Skip to content
2000
image of A Comprehensive Review on Human Metapneumovirus

Abstract

Background

Human metapneumovirus (HMPV) is a respiratory virus that presents symptoms similar to those of the common cold or influenza, including cough, nasal congestion, sore throat, fever, wheezing, and shortness of breath. The primary mode of transmission is through respiratory droplets from an infected person’s cough or sneeze, as well as through contact with contaminated surfaces. HMPV was first recognized in 2001 and poses a significant public health concern, particularly affecting vulnerable groups like children, the elderly, and those with weakened immune systems. Its impact is notably severe in children under five years, contributing to rates of infant mortality. The main goal of the review article is to improve public health by gathering vital information on the human metapneumovirus (HMPV) and how it affects respiratory illnesses. It seeks to advance knowledge of these illnesses and methods of response.

Methods

A thorough literature search was performed utilizing databases concentrating on studies published up to May 2025. The selection criteria were based on comprehensive prior research concerning human metapneumovirus on a global scale.

Results

HMPV may undergo mild alterations over time, resulting in the formation of new strains; nonetheless, it lacks potential which is characterized by slow mutations obtained from previous strains. Previous studies found insufficient seasonal patterns linked to various HMPV genotypes. In terms of severity, HMPV infections are generally less severe compared to those caused by Human Respiratory Syncytial Virus (HRSV). However, co-infection with both HMPV and RSV in young children has been linked to more severe illness than infections with either virus alone, highlighting the potential for compounded health risks in this demographic. Additionally, children hospitalized with HMPV are at an increased risk of developing acute kidney injury (AKI), with this risk correlating with age, independent of the severity of respiratory symptoms or existing comorbidities. Despite a significant increase in testing for respiratory viruses during the COVID-19 pandemic, the overall incidence of HMPV has remained stable, indicating that the pandemic did not lead to a surge in HMPV cases.

Discussion

The capacity of HMPV to generate a global pandemic is limited. The absence of significant seasonal variations and the typically milder clinical effect in comparison to HRSV. Nonetheless, the rise in severity observed during co-infections highlights the need for accurate diagnosis and thorough monitoring. Many individuals’ pre-existing immunity may help lessen the effects of new HMPV infections, indicating that targeted vaccines or immune-boosting approaches could be beneficial. Additionally, the surprising link between HMPV and acute kidney injury, particularly in older children, calls for more research into its non-respiratory complications. The stable infection rates during the pandemic, despite increased testing efforts, suggest that the virus’s transmission patterns remain consistent.

Conclusion

HMPV is less researched compared to other respiratory viruses, raising concerns about its management. The necessity of routine HMPV testing is highlighted alongside the need for further research to improve treatment and prevention strategies. Despite advancements in understanding the virus, significant challenges remain in deciphering its mechanisms and developing effective therapeutics. There is an urgent need for targeted antivirals and vaccines for at-risk populations, along with comprehensive data on HMPV-related diseases to guide future research and interventions.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232389869251014055641
2025-11-05
2025-12-14
Loading full text...

Full text loading...

