Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Glioblastoma is a malignant manifestation of a solid brain tumour with a very dismal prognosis due to an overall median survival of 14 months. The currently administered Standard treatment plan, the STUPP regimen, is not very effective in tackling this neoplasia. A major concern that affects the development of new drug formulations, specifically for Glioma, is the inherent sub-clonal heterogeneity, which includes the dynamic and intricate nature of the Tumour Microenvironment (TME). Targeting the cellular niche using personalized medication for glioma specifically gene therapy, seems to be promising, with most studies in preclinical models yielding optimistic results. This paper analyses the great headways made in glioma gene therapy in the last 10 years while looking into different therapeutic strategies. That said, certain challenges do plague the clinical use of gene therapy which have been highlighted in the hopes that future researchers will address these concerns and further propel gene therapy in its journey from the Lab to the bedside.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232351747241113050243
2024-11-14
2025-09-03
Loading full text...

Full text loading...

References

  1. AumD.J. KimD.H. BeaumontT.L. LeuthardtE.C. DunnG.P. KimA.H. Molecular and cellular heterogeneity: The hallmark of glioblastoma.Neurosurg. Focus2014376E1110.3171/2014.9.FOCUS1452125434380
    [Google Scholar]
  2. EderK. KalmanB. Molecular heterogeneity of glioblastoma and its clinical relevance.Pathol. Oncol. Res.201420477778710.1007/s12253‑014‑9833‑325156108
    [Google Scholar]
  3. OstromQ.T. PriceM. NeffC. CioffiG. WaiteK.A. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019.Neuro-oncol.202224Suppl. 5v1v9510.1093/neuonc/noac20236196752
    [Google Scholar]
  4. PreusserM. de RibaupierreS. WöhrerA. ErridgeS.C. HegiM. WellerM. StuppR. Current concepts and management of glioblastoma.Ann. Neurol.201170192110.1002/ana.2242521786296
    [Google Scholar]
  5. StuppR. HegiM.E. MasonW.P. van den BentM.J. TaphoornM.J.B. JanzerR.C. LudwinS.K. AllgeierA. FisherB. BelangerK. HauP. BrandesA.A. GijtenbeekJ. MarosiC. VechtC.J. MokhtariK. WesselingP. VillaS. EisenhauerE. GorliaT. WellerM. LacombeD. CairncrossJ.G. MirimanoffR.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial.Lancet Oncol.200910545946610.1016/S1470‑2045(09)70025‑719269895
    [Google Scholar]
  6. SoedaA. HaraA. KunisadaT. YoshimuraS. IwamaT. ParkD.M. The evidence of glioblastoma heterogeneity.Sci. Rep.201551797910.1038/srep0797925623281
    [Google Scholar]
  7. LaukoA. LoA. AhluwaliaM.S. LathiaJ.D. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors.Semin. Cancer Biol.20228216217510.1016/j.semcancer.2021.02.01433640445
    [Google Scholar]
  8. LinaresC.A. VargheseA. GhoseA. ShindeS.D. AdelekeS. SanchezE. SheriffM. ChargariC. RassyE. BoussiosS. Hallmarks of the tumour microenvironment of gliomas and its interaction with emerging immunotherapy modalities.Int. J. Mol. Sci.202324171321510.3390/ijms24171321537686020
    [Google Scholar]
  9. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  10. HuangW. HaoZ. MaoF. GuoD. Small molecule inhibitors in adult high-grade glioma: From the past to the future.Front. Oncol.20221291187610.3389/fonc.2022.91187635785151
    [Google Scholar]
  11. GalanisE. AndersonS.K. LafkyJ.M. UhmJ.H. GianniniC. KumarS.K. KimlingerT.K. NorthfeltD.W. FlynnP.J. JaeckleK.A. KaufmannT.J. BucknerJ.C. Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): A north central cancer treatment group trial.Clin. Cancer Res.201319174816482310.1158/1078‑0432.CCR‑13‑070823833308
    [Google Scholar]
  12. KreislT.N. SmithP. SulJ. SalgadoC. IwamotoF.M. ShihJ.H. FineH.A. Continuous daily sunitinib for recurrent glioblastoma.J. Neurooncol.20131111414810.1007/s11060‑012‑0988‑z23086433
    [Google Scholar]
  13. StuppR. Drug development for glioma: Are we repeating the same mistakes?Lancet Oncol.2019201101210.1016/S1470‑2045(18)30827‑130522968
    [Google Scholar]
  14. HaslamA. PrasadV. Estimation of the percentage of us patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs.JAMA Netw. Open201925e19253510.1001/jamanetworkopen.2019.253531050774
    [Google Scholar]
  15. MageeD.E. HirdA.E. KlaassenZ. SridharS.S. NamR.K. WallisC.J.D. KulkarniG.S. Adverse event profile for immunotherapy agents compared with chemotherapy in solid organ tumors: A systematic review and meta-analysis of randomized clinical trials.Ann. Oncol.2020311506010.1016/j.annonc.2019.10.00831912796
    [Google Scholar]
  16. WellerM. KaulichK. HentschelB. FelsbergJ. GramatzkiD. PietschT. SimonM. WestphalM. SchackertG. TonnJ.C. von DeimlingA. DavisT. WeissW.A. LoefflerM. ReifenbergerG. Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy.Int. J. Cancer2014134102437244710.1002/ijc.2857624614983
    [Google Scholar]
  17. MedikondaR. DunnG. RahmanM. FecciP. LimM. A review of glioblastoma immunotherapy.J. Neurooncol.20211511415310.1007/s11060‑020‑03448‑132253714
    [Google Scholar]
  18. ZhangP. XiaQ. LiuL. LiS. DongL. Current opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and therapy.Front. Mol. Biosci.2020756279810.3389/fmolb.2020.56279833102518
    [Google Scholar]
  19. WangY. LuoR. ZhangX. XiangH. YangB. FengJ. DengM. RanP. SujieA. ZhangF. ZhuJ. TanS. XieT. ChenP. YuZ. LiY. JiangD. ZhangX. ZhaoJ.Y. HouY. DingC. Proteogenomics of diffuse gliomas reveal molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms.Nat. Commun.202314150510.1038/s41467‑023‑36005‑136720864
    [Google Scholar]
