Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

The evolution of genetic exploration tools, from laborious methods like radiation-induced mutations to the transformative CRISPR-Cas9 system, has fundamentally reshaped genetic research and gene editing capabilities. This journey, initiated by foundational techniques such as ZFNs and TALENs and culminating in the groundbreaking work of Doudna and Charpentier in 2012, has ushered in an era of precise DNA alteration and profound insights into gene functions. The CRISPR/Cas9 system uses the Cas9 enzyme and guides RNA (gRNA) to precisely target and cleave DNA, with subsequent repair error-prone NHEJ or precise HDR, enabling versatile gene editing. Complementary computational tools like E-CRISP and Azimuth 2.0, alongside advanced deep learning models like DeepCRISPR, have significantly contributed to refining CRISPR experiments, optimizing gRNA efficiency, and predicting outcomes with greater precision. In clinical applications, CRISPR-Cas9 shows great promise for treating complex genetic disorders like sickle cell disease and β-thalassemia, but faces challenges such as off-target effects, immune responses to viral vectors, and ethical issues in germline editing. Overcoming these challenges requires meticulous experimentation and robust regulatory frameworks to ensure responsible and beneficial utilization of the CRISPR-Cas9 technology across diverse fields, including cancer treatment, genetic disease therapies, agriculture, and synthetic biology, while continually addressing ethical, safety, and legal considerations for its advancement and widespread adoption.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232342293241120033251
2025-01-06
2025-10-15
Loading full text...

Full text loading...