References

  1. Uddin S. Thomas M. Human Metapneumovirus. In: StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  2. Haas L. Thijsen S. Van Elden L. Heemstra K. Human metapneumovirus in adults. Viruses 2013 5 1 87 110 10.3390/v5010087 23299785
    [Google Scholar]
  3. Feuillet F. Lina B. Rosa-Calatrava M. Boivin G. Ten years of human metapneumovirus research. J. Clin. Virol. 2012 53 2 97 105 10.1016/j.jcv.2011.10.002 22074934
    [Google Scholar]
  4. Kahn J.S. Epidemiology of human metapneumovirus. Clin. Microbiol. Rev. 2006 19 3 546 557 10.1128/CMR.00014‑06 16847085
    [Google Scholar]
  5. Panda S. Mohakud N.K. Pena L. Kumar S. Human metapneumovirus: Review of an important respiratory pathogen. Int. J. Infect. Dis. 2014 25 45 52 10.1016/j.ijid.2014.03.1394 24841931
    [Google Scholar]
  6. Mohammadi K. Faramarzi S. Yaribash S. Human metapneumovirus (hMPV) in 2025: Emerging trends and insights from community and hospital-based respiratory panel analyses—a comprehensive review. Virol. J. 2025 22 1 150 10.1186/s12985‑025‑02782‑y 40394641
    [Google Scholar]
  7. Human metapneumovirus (hMPV) infection 2025 Available from: https://www.who.int/news-room/questions-and-answers/item/human-metapneumovirus-(hmpv)-infection
  8. Trends of acute respiratory infection, including human metapneumovirus, in the Northern Hemisphere 2025 Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2025-DON550
  9. Wen X. Mousa J.J. Bates J.T. Lamb R.A. Crowe J.E. Jardetzky T.S. Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nat. Microbiol. 2017 2 4 16272 10.1038/nmicrobiol.2016.272 28134915
    [Google Scholar]
  10. China’s HMPV infection surge not alarming, follows expected winter trend. 2025 Available from: https://indianexpress.com/article/india/who-dismisses-concerns-surge-hmpv-infectionschina-9767548/
  11. Yang H. He H. Tan B. Liu E. Zhao X. Zhao Y. Human metapneumovirus uses endocytosis pathway for host cell entry. Mol. Cell. Probes 2016 30 4 231 237 10.1016/j.mcp.2016.06.003 27328610
    [Google Scholar]
  12. Dare R. Sanghavi S. Bullotta A. Diagnosis of human metapneumovirus infection in immunosuppressed lung transplant recipients and children evaluated for pertussis. J. Clin. Microbiol. 2007 45 2 548 552 10.1128/JCM.01621‑06 17065270
    [Google Scholar]
  13. Costa-Filho R.C. Saddy F. Costa J.L.F. Tavares L.R. Castro Faria Neto H.C. The silent threat of human metapneumovirus: Clinical challenges and diagnostic insights from a severe pneumonia case. Microorganisms 2025 13 1 73 10.3390/microorganisms13010073 39858840
    [Google Scholar]
  14. Clercq E.D. Antivirals and antiviral strategies. Nat. Rev. Microbiol. 2004 2 9 704 720 10.1038/nrmicro975 15372081
    [Google Scholar]
  15. Van Den Bergh A. Bailly B. Guillon P. von Itzstein M. Dirr L. Antiviral strategies against human metapneumovirus: Targeting the fusion protein. Antiviral Res. 2022 207 105405 10.1016/j.antiviral.2022.105405 36084851
    [Google Scholar]
  16. van den Hoogen B.G. Bestebroer T.M. Osterhaus A.D.M.E. Fouchier R.A.M. Analysis of the genomic sequence of a human metapneumovirus. Virology 2002 295 1 119 132 10.1006/viro.2001.1355 12033771
    [Google Scholar]
  17. Perchetti G.A. Wilcox N. Chu H.Y. Human metapneumovirus infection and genotyping of infants in rural Nepal. J. Pediatric Infect. Dis. Soc. 2021 10 4 408 416 10.1093/jpids/piaa118 33137178
    [Google Scholar]
  18. Human metapneumovirus 2025 Available from: https://en.wikipe dia.org/w/index.php?title=Human_metapneumovirus&oldid=1300692664
  19. Schowalter R.M. Smith S.E. Dutch R.E. Characterization of human metapneumovirus F protein-promoted membrane fusion: Critical roles for proteolytic processing and low pH. J. Virol. 2006 80 22 10931 10941 10.1128/JVI.01287‑06 16971452
    [Google Scholar]