  20. KanterJ. WaltersM.C. KrishnamurtiL. MaparaM.Y. KwiatkowskiJ.L. Rifkin-ZenenbergS. AygunB. KasowK.A. PiercieyF.J. BonnerM. MillerA. ZhangX. LynchJ. KimD. RibeilJ.A. AsmalM. GoyalS. ThompsonA.A. TisdaleJ.F. Biologic and clinical efficacy of lentiglobin for sickle cell disease.N. Engl. J. Med.2022386761762810.1056/NEJMoa211717534898139
    [Google Scholar]
  21. KwiatkowskaA. NandhuM. BeheraP. ChioccaE. ViapianoM. Strategies in gene therapy for glioblastoma.Cancers (Basel)2013541271130510.3390/cancers504127124202446
    [Google Scholar]
  22. Al-SammarraieN. RayS.K. Applications of CRISPR-Cas9 technology to genome editing in glioblastoma multiforme.Cells2021109234210.3390/cells1009234234571991
    [Google Scholar]
  23. BrooksL.J. ClementsM.P. BurdenJ.J. KocherD. RichardsL. DevesaS.C. ZakkaL. WoodberryM. EllisM. JaunmuktaneZ. BrandnerS. MorrisonG. PollardS.M. DirksP.B. MargueratS. ParrinelloS. The white matter is a pro-differentiative niche for glioblastoma.Nat. Commun.2021121218410.1038/s41467‑021‑22225‑w33846316
    [Google Scholar]
  24. CohenZ.R. HassenbuschS.J. MaorM.H. PfefferR.M. RamZ. Intractable vomiting from glioblastoma metastatic to the fourth ventricle: Three case studies.Neuro-oncol.20024212913310.1093/neuonc/4.2.12911916505
    [Google Scholar]
  25. GuptaN. PrinjaS. PatilV. BahugunaP. Cost-effectiveness of temozolamide for treatment of glioblastoma multiforme in India.JCO Glob. Oncol.20217710811710.1200/GO.20.0028833449801
    [Google Scholar]
  26. HernándezM.A. MadurgaR. García-RomeroN. Ayuso-SacidoÁ. Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing.Cancer Lett.2022527667910.1016/j.canlet.2021.12.00834902524
    [Google Scholar]
  27. BarcaC. ForayC. ZinnhardtB. In vivo quantitative imaging of glioma heterogeneity employing positron emission tomography.CancersCancers202214133139
    [Google Scholar]
  28. LinC. WangN. XuC. Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy.Front. Immunol.202314112385310.3389/fimmu.2023.112385336969167
    [Google Scholar]
  29. SevenichL. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer.Front. Immunol.2018969710.3389/fimmu.2018.0069729681904
    [Google Scholar]
  30. HanS. WangW. WangS. YangT. ZhangG. WangD. JuR. LuY. WangH. WangL. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes.Theranostics20211162892291610.7150/thno.5092833456579
    [Google Scholar]
  31. ChenY. HuoR. KangW. LiuY. ZhaoZ. FuW. MaR. ZhangX. TangJ. ZhuZ. LyuQ. HuangY. YanM. JiangB. ChaiR. BaoZ. HuZ. WangW. JiangT. CaoY. WangJ. Tumor-associated monocytes promote mesenchymal transformation through EGFR signaling in glioma.Cell Rep. Med.20234910117710.1016/j.xcrm.2023.10117737652019
    [Google Scholar]
  32. HaraT. Chanoch-MyersR. MathewsonN.D. MyskiwC. AttaL. BussemaL. EichhornS.W. GreenwaldA.C. KinkerG.S. RodmanC. Gonzalez CastroL.N. WakimotoH. Rozenblatt-RosenO. ZhuangX. FanJ. HunterT. VermaI.M. WucherpfennigK.W. RegevA. SuvàM.L. TiroshI. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma.Cancer Cell2021396779792.e1110.1016/j.ccell.2021.05.00234087162
    [Google Scholar]
  33. LaiY. LuX. LiaoY. OuyangP. WangH. ZhangX. HuangG. QiS. LiY. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions.Genes Dis.202411287488910.1016/j.gendis.2023.05.02537692522
    [Google Scholar]
  34. MathewsonN.D. AshenbergO. TiroshI. GritschS. PerezE.M. MarxS. Jerby-ArnonL. Chanoch-MyersR. HaraT. RichmanA.R. ItoY. PyrdolJ. FriedrichM. SchumannK. PoitrasM.J. GokhaleP.C. Gonzalez CastroL.N. ShoreM.E. HebertC.M. ShawB. CahillH.L. DrummondM. ZhangW. OlawoyinO. WakimotoH. Rozenblatt-RosenO. BrastianosP.K. LiuX.S. JonesP.S. CahillD.P. FroschM.P. LouisD.N. FreemanG.J. LigonK.L. MarsonA. ChioccaE.A. ReardonD.A. RegevA. SuvàM.L. WucherpfennigK.W. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis.Cell2021184512811298.e2610.1016/j.cell.2021.01.02233592174
    [Google Scholar]
  35. CloseH.J. SteadL.F. NsengimanaJ. ReillyK.A. DroopA. WurdakH. MathewR.K. CornsR. Newton-BishopJ. MelcherA.A. ShortS.C. CookG.P. WilsonE.B. Expression profiling of single cells and patient cohorts identifies multiple immunosuppressive pathways and an altered NK cell phenotype in glioblastoma.Clin. Exp. Immunol.20202001334410.1111/cei.1340331784984
    [Google Scholar]
  36. CombaA. FaisalS.M. VarelaM.L. HollonT. Al-HolouW.N. UmemuraY. NunezF.J. MotschS. CastroM.G. LowensteinP.R. Uncovering spatiotemporal heterogeneity of high-grade gliomas: From disease biology to therapeutic implications.Front. Oncol.20211170376410.3389/fonc.2021.70376434422657
    [Google Scholar]
  37. RubenichD.S. de SouzaP.O. OmizzolloN. AubinM.R. BassoP.J. SilvaL.M. da SilvaE.M. TeixeiraF.C. GentilG.F.S. DomagalskiJ.L. CunhaM.T. GadelhaK.A. DielL.F. GelsleichterN.E. RubenichA.S. LenzG.S. de AbreuA.M. KroeffG.M. PazA.H. VisioliF. LamersM.L. WinkM.R. WormP.V. AraújoA.B. SévignyJ. CâmaraN.O.S. LudwigN. BraganholE. Tumor-neutrophil crosstalk promotes in vitro and in vivo glioblastoma progression.Front. Immunol.202314118346510.3389/fimmu.2023.118346537292196
    [Google Scholar]
  38. VenkateshH.S. JohungT.B. CarettiV. NollA. TangY. NagarajaS. GibsonE.M. MountC.W. PolepalliJ. MitraS.S. WooP.J. MalenkaR.C. VogelH. BredelM. MallickP. MonjeM. Neuronal activity promotes glioma growth through neuroligin-3 secretion.Cell2015161480381610.1016/j.cell.2015.04.01225913192
    [Google Scholar]
  39. OliveiraA.I. AnjoS.I. Vieira de CastroJ. SerraS.C. SalgadoA.J. ManadasB. CostaB.M. Crosstalk between glial and glioblastoma cells triggers the “go-or-grow” phenotype of tumor cells.Cell Commun. Signal.20171513710.1186/s12964‑017‑0194‑x28969644
    [Google Scholar]
  40. JainS. RickJ.W. JoshiR.S. BeniwalA. SpatzJ. GillS. ChangA.C.C. ChoudharyN. NguyenA.T. SudhirS. ChalifE.J. ChenJ.S. ChandraA. HaddadA.F. WadhwaH. ShahS.S. ChoiS. HayesJ.L. WangL. YagnikG. CostelloJ.F. DiazA. HeilandD.H. AghiM.K. Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects.J. Clin. Invest.20231335e14708710.1172/JCI14708736856115
