironment. Int. J. Pharm. 2021 597 120310 10.1016/j.ijpharm.2021.120310 33540035
    [Google Scholar]
  163. Zhang J. Shen L. Li X. Song W. Liu Y. Huang L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano 2019 13 11 12511 12524 10.1021/acsnano.9b02875 31664821
    [Google Scholar]
  164. Rao S.P. Jain P. Rathore P. Singh V.K. Larvicidal and knockdown activity of Citrus limetta Risso oil against dengue virus vector. Indian J. Nat. Prod. Resour. 2016 7 3 256 260
    [Google Scholar]
  165. Ernst E. Complementary and alternative medicine (CAM) and cancer: The kind face of complementary medicine. Int. J. Surg. 2009 7 6 499 500 10.1016/j.ijsu.2009.08.005 19716449
    [Google Scholar]
  166. Carmady B. Smith C.A. Use of Chinese medicine by cancer patients: A review of surveys. Chin. Med. 2011 6 1 22 10.1186/1749‑8546‑6‑22 21651825
    [Google Scholar]
  167. Jiang M. He K. Qiu T. Tumor-targeted delivery of silibinin and IPI-549 synergistically inhibit breast cancer by remodeling the microenvironment. Int. J. Pharm. 2020 581 119239 10.1016/j.ijpharm.2020.119239 32194211
    [Google Scholar]
  168. Chen Y. Hu M. Wang S. Nano-delivery of salvianolic acid B induces the quiescence of tumor-associated fibroblasts via interfering with TGF-β1/Smad signaling to facilitate chemo- and immunotherapy in desmoplastic tumor. Int. J. Pharm. 2022 623 121953 10.1016/j.ijpharm.2022.121953 35753535
    [Google Scholar]
  169. Younis M.A. Tawfeek H.M. Abdellatif A.A.H. Abdel-Aleem J.A. Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022 181 114083 10.1016/j.addr.2021.114083 34929251
    [Google Scholar]
  170. Han S. Bi S. Guo T. Nano co-delivery of Plumbagin and Dihydrotanshinone I reverses immunosuppressive TME of liver cancer. J. Control. Release 2022 348 250 263 10.1016/j.jconrel.2022.05.057 35660631
    [Google Scholar]
  171. Shan X. Gong X. Li J. Wen J. Li Y. Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 2022 12 7 3028 3048 10.1016/j.apsb.2022.02.025 35865096
    [Google Scholar]
  172. Bian Z. Chen S. Cheng C. Wang J. Xiao H. Qin H. Developing new drugs from annals of Chinese medicine. Acta Pharm. Sin. B 2012 2 1 1 7 10.1016/j.apsb.2011.12.007 33072500
    [Google Scholar]
  173. The Chinese medicine for the treatment of cancer. CN Patent108355012A 2018
    [Google Scholar]
  174. Chinese herbal medicine used for inhibition of malignant tumor metastasis. CN Patent 102847064A 2012
    [Google Scholar]
  175. Complex prescription of Chinese medicine for the treatment of extensive cancer Patent 20040219226 2004
    [Google Scholar]
  176. Chinese traditional medicine for treating gastric cancer and bone cancer. CN Patent 101062146A 2007 Available from https://patents.google.com/patent/CN101062146A/en.
    [Google Scholar]
  177. Traditional Chinese medicine composition for treating cancers or tumors CN Patent 102671070A, 2012
    [Google Scholar]
  178. Gastric cancer treatment medicine for oral administration and preparation method of gastric cancer treatment medicine for oral administration. CN Patent 105288334A 2015
    [Google Scholar]
  179. Available from: https://www.fda.gov/drugs/resourcesinformation-approved-drugs/fda-approves-toripalimab-tpzi-nasopharyngeal-carcinoma#:~:text=On%20October%2027%2C%202023%2C%20the%20Food%20and%20Drug,metastatic%20or%20recurrent%2C%20locally%20advanced%20nasopharyngeal%20carcinoma%20%28NPC%29/ FDA approves toripalimab-tpzi for nasopharyngeal carcinoma. 2035
  180. Zolbetuximab Plus Chemo Wins Approval in China for CLDN18 Zolbetuximab Plus Chemo Wins Approval in China for CLDN18.2+ Advanced Gastric/GEJ Adenocarcinoma 2025 Available from https://www.onclive.com/view/zolbetuximab-plus-chemo-wins-approval-in-china-for-cldn18-2-advanced-gastric-gej-adenocarcinoma.