  20. Céspedes P.F. Palavecino C.E. Kalergis A.M. Bueno S.M. Modulation of host immunity by the human metapneumovirus. Clin. Microbiol. Rev. 2016 29 4 795 818 10.1128/CMR.00081‑15 27413096
    [Google Scholar]
  21. Kolli D. Bao X. Casola A. Human metapneumovirus antagonism of innate immune responses. Viruses 2012 4 12 3551 3571 10.3390/v4123551 23223197
    [Google Scholar]
  22. Gálvez N.M.S. Andrade C.A. Pacheco G.A. Host components that modulate the disease caused by hMPV. Viruses 2021 13 3 519 10.3390/v13030519 33809875
    [Google Scholar]
  23. Velayutham T.S. Ivanciuc T. Garofalo R.P. Casola A. Role of human metapneumovirus glycoprotein G in modulation of immune responses. Front. Immunol. 2022 13 962925 10.3389/fimmu.2022.962925 35958551
    [Google Scholar]
  24. Soto J.A. Gálvez N.M.S. Benavente F.M. Human Metapneumovirus: Mechanisms and molecular targets used by the virus to avoid the immune system. Front. Immunol. 2018 9 2466 10.3389/fimmu.2018.02466 30405642
    [Google Scholar]
  25. González A.E. Lay M.K. Jara E.L. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection. Virulence 2017 8 6 685 704 10.1080/21505594.2016.1265725 27911218
    [Google Scholar]
  26. Boivin G. De Serres G. Côté S. Human metapneumovirus infections in hospitalized children. Emerg. Infect. Dis. 2003 9 6 634 640 10.3201/eid0906.030017 12781001
    [Google Scholar]
  27. König B. König W. Arnold R. Werchau H. Ihorst G. Forster J. Prospective study of human metapneumovirus infection in children less than 3 years of age. J. Clin. Microbiol. 2004 42 10 4632 4635 10.1128/JCM.42.10.4632‑4635.2004 15472321
    [Google Scholar]
  28. Williams J.V. Harris P.A. Tollefson S.J. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N. Engl. J. Med. 2004 350 5 443 450 10.1056/NEJMoa025472 14749452
    [Google Scholar]
  29. Kuiken T. van den Hoogen B.G. van Riel D.A.J. Experimental human metapneumovirus infection of cynomolgus macaques (Macaca fascicularis) results in virus replication in ciliated epithelial cells and pneumocytes with associated lesions throughout the respiratory tract. Am. J. Pathol. 2004 164 6 1893 1900 10.1016/S0002‑9440(10)63750‑9 15161626
    [Google Scholar]
  30. Wang S.M. Liu C.C. Wang H.C. Su I.J. Wang J.R. Human metapneumovirus infection among children in Taiwan: A comparison of clinical manifestations with other virus-associated respiratory tract infections. Clin. Microbiol. Infect. 2006 12 12 1221 1224 10.1111/j.1469‑0691.2006.01540.x 17121629
    [Google Scholar]
  31. Johnstone J. Majumdar S.R. Fox J.D. Marrie T.J. Human metapneumovirus pneumonia in adults: Results of a prospective study. Clin. Infect. Dis. 2008 46 4 571 574 10.1086/526776 18194097
    [Google Scholar]
  32. Wolf D.G. Greenberg D. Shemer-Avni Y. Givon-Lavi N. Bar-Ziv J. Dagan R. Association of human metapneumovirus with radiologically diagnosed community-acquired alveolar pneumonia in young children. J. Pediatr. 2010 156 1 115 120 10.1016/j.jpeds.2009.07.014 19782998
    [Google Scholar]
  33. Yahia S. Kandeel A.Y. Hammad E. El-Gilany A.H. Human metapneumovirus (hMPV) in acute respiratory infection: A clinic-based study in Egypt. Indian J. Pediatr. 2012 79 10 1323 1327 10.1007/s12098‑011‑0677‑5 22294269
    [Google Scholar]
  34. Sánchez Fernández I. Rebollo Polo M. Muñoz-Almagro C. Human Metapneumovirus in the cerebrospinal fluid of a patient with acute encephalitis. Arch. Neurol. 2012 69 5 649 652 10.1001/archneurol.2011.1094 22232205
    [Google Scholar]
  35. Edwards K.M. Zhu Y. Griffin M.R. Burden of human metapneumovirus infection in young children. N. Engl. J. Med. 2013 368 7 633 643 10.1056/NEJMoa1204630 23406028
    [Google Scholar]
  36. Hahn A. Wang W. Jaggi P. Human metapneumovirus infections are associated with severe morbidity in hospitalized children of all ages. Epidemiol. Infect. 2013 141 10 2213 2223 10.1017/S0950268812002920 23290557