    [Google Scholar]
  41. GaoX.Y. ZangJ. ZhengM.H. ZhangY.F. YueK.Y. CaoX.L. CaoY. LiX.X. HanH. JiangX.F. LiangL. Temozolomide treatment induces HMGB1 to promote the formation of glioma stem cells via the TLR2/NEAT1/Wnt pathway in glioblastoma.Front. Cell Dev. Biol.2021962088310.3389/fcell.2021.62088333614649
    [Google Scholar]
  42. SuvàM.L. RheinbayE. GillespieS.M. PatelA.P. WakimotoH. RabkinS.D. RiggiN. ChiA.S. CahillD.P. NahedB.V. CurryW.T. MartuzaR.L. RiveraM.N. RossettiN. KasifS. BeikS. KadriS. TiroshI. WortmanI. ShalekA.K. Rozenblatt-RosenO. RegevA. LouisD.N. BernsteinB.E. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells.Cell2014157358059410.1016/j.cell.2014.02.03024726434
    [Google Scholar]
  43. Ben-PorathI. ThomsonM.W. CareyV.J. GeR. BellG.W. RegevA. WeinbergR.A. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors.Nat. Genet.200840549950710.1038/ng.12718443585
    [Google Scholar]
  44. MinataM. AudiaA. ShiJ. LuS. BernstockJ. PavlyukovM.S. DasA. KimS.H. ShinY.J. LeeY. KooH. SnigdhaK. WaghmareI. GuoX. MohyeldinA. Gallego-PerezD. WangJ. ChenD. ChengP. MukheefF. ContrerasM. ReyesJ.F. VaillantB. SulmanE.P. ChengS.Y. MarkertJ.M. TannousB.A. LuX. Kango-SinghM. LeeL.J. NamD.H. NakanoI. BhatK.P. Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation.Cell Rep.201926718931905.e710.1016/j.celrep.2019.01.07630759398
    [Google Scholar]
  45. CombaA. DunnP.J. KishP.E. KadiyalaP. KahanaA. CastroM.G. LowensteinP.R. Laser capture microdissection of glioma subregions for spatial and molecular characterization of intratumoral heterogeneity, oncostreams, and invasion.J. Vis. Exp.2020202015810.3791/60939‑v32338655
    [Google Scholar]
  46. FaisalS.M. CombaA. VarelaM.L. ArgentoA.E. BrumleyE. AbelC. CastroM.G. LowensteinP.R. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications.Front. Oncol.202212100506910.3389/fonc.2022.100506936276147
    [Google Scholar]
  47. JamousS. CombaA. LowensteinP.R. MotschS. Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation.PLOS Comput. Biol.2020165e100761110.1371/journal.pcbi.100761132379821
    [Google Scholar]
  48. NicholsonJ.G. FineH.A. Diffuse glioma heterogeneity and its therapeutic implications.Cancer Discov.202111357559010.1158/2159‑8290.CD‑20‑147433558264
    [Google Scholar]
  49. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  50. FeinbergA.P. OhlssonR. HenikoffS. The epigenetic progenitor origin of human cancer.Nat. Rev. Genet.200671213310.1038/nrg174816369569
    [Google Scholar]
  51. LuX. MaturiN.P. JarviusM. YildirimI. DangY. ZhaoL. XieY. TanE.J. XingP. LarssonR. FryknäsM. UhrbomL. ChenX. Cell-lineage controlled epigenetic regulation in glioblastoma stem cells determines functionally distinct subgroups and predicts patient survival.Nat. Commun.2022131223610.1038/s41467‑022‑29912‑235469026
    [Google Scholar]
  52. KungC.P. WeberJ.D. It’s getting complicated - A fresh look at p53-MDM2-ARF triangle in tumorigenesis and cancer therapy.Front. Cell Dev. Biol.20221081874410.3389/fcell.2022.81874435155432
    [Google Scholar]
  53. BurnsK.L. UekiK. JhungS.L. KohJ. LouisD.N. Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas.J. Neuropathol. Exp. Neurol.199857212213010.1097/00005072‑199802000‑000039600204
    [Google Scholar]
  54. JangS.H. JungB.K. AnY.H. JangH. The phosphatase and tensin homolog gene inserted between NP and P gene of recombinant Newcastle disease virus oncolytic effect test to glioblastoma cell and xenograft mouse model.Virol. J.20221912110.1186/s12985‑022‑01746‑w35093115
    [Google Scholar]
  55. KennedyM.C. LoweS.W. Mutant p53: It’s not all one and the same.Cell Death Differ.202229598398710.1038/s41418‑022‑00989‑y35361963
    [Google Scholar]
  56. SunX. KlingbeilO. LuB. WuC. BallonC. OuyangM. WuX.S. JinY. HwangboY. HuangY.H. SomervilleT.D.D. ChangK. ParkJ. ChungT. LyonsS.K. ShiJ. VogelH. SchulderM. VakocC.R. MillsA.A. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network.Nature2023613794219520210.1038/s41586‑022‑05551‑x36544023
    [Google Scholar]
  57. LiggettW.H. SidranskyD. Role of the p16 tumor suppressor gene in cancer.J. Clin. Oncol.19981631197120610.1200/JCO.1998.16.3.11979508208
    [Google Scholar]
  58. YangW. XiaY. HawkeD. LiX. LiangJ. XingD. AldapeK. HunterT. Alfred YungW.K. LuZ. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis.Cell2012150468569610.1016/j.cell.2012.07.01822901803
    [Google Scholar]
  59. FanK. WangX. ZhangJ. RamosR.I. ZhangH. LiC. YeD. KangJ. MarzeseD.M. HoonD.S.B. HuaW. Hypomethylation of CNTFRα is associated with proliferation and poor prognosis in lower grade gliomas.Sci. Rep.201771707910.1038/s41598‑017‑07124‑9
    [Google Scholar]
  60. TangH. WangZ. LiuQ. LiuX. WuM. LiG. Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4.PLoS One201491e8414610.1371/journal.pone.008414624404152
    [Google Scholar]
  61. ZhangM. YeG. LiJ. WangY. Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy.Brain Tumor Pathol.201532422923610.1007/s10014‑015‑0233‑526437643
    [Google Scholar]
  62. DasS. MarsdenP.A. Angiogenesis in glioblastoma.N. Engl. J. Med.2013369161561156310.1056/NEJMcibr130940224131182
    [Google Scholar]
  63. XuG. LiJ.Y. Differential expression of PDGFRB and EGFR in microvascular proliferation in glioblastoma.Tumour Biol.2016378105771058610.1007/s13277‑016‑4968‑326857280
    [Google Scholar]
  64. MaddisonK. BowdenN.A. GravesM.C. TooneyP.A. Characteristics of vasculogenic mimicry and tumour to endothelial transdifferentiation in human glioblastoma: A systematic review.BMC Cancer202323118510.1186/s12885‑023‑10659‑y36823554
    [Google Scholar]
  65. KuhnertF. KuoC.J. miR-17-92 angiogenesis micromanagement.Blood2010115234631463210.1182/blood‑2010‑03‑27642820538815