  181. China’s world-leading cancer drug makes historic foray into the US amid medicine crisis. 2012 Available from: https://www.scmp.com/news/china/science/article/3240177/chinas-world-leading-cancer-drug-makes-historic-foray-us-amid-medicine-crisis
  182. China’s new cancer drug gets US approval at huge price mark-up. 2023 Available from: https://www.scmp.com/video/china/3244805/chinas-new-cancer-drug-gets-us-approval-huge-price-mark
  183. Sava J. FDA’s December 2024 oncology approvals and designations. 2025 Available From : https://www.targetedonc.com/view/fda-s-december-2024-oncology-approvals-and-designations#:~:text=December%202024%20saw%20notable%20FDA%20approvals%2C%20including%20zenocutuzumab,metastatic%20or%20locally%20advanced%20cutaneous%20squamous%20cell%20carcinoma.[184] Merck’s KEYTRUDA® (pembrolizumab) Approved in China inCombination With Chemotherapy as Neoadjuvant Treatment,Then Continued as Monotherapy After Surgery as AdjuvantTreatment for Patients With Resectable Stage II, IIIA or IIIBNSCLC. 2025
    [Google Scholar]
  184. 2025 Available from : https://www.merck.com/news/mercks-keytruda-pembrolizumab-approved-in-china-in-combination-with-chemotherapy-as-neoadjuvant-treatment-then-continued-as-monotherapy-after-surgery-as-adjuvant-treatment-for-patien/
  185. Available from : https://www.bing.com/ck/a?!=ebcbe7898005cefc6d edb69878fbf283f85ef9f2f2dc54e85e507c0ed70b41c0JmltdHM9M TczNjIwODAwMA&ptn=3&ver=2&hsh=4&fclid=3f223e0b-2397- 6d03-3d5b- 2c7422f76c41=China%27s+National+Medical+Products+Ad ministration+(NMPA)+Approves+VYLOY. 2025
  186. Available from:https://www.scmp.com/ news/china/science/article/3293103/fda-approves-chinese-eyecancer- treatment-development-support-us. FDA approves Chinese eye cancer treatment for development 797 support in the US 2025
  187. Zanconato F. Cordenonsi M. Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell 2016 29 6 783 803 10.1016/j.ccell.2016.05.005 27300434
    [Google Scholar]
  188. Li J. Ma X. Xu F. Yan Y. Chen W. Babaodan overcomes cisplatin resistance in cholangiocarcinoma via inhibiting YAP1. Pharm. Biol. 2024 62 1 314 325 10.1080/13880209.2024.2331060 38571483
    [Google Scholar]
  189. Shukla R. Singh A. Singh K.K. Vincristine-based nanoformulations: A preclinical and clinical studies overview. Drug Deliv. Transl. Res. 2024 14 1 1 16 10.1007/s13346‑023‑01389‑6 37552393
    [Google Scholar]
  190. Adel N. Overview of chemotherapy-induced nausea and vomiting and evidence-based therapies. Am. J. Manag. Care 2017 23 14 Suppl. S259 S265 28978206
    [Google Scholar]
  191. Gupta S. Portales-Castillo I. Daher A. Kitchlu A. Conventional chemotherapy nephrotoxicity. Adv. Chronic Kidney Dis. 2021 28 5 402 414.e1 10.1053/j.ackd.2021.08.001 35190107
    [Google Scholar]
  192. Versluis A. van Alphen K. Dercksen W. de Haas H. van den Hurk C. Kaptein A.A. “Dear hair loss”—Illness perceptions of female patients with chemotherapy-induced alopecia. Support. Care Cancer 2022 30 5 3955 3963 10.1007/s00520‑021‑06748‑y 35048177
    [Google Scholar]
  193. Saadet E.D. Tek I. Evaluation of chemotherapy‐induced cutaneous side effects in cancer patients. Int. J. Dermatol. 2022 61 12 1519 1526 10.1111/ijd.16361 35867950
    [Google Scholar]
  194. Singh M. Morris V.K. Bandey I.N. Hong D.S. Kopetz S. Advancements in combining targeted therapy and immunotherapy for colorectal cancer. Trends Cancer 2024 10 7 598 609 10.1016/j.trecan.2024.05.001 38821852
    [Google Scholar]
  195. Liu J. Park K. Shen Z. Immunotherapy, targeted therapy, and their cross talks in hepatocellular carcinoma. Front. Immunol. 2023 14 1285370 10.3389/fimmu.2023.1285370 38173713
    [Google Scholar]
  196. Zhou Y. Li M. Zhang B. A pilot study of multi-antigen stimulated cell therapy-I plus camrelizumab and apatinib in patients with advanced bone and soft-tissue sarcomas. BMC Med. 2023 21 1 470 10.1186/s12916‑023‑03132‑x 38031088
    [Google Scholar]
  197. Available from:https://ccmu.edu/blog/the-effectiveness-of-traditional-chinese-medicine-tcm-in-cancer-care/. The Effectiveness of Traditional Chinese Medicine (TCM) in Cancer Care 2024
  198. Singh A. Zhao K. Herb–Drug interactions of commonly used Chinese medicinal herbs. Int. Rev. Neurobiol. 2017 135 197 232 10.1016/bs.irn.2017.02.010
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232394088250930165852
Loading
/content/journals/cgt/10.2174/0115665232394088250930165852
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test