    [Google Scholar]
  37. Renaud C. Xie H. Seo S. Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients. Biol. Blood Marrow Transplant. 2013 19 8 1220 1226 10.1016/j.bbmt.2013.05.005 23680472
    [Google Scholar]
  38. Reiche J. Jacobsen S. Neubauer K. Human metapneumovirus: Insights from a ten-year molecular and epidemiological analysis in Germany. PLoS One 2014 9 2 88342 10.1371/journal.pone.0088342 24505479
    [Google Scholar]
  39. Embarek Mohamed M.S. Reiche J. Jacobsen S. Molecular analysis of human metapneumovirus detected in patients with lower respiratory tract infection in upper egypt. Int. J. Microbiol. 2014 2014 1 11 10.1155/2014/290793 24669221
    [Google Scholar]
  40. Jroundi I. Mahraoui C. Benmessaoud R. A comparison of human metapneumovirus and respiratory syncytial virus WHO-defined severe pneumonia in Moroccan children. Epidemiol. Infect. 2016 144 3 516 526 10.1017/S095026881500151X 26143933
    [Google Scholar]
  41. Lenahan J.L. Englund J.A. Katz J. Human metapneumovirus and other respiratory viral infections during pregnancy and Birth, Nepal. Emerg. Infect. Dis. 2017 23 8 1341 1349 10.3201/eid2308.161358 28726613
    [Google Scholar]
  42. Vidaur L. Totorika I. Montes M. Vicente D. Rello J. Cilla G. Human metapneumovirus as cause of severe community-acquired pneumonia in adults: Insights from a ten-year molecular and epidemiological analysis. Ann. Intensive Care 2019 9 1 86 10.1186/s13613‑019‑0559‑y 31342206
    [Google Scholar]
  43. Oketch J.W. Kamau E. Otieno G.P. Otieno J.R. Agoti C.N. Nokes D.J. Human metapneumovirus prevalence and patterns of subgroup persistence identified through surveillance of pediatric pneumonia hospital admissions in coastal Kenya, 2007–2016. BMC Infect. Dis. 2019 19 1 757 10.1186/s12879‑019‑4381‑9 31470805
    [Google Scholar]
  44. Rodriguez P.E. Frutos M.C. Adamo M.P. Human Metapneumovirus: Epidemiology and genotype diversity in children and adult patients with respiratory infection in Córdoba, Argentina. PLoS One 2020 15 12 0244093 10.1371/journal.pone.0244093 33370354
    [Google Scholar]
  45. Holzemer N.F. Hasvold J.J. Pohl K.J. Ashbrook M.J. Meert K.L. Quasney M.W. Human metapneumovirus infection in hospitalized children. Respir. Care 2020 65 5 650 657 10.4187/respcare.07156 32047124
    [Google Scholar]
  46. Jongbloed M. Leijte W.T. Linssen C.F.M. van den Hoogen B.G. van Gorp E.C.M. de Kruif M.D. Clinical impact of human metapneumovirus infections before and during the COVID-19 pandemic. Infect Dis 2021 53 7 488 497 10.1080/23744235.2021.1887510 33612055
    [Google Scholar]
  47. Wang X. Li Y. Deloria-Knoll M. Global burden of acute lower respiratory infection associated with human metapneumovirus in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health 2021 9 1 e33 e43 10.1016/S2214‑109X(20)30393‑4 33248481
    [Google Scholar]
  48. Musa N.M. Molecular study of HMPV in children among respiratory tract infection in Najaf Province, Iraq. Ann. Rom. Soc. Cell Biol. 2021 25 6 8341 8349
    [Google Scholar]
  49. Korsun N.S. Angelova S.G. Trifonova I.T. The prevalence and genetic characterization of human metapneumovirus in Bulgaria, 2016–2019. Intervirology 2021 64 4 194 202 10.1159/000516821 34304230
    [Google Scholar]
  50. Loubet P. Mathieu P. Lenzi N. Characteristics of human metapneumovirus infection in adults hospitalized for community-acquired influenza-like illness in France, 2012–2018: A retrospective observational study. Clin. Microbiol. Infect. 2021 27 1 127.e1 127.e6 10.1016/j.cmi.2020.04.005 32283266
    [Google Scholar]
  51. Zhao H. Feng Q. Feng Z. Clinical characteristics and molecular epidemiology of human metapneumovirus in children with acute lower respiratory tract infections in China, 2017 to 2019: A multicentre prospective observational study. Virol. Sin. 2022 37 6 874 882 10.1016/j.virs.2022.08.007 36007839