    [Google Scholar]
  66. SmitsM. NilssonJ. MirS.E. van der StoopP.M. HullemanE. NiersJ.M. de Witt HamerP.C. MarquezV.E. CloosJ. KrichevskyA.M. NoskeD.P. TannousB.A. WürdingerT. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis.Oncotarget20101871072010.18632/oncotarget.20521321380
    [Google Scholar]
  67. DinevskaM. WidodoS.S. FurstL. CuzcanoL. FangY. MangiolaS. NeesonP.J. DarcyP.K. RamsayR.G. HutchinsonR. MacKayF. ChristieM. StylliS.S. MantamadiotisT. Cell signaling activation and extracellular matrix remodeling underpin glioma tumor microenvironment heterogeneity and organization.Cell Oncol. (Dordr.)202346358960210.1007/s13402‑022‑00763‑936567397
    [Google Scholar]
  68. Garcia-FabianiM.B. HaaseS. CombaA. CarneyS. McClellanB. BanerjeeK. AlghamriM.S. SyedF. KadiyalaP. NunezF.J. CandolfiM. AsadA. GonzalezN. AikinsM.E. SchwendemanA. MoonJ.J. LowensteinP.R. CastroM.G. Genetic alterations in gliomas remodel the tumor immune microenvironment and impact immune-mediated therapies.Front. Oncol.20211163103710.3389/fonc.2021.63103734168976
    [Google Scholar]
  69. ZhaoY. LyonsC.E. XiaoA. TempletonD.J. SangQ.A. BrewK. HussainiI.M. Urokinase directly activates matrix metalloproteinases-9: A potential role in glioblastoma invasion.Biochem. Biophys. Res. Commun.200836941215122010.1016/j.bbrc.2008.03.03818355442
    [Google Scholar]
  70. ScullyS. FrancesconeR. FaibishM. BentleyB. TaylorS.L. OhD. SchapiroR. MoralL. YanW. ShaoR. Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas.J. Neurosci.20123237129501296010.1523/JNEUROSCI.2017‑12.201222973019
    [Google Scholar]
  71. SodaY. MarumotoT. Friedmann-MorvinskiD. SodaM. LiuF. MichiueH. PastorinoS. YangM. HoffmanR.M. KesariS. VermaI.M. Transdifferentiation of glioblastoma cells into vascular endothelial cells.Proc. Natl. Acad. Sci. USA2011108114274428010.1073/pnas.101603010821262804
    [Google Scholar]
  72. ChenW. XiaP. WangH. TuJ. LiangX. ZhangX. LiL. The endothelial tip-stalk cell selection and shuffling during angiogenesis.J. Cell Commun. Signal.201913329130110.1007/s12079‑019‑00511‑z30903604
    [Google Scholar]
  73. HuB. WangQ. WangY.A. HuaS. SauvéC.E.G. OngD. LanZ.D. ChangQ. HoY.W. MonasterioM.M. LuX. ZhongY. ZhangJ. DengP. TanZ. WangG. LiaoW.T. CorleyL.J. YanH. ZhangJ. YouY. LiuN. CaiL. FinocchiaroG. PhillipsJ.J. BergerM.S. SpringD.J. HuJ. SulmanE.P. FullerG.N. ChinL. VerhaakR.G.W. DePinhoR.A. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth.Cell2016167512811295.e1810.1016/j.cell.2016.10.03927863244
    [Google Scholar]
  74. ChengL. HuangZ. ZhouW. WuQ. DonnolaS. LiuJ.K. FangX. SloanA.E. MaoY. LathiaJ.D. MinW. McLendonR.E. RichJ.N. BaoS. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth.Cell2013153113915210.1016/j.cell.2013.02.02123540695
    [Google Scholar]
  75. JinZ. ZhanT. TaoJ. XuB. ZhengH. ChengY. YanB. WangH. LuG. LinY. GuoS. MicroRNA-34a induces transdifferentiation of glioma stem cells into vascular endothelial cells by targeting Notch pathway.Biosci. Biotechnol. Biochem.201781101899190710.1080/09168451.2017.136496528859546
    [Google Scholar]
  76. DixitD. PragerB.C. GimpleR.C. MillerT.E. WuQ. YomtoubianS. KidwellR.L. LvD. ZhaoL. QiuZ. ZhangG. LeeD. ParkD.E. Wechsler-ReyaR.J. WangX. BaoS. RichJ.N. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases.Sci. Transl. Med.202214626eabf391710.1126/scitranslmed.abf391734985972
    [Google Scholar]
  77. RazaviS.M. LeeK.E. JinB.E. AujlaP.S. GholaminS. LiG. Immune evasion strategies of glioblastoma.Front. Surg.201631110.3389/fsurg.2016.0001126973839
    [Google Scholar]
  78. KhanF. PangL. DuntermanM. LesniakM.S. HeimbergerA.B. ChenP. Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy.J. Clin. Invest.20231331e16344610.1172/JCI16344636594466
    [Google Scholar]
  79. PyonteckS.M. AkkariL. SchuhmacherA.J. BowmanR.L. SevenichL. QuailD.F. OlsonO.C. QuickM.L. HuseJ.T. TeijeiroV. SettyM. LeslieC.S. OeiY. PedrazaA. ZhangJ. BrennanC.W. SuttonJ.C. HollandE.C. DanielD. JoyceJ.A. CSF-1R inhibition alters macrophage polarization and blocks glioma progression.Nat. Med.201319101264127210.1038/nm.333724056773
    [Google Scholar]
  80. ZhangZ. HuY. ChenY. ChenZ. ZhuY. ChenM. XiaJ. SunY. XuW. Immunometabolism in the tumor microenvironment and its related research progress.Front. Oncol.202212102478910.3389/fonc.2022.102478936387147
    [Google Scholar]
  81. HaoC. ChenG. ZhaoH. LiY. ChenJ. ZhangH. LiS. ZhaoY. ChenF. LiW. JiangW.G. PD-L1 expression in glioblastoma, the clinical and prognostic significance: A systematic literature review and meta-analysis.Front. Oncol.202010101510.3389/fonc.2020.0101532670884
    [Google Scholar]
  82. XueS. HuM. IyerV. YuJ. Blocking the PD-1/PD-L1 pathway in glioma: A potential new treatment strategy.J. Hematol. Oncol.20171018110.1186/s13045‑017‑0455‑628388955
    [Google Scholar]
  83. DavidsonT.B. LeeA. HsuM. SedighimS. OrpillaJ. TregerJ. MastallM. RoeschS. RappC. GalvezM. MochizukiA. AntoniosJ. GarciaA. KotechaN. BaylessN. NathansonD. WangA. EversonR. YongW.H. CloughesyT.F. LiauL.M. Herold-MendeC. PrinsR.M. Expression of PD-1 by T cells in malignant glioma patients reflects exhaustion and activation.Clin. Cancer Res.20192561913192210.1158/1078‑0432.CCR‑18‑117630498094
    [Google Scholar]
  84. LuI.N. DobersalskeC. RauschenbachL. Teuber-HanselmannS. SteinbachA. UllrichV. PrasadS. BlauT. KebirS. SivekeJ.T. BeckerJ.C. SureU. GlasM. SchefflerB. CimaI. Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression.Nat. Commun.2021121389510.1038/s41467‑021‑23995‑z34162860
    [Google Scholar]
  85. GanL. YangY. LiQ. FengY. LiuT. GuoW. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential.Biomark. Res.2018611010.1186/s40364‑018‑0122‑229556394
    [Google Scholar]
  86. HuC. WangK. DamonC. FuY. MaT. KratzL. LalB. YingM. XiaS. CahillD.P. JacksonC.M. LimM. LaterraJ. LiY. ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma.Neuro-oncol.202224688890010.1093/neuonc/noab29234951647
    [Google Scholar]
  87. GivechianK.B. GarnerC. BenzS. RabizadehS. Soon-ShiongP. Glycolytic expression in lower-grade glioma reveals an epigenetic association between IDH mutation status and PDL1/2 expression.Neurooncol. Adv.202131vdaa16210.1093/noajnl/vdaa16233532725
    [Google Scholar]
  88. Cesur-ErgünB. Demir-DoraD. Gene therapy in cancer.J. Gene Med.20232511e355010.1002/jgm.355037354071
    [Google Scholar]
  89. HossainJ.A. MarchiniA. FehseB. BjerkvigR. MileticH. Suicide gene therapy for the treatment of high-grade glioma: past lessons, present trends, and future prospects.Neurooncol. Adv.202021vdaa01310.1093/noajnl/vdaa01332642680
    [Google Scholar]
  90. DuarteS. CarleG. FanecaH. LimaM.C.P. Pierrefite-CarleV. Suicide gene therapy in cancer: Where do we stand now?Cancer Lett.2012324216017010.1016/j.canlet.2012.05.02322634584
    [Google Scholar]
  91. GarinM.I. GarrettE. TiberghienP. ApperleyJ.F. ChalmersD. MeloJ.V. FerrandC. Molecular mechanism for ganciclovir resistance in human T lymphocytes transduced with retroviral vectors carrying the herpes simplex virus thymidine kinase gene.Blood200197112212910.1182/blood.V97.1.12211133751
    [Google Scholar]
  92. SalomonB. MauryS. LoubièreL. CarusoM. OnclercqR. KlatzmannD. A truncated herpes simplex virus thymidine kinase phosphorylates thymidine and nucleoside analogs and does not cause sterility in transgenic mice.Mol. Cell. Biol.199515105322532810.1128/MCB.15.10.53227565681
    [Google Scholar]
  93. BalzariniJ. LiekensS. SolaroliN. El OmariK. StammersD.K. KarlssonA. Engineering of a single conserved amino acid residue of herpes simplex virus type 1 thymidine kinase allows a predominant shift from pyrimidine to purine nucleoside phosphorylation.J. Biol. Chem.200628128192731927910.1074/jbc.M60041420016702226
    [Google Scholar]
  94. KostovaY. MantwillK. HolmP.S. AntonM. An armed, YB-1-dependent oncolytic adenovirus as a candidate for a combinatorial anti-glioma approach of virotherapy, suicide gene therapy and chemotherapeutic treatment.Cancer Gene Ther.2015221304310.1038/cgt.2014.6725501992
    [Google Scholar]
  95. Sancho-MartinezI. NivetE. XiaY. HishidaT. AguirreA. OcampoA. MaL. MoreyR. KrauseM.N. ZembrzyckiA. AnsorgeO. Vazquez-FerrerE. DubovaI. ReddyP. LamD. HishidaY. WuM.Z. EstebanC.R. O’LearyD. WahlG.M. VermaI.M. LaurentL.C. Izpisua BelmonteJ.C. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells.Nat. Commun.2016711074310.1038/ncomms1074326899176
    [Google Scholar]
  96. TamuraR. MiyoshiH. ImaizumiK. YoM. KaseY. SatoT. SatoM. MorimotoY. SampetreanO. KohyamaJ. ShinozakiM. MiyawakiA. YoshidaK. SayaH. OkanoH. TodaM. Gene therapy using genome-edited iPS cells for targeting malignant glioma.Bioeng. Transl. Med.202385e1040610.1002/btm2.1040637693056
    [Google Scholar]
  97. IwasawaC. TamuraR. SugiuraY. SuzukiS. KuzumakiN. NaritaM. SuematsuM. NakamuraM. YoshidaK. TodaM. OkanoH. MiyoshiH. Increased cytotoxicity of herpes simplex virus thymidine kinase expression in human induced pluripotent stem cells.Int. J. Mol. Sci.201920481010.3390/ijms2004081030769780
    [Google Scholar]
  98. WangL.H. WuC.F. RajasekaranN. ShinY.K. Loss of tumor suppressor gene function in human cancer: An overview.Cell. Physiol. Biochem.20185162647269310.1159/00049595630562755
    [Google Scholar]
  99. KontomanolisE.N. KoutrasA. SyllaiosA. SchizasD. MastorakiA. GarmpisN. DiakosavvasM. AngelouK. TsatsarisG. PagkalosA. NtounisT. FasoulakisZ. Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review.Anticancer Res.202040116009601510.21873/anticanres.1462233109539
    [Google Scholar]
  100. HuangH. A pan-cancer analysis for the oncogenic role of cyclin-dependent kinase inhibitor 1B in human cancers.Discov. Oncol.202314112610.1007/s12672‑023‑00746‑8
    [Google Scholar]
  101. SchiappacassiM. LovatF. CanzonieriV. BellettiB. BertonS. Di StefanoD. VecchioneA. ColombattiA. BaldassarreG. p27Kip1 expression inhibits glioblastoma growth, invasion, and tumor-induced neoangiogenesis.Mol. Cancer Ther.2008751164117510.1158/1535‑7163.MCT‑07‑215418483304
    [Google Scholar]
  102. FierroJ. DiPasqualeJ. PerezJ. ChinB. ChokpaponeY. TranA.M. HoldenA. FactorizaC. SivagnanakumarN. AguilarR. MazalS. LopezM. DouH. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization.Sci. Rep.2022121241710.1038/s41598‑022‑06430‑135165339
    [Google Scholar]
  103. HuangJ. ZhengM. ZhangZ. TangX. ChenY. PengA. PengX. TongA. ZhouL. Interleukin-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma.Cancer Immunol. Immunother.20217092453246510.1007/s00262‑021‑02856‑033543339
    [Google Scholar]
  104. HuC. JiH. ChenS. ZhangH. WangB. ZhouL. ZhangZ. SunX. ChenZ. CaiY. QinL. LuL. JiangX. XuR. KeY. Investigation of a plasmid containing a novel immunotoxin VEGF165-PE38 gene for antiangiogenic therapy in a malignant glioma model.Int. J. Cancer201012792222222910.1002/ijc.2521720127864
    [Google Scholar]
  105. TangB. GuoZ.S. BartlettD.L. YanD.Z. SchaneC.P. ThomasD.L. LiuJ. McFaddenG. ShislerJ.L. RoyE.J. Synergistic combination of oncolytic virotherapy and immunotherapy for glioma.Clin. Cancer Res.20202692216223010.1158/1078‑0432.CCR‑18‑362632019860
    [Google Scholar]
  106. LiangC. YangL. GuoS. LiR. Downregulation of astrocyte elevated gene-1 expression combined with all-trans retinoic acid inhibits development of vasculogenic mimicry and angiogenesis in glioma.Curr. Med. Sci.202242239740610.1007/s11596‑022‑2517‑435201552
    [Google Scholar]