    [Google Scholar]
  52. Arshad Y. Rana M.S. Ikram A. Molecular detection and genetic characterization of human metapneumovirus strains circulating in Islamabad, Pakistan. Sci. Rep. 2022 12 1 2790 10.1038/s41598‑022‑06537‑5 35181674
    [Google Scholar]
  53. Robards-Forbes E. New research advances fight against human metapneumovirus. 2022 Available from: https://molecularbiosci. utexas.edu/news/research/new-research-advances-fight-against-human-metapneumovirus
    [Google Scholar]
  54. Otomaru H. Nguyen H.A.T. Vo H.M. A decade of human metapneumovirus in hospitalized children with acute respiratory infection: Molecular epidemiology in central Vietnam, 2007–2017. Sci. Rep. 2023 13 1 15757 10.1038/s41598‑023‑42692‑z 37735242
    [Google Scholar]
  55. Piñana M. González-Sánchez A. Andrés C. The emergence, impact, and evolution of human metapneumovirus variants from 2014 to 2021 in Spain. J. Infect. 2023 87 2 103 110 10.1016/j.jinf.2023.05.004 37178807
    [Google Scholar]
  56. Deniz Alıravcı I. Çelik T. Çelik-Ekinci S. Ahmad Hamidi A. Bibliometric analysis of human metapneumovirus studies. Infect Dise Clin Microb 2023 5 4 311 322 10.36519/idcm.2023.250 38633850
    [Google Scholar]
  57. Parks O.B. Eddens T. Zhang Y. Oury T.D. McElroy A. Williams J.V. Human metapneumovirus reinfection in aged mice recapitulates increased disease severity in elderly humans infected with human metapneumovirus. Immunohorizons 2023 7 6 398 411 10.4049/immunohorizons.2300026 37261717
    [Google Scholar]
  58. Deval H. Kumar N. Srivastava M. Human metapneumovirus (hMPV): An associated etiology of severe acute respiratory infection in children of Eastern Uttar Pradesh, India. Access Microbiol. 2024 6 9 000829 10.1099/acmi.0.000829.v4 39268186
    [Google Scholar]
  59. Sepúlveda-Alfaro J. Catalán E.A. Vallejos O.P. Human metapneumovirus respiratory infection affects both innate and adaptive intestinal immunity. Front. Immunol. 2024 15 1330209 10.3389/fimmu.2024.1330209 38404579
    [Google Scholar]
  60. Philippot Q. Rammaert B. Dauriat G. Human metapneumovirus infection is associated with a substantial morbidity and mortality burden in adult inpatients. Heliyon 2024 10 13 33231 10.1016/j.heliyon.2024.e33231 39035530
    [Google Scholar]
  61. Alvarez R. Harrod K.S. Shieh W.J. Zaki S. Tripp R.A. Human metapneumovirus persists in BALB/c mice despite the presence of neutralizing antibodies. J. Virol. 2004 78 24 14003 14011 10.1128/JVI.78.24.14003‑14011.2004 15564507
    [Google Scholar]
  62. Biacchesi S. Pham Q.N. Skiadopoulos M.H. Murphy B.R. Collins P.L. Buchholz U.J. Modification of the trypsin-dependent cleavage activation site of the human metapneumovirus fusion protein to be trypsin independent does not increase replication or spread in rodents or nonhuman primates. J. Virol. 2006 80 12 5798 5806 10.1128/JVI.00294‑06 16731919
    [Google Scholar]
  63. Darniot M. Petrella T. Aho S. Pothier P. Manoha C. Immune response and alteration of pulmonary function after primary human metapneumovirus (hMPV) infection of BALB/c mice. Vaccine 2005 23 36 4473 4480 10.1016/j.vaccine.2005.04.027 15927322
    [Google Scholar]
  64. Alvarez R. Tripp R.A. The immune response to human metapneumovirus is associated with aberrant immunity and impaired virus clearance in BALB/c mice. J. Virol. 2005 79 10 5971 5978 10.1128/JVI.79.10.5971‑5978.2005 15857983
    [Google Scholar]
  65. Hamelin M.È. Prince G.A. Boivin G. Effect of ribavirin and glucocorticoid treatment in a mouse model of human metapneumovirus infection. Antimicrob. Agents Chemother. 2006 50 2 774 777 10.1128/AAC.50.2.774‑777.2006 16436743
    [Google Scholar]
  66. Hamelin M.È. Prince G.A. Gomez A.M. Kinkead R. Boivin G. Human metapneumovirus infection induces long-term pulmonary inflammation associated with airway obstruction and hyperresponsiveness in mice. J. Infect. Dis. 2006 193 12 1634 1642 10.1086/504262 16703506