  107. LiJ. SunY. SunX. ZhaoX. MaY. WangY. ZhangX. AEG-1 silencing attenuates M2-polarization of glioma-associated microglia/macrophages and sensitizes glioma cells to temozolomide.Sci. Rep.20211111734810.1038/s41598‑021‑96647‑334462446
    [Google Scholar]
  108. LuoM. LiY. PengB. WhiteJ. MäkiläE. TongW.Y. Jonathan ChoiC.H. DayB. VoelckerN.H. A multifunctional porous silicon nanocarrier for glioblastoma treatment.Mol. Pharm.202320154556010.1021/acs.molpharmaceut.2c0076336484477
    [Google Scholar]
  109. HuangJ. ZhangL. WanD. ZhouL. ZhengS. LinS. QiaoY. Extracellular matrix and its therapeutic potential for cancer treatment.Signal Transduct. Target. Ther.20216115310.1038/s41392‑021‑00544‑033888679
    [Google Scholar]
  110. NajafiM. FarhoodB. MortezaeeK. Extracellular matrix (ECM) stiffness and degradation as cancer drivers.J. Cell. Biochem.201912032782279010.1002/jcb.2768130321449
    [Google Scholar]
  111. KuriyamaN. KuriyamaH. JulinC.M. LambornK.R. IsraelM.A. Protease pretreatment increases the efficacy of adenovirus-mediated gene therapy for the treatment of an experimental glioblastoma model.Cancer Res.20016151805180911280727
    [Google Scholar]
  112. KuriyamaN. KuriyamaH. JulinC.M. LambornK. IsraelM.A. Pretreatment with protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy.Hum. Gene Ther.200011162219223010.1089/10430340075003574411084679
    [Google Scholar]
  113. KimY. LeeH.G. DmitrievaN. KimJ. KaurB. FriedmanA. Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti tumor efficacy: A mathematical model.PLoS One201497e10249910.1371/journal.pone.010249925047810
    [Google Scholar]
  114. CombaA. FaisalS.M. DunnP.J. ArgentoA.E. HollonT.C. Al-HolouW.N. VarelaM.L. ZamlerD.B. QuassG.L. ApostolidesP.F. AbelC. BrownC.E. KishP.E. KahanaA. KleerC.G. MotschS. CastroM.G. LowensteinP.R. Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression.Nat. Commun.2022131360610.1038/s41467‑022‑31340‑135750880
    [Google Scholar]
  115. LiA. ZhangT. HuangT. LinR. MuJ. SuY. SunH. JiangX. WuH. XuD. CaoH. SunX. LingD. GaoJ. Iron oxide nanoparticles promote Cx43-overexpression of mesenchymal stem cells for efficient suicide gene therapy during glioma treatment.Theranostics202111178254826910.7150/thno.6016034373740
    [Google Scholar]
  116. ZhengT. WangW. MohammadniaeiM. AshleyJ. ZhangM. ZhouN. ShenJ. SunY. Anti-MicroRNA-21 oligonucleotide loaded spermine-modified acetalated dextran nanoparticles for B1 receptor-targeted gene therapy and antiangiogenesis therapy.Adv. Sci. (Weinh.)202295210381210.1002/advs.20210381234936240
    [Google Scholar]
  117. ZhangJ. ChenH. ChenC. LiuH. HeY. ZhaoJ. YangP. MaoQ. XiaH. Systemic administration of mesenchymal stem cells loaded with a novel oncolytic adenovirus carrying IL-24/endostatin enhances glioma therapy.Cancer Lett.2021509263810.1016/j.canlet.2021.03.02733819529
    [Google Scholar]
  118. DenboJ.W. WilliamsR.F. OrrW.S. SimsT.L. NgC.Y. ZhouJ. SpenceY. MortonC.L. NathwaniA.C. DuntschC. PfefferL.M. DavidoffA.M. Continuous local delivery of interferon-β stabilizes tumor vasculature in an orthotopic glioblastoma xenograft resection model.Surgery2011150349750410.1016/j.surg.2011.07.04421878236
    [Google Scholar]
  119. SugiiN. MatsudaM. OkumuraG. ShibuyaA. IshikawaE. KanedaY. MatsumuraA. Hemagglutinating virus of Japan-envelope containing programmed cell death-ligand 1 siRNA inhibits immunosuppressive activities and elicits antitumor immune responses in glioma.Cancer Sci.20211121819010.1111/cas.1472133155337
    [Google Scholar]
  120. OmarN.B. BentleyR.T. CrossmanD.K. FooteJ.B. KoehlerJ.W. MarkertJ.M. PlattS.R. RissiD.R. ShoresA. SorjonenD. YankeA.B. GillespieG.Y. ChambersM.R. Safety and interim survival data after intracranial administration of M032, a genetically engineered oncolytic HSV-1 expressing IL-12, in pet dogs with sporadic gliomas.Neurosurg. Focus2021502E510.3171/2020.11.FOCUS2084433524948
    [Google Scholar]
  121. AndreouT. WilliamsJ. BrownlieR.J. SalmondR.J. WatsonE. ShawG. MelcherA. WurdakH. ShortS.C. LorgerM. Hematopoietic stem cell gene therapy targeting TGFβ enhances the efficacy of irradiation therapy in a preclinical glioblastoma model.J. Immunother. Cancer202193e00114310.1136/jitc‑2020‑00114333707311
    [Google Scholar]
  122. WuJ. XieS. LiH. ZhangY. YueJ. YanC. LiuK. LiuY. XuR. ZhengG. Antitumor effect of IL-12 gene-modified bone marrow mesenchymal stem cells combined with Fuzheng Yiliu decoction in an in vivo glioma nude mouse model.J. Transl. Med.202119114310.1186/s12967‑021‑02809‑233827606
    [Google Scholar]
  123. ZhouQ. FuQ. ShayaM. KugelukeY. LiS. DilimulatiY. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β-catenin signaling pathway.CNS Neurosci. Ther.202228688489610.1111/cns.1382035332692
    [Google Scholar]
  124. KwakS. ParkS.H. KimS.H. SungG.J. SongJ.H. JeongJ.H. KimH. HaC.H. KimS.W. ChoiK.C. miR-3189-targeted GLUT3 repression by HDAC2 knockdown inhibits glioblastoma tumorigenesis through regulating glucose metabolism and proliferation.J. Exp. Clin. Cancer Res.20224118710.1186/s13046‑022‑02305‑535260183
    [Google Scholar]
  125. WeiL. WeiQ. YangX. ZhouP. CMTM6 knockdown prevents glioma progression by inactivating the mTOR pathway.Ann. Transl. Med.202210418110.21037/atm‑21‑689435280358
    [Google Scholar]
  126. ZhouY. WangX. LvP. YuH. JiangX. CDK5 Knockdown inhibits proliferation and induces apoptosis and cell cycle arrest in human glioblastoma.J. Cancer202112133958396610.7150/jca.5398134093802
    [Google Scholar]
  127. Quijano-RubioC. SilginerM. WellerM. CRISPR/Cas9-mediated abrogation of CD95L/CD95 signaling-induced glioma cell growth and immunosuppression increases survival in murine glioma models.J. Neurooncol.2022160229931010.1007/s11060‑022‑04137‑x36355258
    [Google Scholar]
  128. MorimotoT. NakazawaT. MatsudaR. NishimuraF. NakamuraM. YamadaS. NakagawaI. ParkY.S. TsujimuraT. NakaseH. CRISPR-Cas9–mediated TIM3 knockout in human natural killer cells enhances growth inhibitory effects on human glioma cells.Int. J. Mol. Sci.2021227348910.3390/ijms2207348933800561
    [Google Scholar]
  129. WeiJ. MarisettyA. SchrandB. GabrusiewiczK. HashimotoY. OttM. GramiZ. KongL.Y. LingX. CarusoH. ZhouS. WangY.A. FullerG.N. HuseJ. GilboaE. KangN. HuangX. VerhaakR. LiS. HeimbergerA.B. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target.J. Clin. Invest.2018129113714910.1172/JCI12126630307407
    [Google Scholar]
  130. LiC. FengS. ChenL. MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway.Mol. Cell. Biochem.2021476269971310.1007/s11010‑020‑03937‑x33106913
    [Google Scholar]
  131. HuangH. GeorganakiM. ConzeL.L. LaviñaB. van HoorenL. VemuriK. van de WalleT. RamachandranM. ZhangL. PonténF. BergqvistM. SmitsA. BetsholtzC. DejanaE. MagnussonP.U. HeL. LuganoR. DimbergA. ELTD1 deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma.Neuro-oncol.202224339841110.1093/neuonc/noab18134347079
    [Google Scholar]
  132. HanN. HuG. ShiL. LongG. YangL. XiQ. GuoQ. WangJ. DongZ. ZhangM. Notch1 ablation radiosensitizes glioblastoma cells.Oncotarget2017850880598806810.18632/oncotarget.2140929152141
    [Google Scholar]
  133. BulchaJ.T. WangY. MaH. TaiP.W.L. GaoG. Viral vector platforms within the gene therapy landscape.Signal Transduct. Target. Ther.2021615310.1038/s41392‑021‑00487‑633558455
    [Google Scholar]
  134. ShirleyJ.L. de JongY.P. TerhorstC. HerzogR.W. Immune responses to viral gene therapy vectors.Mol. Ther.202028370972210.1016/j.ymthe.2020.01.00131968213
    [Google Scholar]
  135. WangD. TaiP.W.L. GaoG. Adeno-associated virus vector as a platform for gene therapy delivery.Nat. Rev. Drug Discov.201918535837810.1038/s41573‑019‑0012‑930710128
    [Google Scholar]
  136. MiloneM.C. O’DohertyU. Clinical use of lentiviral vectors.Leukemia20183271529154110.1038/s41375‑018‑0106‑029654266
    [Google Scholar]
  137. BanerjeeK. NúñezF.J. HaaseS. McClellanB.L. FaisalS.M. CarneyS.V. YuJ. AlghamriM.S. AsadA.S. CandiaA.J.N. VarelaM.L. CandolfiM. LowensteinP.R. CastroM.G. Current approaches for glioma gene therapy and virotherapy.Front. Mol. Neurosci.20211462183110.3389/fnmol.2021.62183133790740
    [Google Scholar]
  138. LuizM.T. DutraJ.A.P. TofaniL.B. de AraújoJ.T.C. Di FilippoL.D. MarchettiJ.M. ChorilliM. Targeted liposomes: A nonviral gene delivery system for cancer therapy.Pharmaceutics202214482110.3390/pharmaceutics1404082135456655
    [Google Scholar]
  139. HarringtonK. Alvarez-VallinaL. CrittendenM. GoughM. ChongH. DiazR.M. VassauxG. LemoineN. VileR. Cells as vehicles for cancer gene therapy: The missing link between targeted vectors and systemic delivery?Hum. Gene Ther.200213111263128010.1089/10430340276012850412162810
    [Google Scholar]
  140. ChiuT.-L. WangM.-J. SuC.-C. Enhanced anti-cancer activity of microglia by AAV2-mediated IL-12 in the therapy of glioblastoma multiforme.Oncol. Rep.20112551373138010.3892/or.2011.1213
    [Google Scholar]
  141. YeL. ParkJ.J. DongM.B. YangQ. ChowR.D. PengL. DuY. GuoJ. DaiX. WangG. ErramiY. ChenS. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma.Nat. Biotechnol.201937111302131310.1038/s41587‑019‑0246‑431548728
    [Google Scholar]
  142. LundstromK. Self-replicating RNA viral vectors in vaccine development and gene therapy.Future Virol.201611534535610.2217/fvl‑2016‑0028
    [Google Scholar]
  143. AllenC. OpyrchalM. AdercaI. SchroederM.A. SarkariaJ.N. DomingoE. FederspielM.J. GalanisE. Oncolytic measles virus strains have significant antitumor activity against glioma stem cells.Gene Ther.201320444444910.1038/gt.2012.6222914495
    [Google Scholar]
  144. LuizM.T. TofaniL.B. AraújoV.H.S. Di FilippoL.D. DuarteJ.L. MarchettiJ.M. ChorilliM. Gene therapy based on lipid nanoparticles as non-viral vectors for glioma treatment.Curr. Gene Ther.202121545246310.2174/156652322099920123020512633390137
    [Google Scholar]
  145. KimH.A. ParkJ.H. YiN. LeeM. Delivery of hypoxia and glioma dual-specific suicide gene using dexamethasone conjugated polyethylenimine for glioblastoma-specific gene therapy.Mol. Pharm.201411393895010.1021/mp400600324467192
    [Google Scholar]
  146. BaeY. LeeJ. KhoC. ChoiJ.S. HanJ. Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy.Korean J. Physiol. Pharmacol.202125546747810.4196/kjpp.2021.25.5.46734448464
    [Google Scholar]
  147. KimJ. MondalS.K. TzengS.Y. RuiY. Al-kharbooshR. KozielskiK.K. BhargavA.G. GarciaC.A. Quiñones-HinojosaA. GreenJ.J. Poly(ethylene glycol)–poly (beta-amino ester)-based nanoparticles for suicide gene therapy enhance brain penetration and extend survival in a preclinical human glioblastoma orthotopic xenograft model.ACS Biomater. Sci. Eng.2020652943295510.1021/acsbiomaterials.0c0011633463272
    [Google Scholar]
  148. ParkS. HanH. AhnS. RyuC. JeunS.S. Combination treatment with VPA and MSCs-TRAIL could increase anti-tumor effects against intracranial glioma.Oncol. Rep.202145386987810.3892/or.2021.793733469674
    [Google Scholar]
  149. AhmedA.U. AlexiadesN.G. LesniakM.S. The use of neural stem cells in cancer gene therapy: Predicting the path to the clinic.Curr. Opin. Mol. Ther.201012554655220886386
    [Google Scholar]
  150. ShahK. BureauE. KimD.E. YangK. TangY. WeisslederR. BreakefieldX.O. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression.Ann. Neurol.2005571344110.1002/ana.2030615622535
    [Google Scholar]
  151. QianJ. YangM. FengQ. PanX.Y. YangL.L. YangJ.L. Inhibition of glioma by adenovirus KGHV500 encoding anti-p21Ras scFv and carried by cytokine-induced killer cells.Exp. Biol. Med. (Maywood)2021246101228123810.1177/153537022098676933535808