    [Google Scholar]
  67. Herd K.A. Mahalingam S. Mackay I.M. Nissen M. Sloots T.P. Tindle R.W. Cytotoxic T-lymphocyte epitope vaccination protects against human metapneumovirus infection and disease in mice. J. Virol. 2006 80 4 2034 2044 10.1128/JVI.80.4.2034‑2044.2006 16439559
    [Google Scholar]
  68. Hamelin M.È. Couture C. Sackett M.K. Boivin G. Enhanced lung disease and Th2 response following human metapneumovirus infection in mice immunized with the inactivated virus. J. Gen. Virol. 2007 88 12 3391 3400 10.1099/vir.0.83250‑0 18024909
    [Google Scholar]
  69. Huck B. Neumann-Haefelin D. Schmitt-Graeff A. Human metapneumovirus induces more severe disease and stronger innate immune response in BALB/c mice as compared with respiratory syncytial virus. Respir. Res. 2007 8 1 6 10.1186/1465‑9921‑8‑6 17257445
    [Google Scholar]
  70. Kukavica-Ibrulj I. Hamelin M.È. Prince G.A. Infection with human metapneumovirus predisposes mice to severe pneumococcal pneumonia. J. Virol. 2009 83 3 1341 1349 10.1128/JVI.01123‑08 19019962
    [Google Scholar]
  71. Ludewick H.P. Aerts L. Hamelin M.E. Boivin G. Long-term impairment of Streptococcus pneumoniae lung clearance is observed after initial infection with influenza A virus but not human metapneumovirus in mice. J. Gen. Virol. 2011 92 7 1662 1665 10.1099/vir.0.030825‑0 21411678
    [Google Scholar]
  72. Zhang J. Dou Y. Wu J. Effects of N-linked glycosylation of the fusion protein on replication of human metapneumovirus in vitro and in mouse lungs. J. Gen. Virol. 2011 92 7 1666 1675 10.1099/vir.0.030049‑0 21450943
    [Google Scholar]
  73. Darniot M. Schildgen V. Schildgen O. RNA interference in vitro and in vivo using DsiRNA targeting the nucleocapsid N mRNA of human metapneumovirus. Antiviral Res. 2012 93 3 364 373 10.1016/j.antiviral.2012.01.004 22285728
    [Google Scholar]
  74. Chakraborty K. Zhou Z. Wakamatsu N. Guerrero-Plata A. Interleukin-12p40 modulates human metapneumovirus-induced pulmonary disease in an acute mouse model of infection. PLoS One 2012 7 5 37173 10.1371/journal.pone.0037173 22606349
    [Google Scholar]
  75. Yu C. Li R. Chen X. Liu P. Zhao X. Replication and pathogenicity of attenuated human metapneumovirus F mutants in severe combined immunodeficiency mice. Vaccine 2012 30 2 231 236 10.1016/j.vaccine.2011.11.008 22085552
    [Google Scholar]
  76. Aerts L. Hamelin M.È. Rhéaume C. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One 2013 8 8 72529 10.1371/journal.pone.0072529 24015257
    [Google Scholar]
  77. Lévy C. Aerts L. Hamelin M.È. Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice. Vaccine 2013 31 25 2778 2785 10.1016/j.vaccine.2013.03.051 23583815
    [Google Scholar]
  78. Liu P. Shu Z. Qin X. Dou Y. Zhao Y. Zhao X. A live attenuated human metapneumovirus vaccine strain provides complete protection against homologous viral infection and cross-protection against heterologous viral infection in BALB/c mice. Clin. Vaccine Immunol. 2013 20 8 1246 1254 10.1128/CVI.00145‑13 23761661
    [Google Scholar]
  79. Cox R.G. Erickson J.J. Hastings A.K. Human metapneumovirus virus-like particles induce protective B and T cell responses in a mouse model. J. Virol. 2014 88 11 6368 6379 10.1128/JVI.00332‑14 24672031
    [Google Scholar]
  80. Spann K.M. Loh Z. Lynch J.P. IRF-3, IRF-7, and IPS-1 promote host defense against acute human metapneumovirus infection in neonatal mice. Am. J. Pathol. 2014 184 6 1795 1806 10.1016/j.ajpath.2014.02.026 24726644
    [Google Scholar]
  81. Ren J. Phan T. Bao X. Recent vaccine development for human metapneumovirus. J. Gen. Virol. 2015 96 7 1515 1520 10.1099/vir.0.000083 25667325
    [Google Scholar]
  82. Ma S. Zhu F. Xu Y. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum. Vaccin. Immunother. 2024 20 1 2293300 10.1080/21645515.2023.2293300 38172569
    [Google Scholar]
  83. Wen S.C. Williams J.V. New approaches for immunization and therapy against human metapneumovirus. Clin. Vaccine Immunol. 2015 22 8 858 866 10.1128/CVI.00230‑15 26063237
    [Google Scholar]
  84. Mok H. Tollefson S.J. Podsiad A.B. An alphavirus replicon-based human metapneumovirus vaccine is immunogenic and protective in mice and cotton rats. J. Virol. 2008 82 22 11410 11418 10.1128/JVI.01688‑08 18786987
    [Google Scholar]
  85. Yim K.C. Mousa J.J. Blanco J.C.G. Kim S. Boukhvalova M.S. Human Metapneumovirus (hMPV) infection and MPV467 treatment in immunocompromised cotton rats Sigmodon hispidus. Viruses 2023 15 2 476 10.3390/v15020476 36851691
    [Google Scholar]
  86. Hsiung K.C. Chiang H.J. Reinig S. Shih S.R. Vaccine strategies against RNA viruses: Current advances and future directions. Vaccines 2024 12 12 1345 10.3390/vaccines12121345 39772007
    [Google Scholar]
  87. Bergeron H.C. Tripp R.A. Immunopathology of RSV: An updated review. Viruses 2021 13 12 2478 10.3390/v13122478 34960746
    [Google Scholar]
  88. Gote V. Bolla P.K. Kommineni N. A comprehensive review of mRNA vaccines. Int. J. Mol. Sci. 2023 24 3 2700 10.3390/ijms24032700 36769023
    [Google Scholar]
  89. Miller R.J. Mousa J.J. Structural basis for respiratory syncytial virus and human metapneumovirus neutralization. Curr. Opin. Virol. 2023 61 101337 10.1016/j.coviro.2023.101337 37544710
    [Google Scholar]
  90. Testa J.S. Philip R. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications. Future Virol. 2012 7 11 1077 1088 10.2217/fvl.12.108 23630544
    [Google Scholar]
  91. Jones L.P. Zheng H.Q. Karron R.A. Peret T.C.T. Tsou C. Anderson L.J. Multiplex assay for detection of strain-specific antibodies against the two variable regions of the G protein of respiratory syncytial virus. Clin. Vaccine Immunol. 2002 9 3 633 638 10.1128/CDLI.9.3.633‑638.2002 11986272
    [Google Scholar]
  92. Servín-Blanco R. Zamora-Alvarado R. Gevorkian G. Manoutcharian K. Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets. Hum. Vaccin. Immunother. 2016 12 10 2640 2648 10.1080/21645515.2016.1191718 27295540
    [Google Scholar]
  93. Crofts K.F. Alexander-Miller M.A. Challenges for the newborn immune response to respiratory virus infection and vaccination. Vaccines 2020 8 4 558 10.3390/vaccines8040558 32987691
    [Google Scholar]
  94. Baxter V.K. Griffin D.E. Animal models. Viral Pathogenesis 2016 2016 125 138 10.1016/B978‑0‑12‑800964‑2.00010‑0
    [Google Scholar]
  95. Sacco R.E. Durbin R.K. Durbin J.E. Animal models of respiratory syncytial virus infection and disease. Curr. Opin. Virol. 2015 13 117 122 10.1016/j.coviro.2015.06.003 26176495
    [Google Scholar]
  96. Van Norman G.A. Limitations of animal studies for predicting toxicity in clinical trials. JACC Basic Transl. Sci. 2019 4 7 845 854 10.1016/j.jacbts.2019.10.008 31998852
    [Google Scholar]
  97. Dudas R.A. Karron R.A. Respiratory syncytial virus vaccines. Clin. Microbiol. Rev. 1998 11 3 430 439 10.1128/CMR.11.3.430 9665976
    [Google Scholar]
  98. Graham B.S. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol. Rev. 2011 239 1 149 166 10.1111/j.1600‑065X.2010.00972.x 21198670
    [Google Scholar]
  99. Washington D.C. Vaccine Development: Current Status and Future Needs. Washington, DC American Society for Microbiology 2005
    [Google Scholar]
  100. Ogra P.L. Faden H. Welliver R.C. Vaccination strategies for mucosal immune responses. Clin. Microbiol. Rev. 2001 14 2 430 445 10.1128/CMR.14.2.430‑445.2001 11292646
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232389869251014055641
Loading
/content/journals/cgt/10.2174/0115665232389869251014055641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test