    [Google Scholar]
  152. TirgarF. AziziZ. HosseindoostS. HadjighassemM. Preclinical gene therapy in glioblastoma multiforme: Using olfactory ensheathing cells containing a suicide gene.Life Sci.2022311Pt A12113210.1016/j.lfs.2022.12113236309223
    [Google Scholar]
  153. FallauxF.J. van der EbA.J. HoebenR.C. Who’s afraid of replication-competent adenoviruses?Gene Ther.19996570971210.1038/sj.gt.330090210505092
    [Google Scholar]
  154. VogesJ. ReszkaR. GossmannA. DittmarC. RichterR. GarlipG. KrachtL. CoenenH.H. SturmV. WienhardK. HeissW.D. JacobsA.H. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma.Ann. Neurol.200354447948710.1002/ana.1068814520660
    [Google Scholar]
  155. KangJ.H. DesjardinsA. Convection-enhanced delivery for high-grade glioma.Neurooncol. Pract.202291243410.1093/nop/npab06535096401
    [Google Scholar]
  156. MangravitiA. TzengS.Y. KozielskiK.L. WangY. JinY. GullottiD. PedoneM. BuaronN. LiuA. WilsonD.R. HansenS.K. RodriguezF.J. GaoG.D. DiMecoF. BremH. OliviA. TylerB. GreenJ.J. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo.ACS Nano2015921236124910.1021/nn504905q25643235
    [Google Scholar]
  157. XiaoR. DingJ. ChenJ. ZhaoZ. HeL. WangH. HuangS. LuoB. Citric acid coated ultrasmall superparamagnetic iron oxide nanoparticles conjugated with lactoferrin for targeted negative MR imaging of glioma.J. Biomater. Appl.2021361152510.1177/088532822097557033287646
    [Google Scholar]
  158. TangL. FengY. GaoS. MuQ. LiuC. Nanotherapeutics overcoming the blood-brain barrier for glioblastoma treatment.Front. Pharmacol.20211278670010.3389/fphar.2021.78670034899350
    [Google Scholar]
  159. ZouY. SunX. YangQ. ZhengM. ShimoniO. RuanW. WangY. ZhangD. YinJ. HuangX. TaoW. ParkJ.B. LiangX-J. LeongK.W. ShiB. Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy.Sci. Adv.2022816eabm801110.1126/sciadv.abm8011
    [Google Scholar]
  160. WangF. LiY. ShenY. WangA. WangS. XieT. The functions and applications of RGD in tumor therapy and tissue engineering.Int. J. Mol. Sci.2013147134471346210.3390/ijms14071344723807504
    [Google Scholar]
  161. WangY. TongL. WangJ. LuoJ. TangJ. ZhongL. XiaoQ. NiuW. LiJ. ZhuJ. ChenH. LiX. WangY. cRGD-functionalized nanoparticles for combination therapy of anti-endothelium dependent vessels and anti-vasculogenic mimicry to inhibit the proliferation of ovarian cancer.Acta Biomater.20199449550410.1016/j.actbio.2019.06.03931252171
    [Google Scholar]
  162. StepanenkoA.A. SosnovtsevaA.O. ValikhovM.P. ChekhoninV.P. A new insight into aggregation of oncolytic adenovirus Ad5-delta-24-RGD during CsCl gradient ultracentrifugation.Sci. Rep.20211111608810.1038/s41598‑021‑94573‑y34373477
    [Google Scholar]
  163. LiuK. TsungK. AttenelloF.J. Characterizing cell stress and GRP78 in glioma to enhance tumor treatment.Front. Oncol.20201060891110.3389/fonc.2020.60891133363039
    [Google Scholar]
  164. PrzystalJ.M. WaramitS. PranjolM.Z.I. YanW. ChuG. ChongchaiA. SamarthG. OlacireguiN.G. TabatabaiG. CarcabosoA.M. AboagyeE.O. SuwanK. HajitouA. Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma.EMBO Mol. Med.2019114e849210.15252/emmm.20170849230808679
    [Google Scholar]
  165. HardeeM.E. ZagzagD. Mechanisms of glioma-associated neovascularization.Am. J. Pathol.201218141126114110.1016/j.ajpath.2012.06.03022858156
    [Google Scholar]
  166. CaroC. AvasthiA. Paez-MuñozJ.M. PerniaL.M. García-MartínM.L. Passive targeting of high-grade gliomas via the EPR effect: A closed path for metallic nanoparticles?Biomater. Sci.20219237984799510.1039/D1BM01398J34710207
    [Google Scholar]
  167. DogbeyD.M. TorresV.E.S. FajemisinE. MpondoL. NgwenyaT. AkinrinmadeO.A. PerrimanA.W. BarthS. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy.Drug Deliv. Transl. Res.202313112719273810.1007/s13346‑023‑01362‑337301780
    [Google Scholar]
  168. RamamoorthM. NarvekarA. Non viral vectors in gene therapy- an overview.J. Clin. Diagn. Res.201591GE01GE0610.7860/JCDR/2015/10443.539425738007
    [Google Scholar]
  169. TianZ. LiangG. CuiK. LiangY. WangQ. LvS. ChengX. ZhangL. Insight into the prospects for RNAi therapy of cancer.Front. Pharmacol.20211264471810.3389/fphar.2021.64471833796026
    [Google Scholar]
  170. WojnilowiczM. GlabA. BertucciA. CarusoF. CavalieriF. Super-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic release of small interfering RNA.ACS Nano201913118720210.1021/acsnano.8b0515130566836
    [Google Scholar]
  171. PattanayakV. LinS. GuilingerJ.P. MaE. DoudnaJ.A. LiuD.R. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.Nat. Biotechnol.201331983984310.1038/nbt.267323934178
    [Google Scholar]
  172. DoenchJ.G. FusiN. SullenderM. HegdeM. VaimbergE.W. DonovanK.F. SmithI. TothovaZ. WilenC. OrchardR. VirginH.W. ListgartenJ. RootD.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.Nat. Biotechnol.201634218419110.1038/nbt.343726780180
    [Google Scholar]
  173. CharlesworthC.T. DeshpandeP.S. DeverD.P. CamarenaJ. LemgartV.T. CromerM.K. VakulskasC.A. CollingwoodM.A. ZhangL. BodeN.M. BehlkeM.A. DejeneB. CieniewiczB. RomanoR. LeschB.J. Gomez-OspinaN. MantriS. Pavel-DinuM. WeinbergK.I. PorteusM.H. Identification of preexisting adaptive immunity to Cas9 proteins in humans.Nat. Med.201925224925410.1038/s41591‑018‑0326‑x30692695
    [Google Scholar]
  174. LeeA. Nadofaragene firadenovec: First approval.Drugs202383353357
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232351747241113050243
Loading
/content/journals/cgt/10.2174/0115665232351747241113050243
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): gene therapy; Glioblastoma; glioma; hallmarks of cancer; STUPP regimen; TME
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test