References

  1. DoudnaJ.A. The promise and challenge of therapeutic genome editing.Nature2020578779422923610.1038/s41586‑020‑1978‑532051598
    [Google Scholar]
  2. RobbG.B. Genome editing with CRISPR‐Cas: An overview.Curr. Protoc. Essent. Lab. Tech.2019191e3610.1002/cpet.36
    [Google Scholar]
  3. KhalilA.M. The genome editing revolution: Review.J. Genet. Eng. Biotechnol.20201816810.1186/s43141‑020‑00078‑y33123803
    [Google Scholar]
  4. FarheenJ. HosmaneN.S. ZhaoR. ZhaoQ. IqbalM.Z. KongX. Nanomaterial-assisted CRISPR gene-engineering – A hallmark for triple-negative breast cancer therapeutics advancement.Mater. Today Bio20221610045010.1016/j.mtbio.2022.10045036267139
    [Google Scholar]
  5. PandeyA. NikamA.N. ShreyaA.B. MutalikS.P. GopalanD. KulkarniS. PadyaB.S. FernandesG. MutalikS. PrasslR. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements.Life Sci.202025611788310.1016/j.lfs.2020.11788332497632
    [Google Scholar]
  6. LeitãoA.L. CostaM.C. EnguitaF.J. Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites.J. Biotechnol.2017241506010.1016/j.jbiotec.2016.11.00927845165
    [Google Scholar]
  7. KnippingF. OsbornM.J. PetriK. TolarJ. GlimmH. von KalleC. SchmidtM. GabrielR. Genome-wide specificity of highly efficient TALENs and CRISPR/Cas9 for T cell receptor modification.Mol. Ther. Methods Clin. Dev.2017421322410.1016/j.omtm.2017.01.00528345006
    [Google Scholar]
  8. AdliM. The CRISPR tool kit for genome editing and beyond.Nat. Commun.201891191110.1038/s41467‑018‑04252‑229765029
    [Google Scholar]
  9. SternbergS.H. DoudnaJ.A. Expanding the biologist’s toolkit with CRISPR-Cas9.Mol. Cell201558456857410.1016/j.molcel.2015.02.03226000842
    [Google Scholar]
  10. YangY. XuJ. GeS. LaiL. CRISPR/Cas: Advances, limitations, and applications for precision cancer research.Front. Med. (Lausanne)20218649896https://www.frontiersin.org/articles/10.3389/fmed.2021.64989610.3389/fmed.2021.64989633748164
    [Google Scholar]
  11. JavaidN. ChoiS. CRISPR/cas system and factors affecting its precision and efficiency.Front. Cell Dev. Biol.20219761709https://www.frontiersin.org/articles/10.3389/fcell.2021.76170910.3389/fcell.2021.76170934901007
    [Google Scholar]
  12. KumarG. NandakumarK. MutalikS. RaoC.M. Biologicals to direct nanotherapeutics towards HER2-positive breast cancers.Nanomedicine20202710219710.1016/j.nano.2020.10219732275958
    [Google Scholar]
  13. XieF. YeL. ChangJ.C. BeyerA.I. WangJ. MuenchM.O. KanY.W. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac.Genome Res.20142491526153310.1101/gr.173427.11425096406
    [Google Scholar]
  14. QasimW. ZhanH. SamarasingheS. AdamsS. AmroliaP. StaffordS. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells.Sci. Translat. Med.20179374eaaj201310.1126/scitranslmed.aaj2013
    [Google Scholar]
  15. KonstantakosV. NentidisA. KritharaA. PaliourasG. CRISPR–Cas9 gRNA efficiency prediction: An overview of predictive tools and the role of deep learning.Nucleic Acids Res.20225073616363710.1093/nar/gkac19235349718
    [Google Scholar]
  16. IshinoY. ShinagawaH. MakinoK. AmemuraM. NakataA. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product.J. Bacteriol.1987169125429543310.1128/jb.169.12.5429‑5433.19873316184
    [Google Scholar]
  17. PorteusM.H. BaltimoreD. Chimeric nucleases stimulate gene targeting in human cells.Science2003300562076376310.1126/science.107839512730593
    [Google Scholar]
  18. HirataR. ChamberlainJ. DongR. RussellD.W. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors.Nat. Biotechnol.200220773573810.1038/nbt0702‑73512089561
    [Google Scholar]
  19. UrnovF.D. MillerJ.C. LeeY.L. BeausejourC.M. RockJ.M. AugustusS. JamiesonA.C. PorteusM.H. GregoryP.D. HolmesM.C. Highly efficient endogenous human gene correction using designed zinc-finger nucleases.Nature2005435704264665110.1038/nature0355615806097
    [Google Scholar]
  20. KimY.G. ChaJ. ChandrasegaranS. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain.Proc. Natl. Acad. Sci. USA19969331156116010.1073/pnas.93.3.11568577732
    [Google Scholar]
  21. MojicaF.J.M. JuezG. Rodríguez-ValeraF. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified Pst I sites.Mol. Microbiol.19939361362110.1111/j.1365‑2958.1993.tb01721.x8412707
    [Google Scholar]
  22. BolotinA. QuinquisB. SorokinA. EhrlichS.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.Microbiology200515182551256110.1099/mic.0.28048‑016079334
    [Google Scholar]
  23. MakarovaK.S. GrishinN.V. ShabalinaS.A. WolfY.I. KooninE.V. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action.Biol. Direct200611710.1186/1745‑6150‑1‑716545108
    [Google Scholar]
  24. BarrangouR. FremauxC. DeveauH. RichardsM. BoyavalP. MoineauS. RomeroD.A. HorvathP. CRISPR provides acquired resistance against viruses in prokaryotes.Science200731558191709171210.1126/science.113814017379808
    [Google Scholar]
  25. The nobel prize in chemistry 2020.Available from: https://www.nobelprize.org/prizes/chemistry/2020/summary/
  26. The Cell And Gene Therapy Sector In 2023: A Wave Is Coming – Are We Ready?2023Available from: https://insights.citeline.com/IV146781/The-Cell-And-Gene-Therapy-Sector-In-2023-A-Wave-Is-Coming--Are-We-Ready/
  27. JinekM. ChylinskiK. FonfaraI. HauerM. DoudnaJ.A. CharpentierE. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science2012337609681682110.1126/science.122582922745249
    [Google Scholar]
  28. CongL. RanF.A. CoxD. LinS. BarrettoR. HabibN. HsuP.D. WuX. JiangW. MarraffiniL.A. ZhangF. Multiplex genome engineering using CRISPR/Cas systems.Science2013339612181982310.1126/science.123114323287718
    [Google Scholar]
  29. KashtwariM. MansoorS. WaniA.A. NajarM.A. DeshmukhR.K. BalochF.S. AbidiI. ZargarS.M. Random mutagenesis in vegetatively propagated crops: Opportunities, challenges and genome editing prospects.Mol. Biol. Rep.20224965729574910.1007/s11033‑021‑06650‑034427889
    [Google Scholar]
  30. MakarovaK.S. WolfY.I. AlkhnbashiO.S. CostaF. ShahS.A. SaundersS.J. BarrangouR. BrounsS.J.J. CharpentierE. HaftD.H. HorvathP. MoineauS. MojicaF.J.M. TernsR.M. TernsM.P. WhiteM.F. YakuninA.F. GarrettR.A. van der OostJ. BackofenR. KooninE.V. An updated evolutionary classification of CRISPR–Cas systems.Nat. Rev. Microbiol.2015131172273610.1038/nrmicro356926411297
    [Google Scholar]
  31. ChaudharyE. ChaudharyA. SharmaS. TiwariV. GargM. Different classes of CRISPR-cas systems.Gene Editing in Plants: CRISPR-Cas and Its Applications. KumarA. AroraS. OgitaS. YauY.Y. MukherjeeK. SingaporeSpringer2024739410.1007/978‑981‑99‑8529‑6_3
    [Google Scholar]
  32. ZhaoL. KosekiS.R.T. SilversteinR.A. AmraniN. PengC. KrammeC. SavicN. PacesaM. RodríguezT.C. StanT. TysingerE. HongL. YudistyraV. PonnapatiM.R. JacobsonJ.M. ChurchG.M. JakimoN. TruantR. JinekM. KleinstiverB.P. SontheimerE.J. ChatterjeeP. PAM-flexible genome editing with an engineered chimeric Cas9.Nat. Commun.2023141617510.1038/s41467‑023‑41829‑y37794046
    [Google Scholar]
  33. GleditzschD. PauschP. Müller-EsparzaH. ÖzcanA. GuoX. BangeG. RandauL. PAM identification by CRISPR-Cas effector complexes: Diversified mechanisms and structures.RNA Biol.201916450451710.1080/15476286.2018.150454630109815
    [Google Scholar]
  34. AsmamawM. ZawdieB. Mechanism and applications of CRISPR/Cas-9-mediated genome editing.Biologics20211535336134456559
    [Google Scholar]
  35. HiranniramolK. ChenY. LiuW. WangX. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.Bioinformatics20203692684268910.1093/bioinformatics/btaa04131971562
    [Google Scholar]
  36. XieC. ChenY.L. WangD.F. WangY.L. ZhangT.P. LiH. LiangF. ZhaoY. ZhangG.Y. SgRNA expression of CRIPSR-Cas9 system based on MiRNA polycistrons as a versatile tool to manipulate multiple and tissue-specific genome editing.Sci. Rep.201771579510.1038/s41598‑017‑06216‑w28724960
    [Google Scholar]
  37. PfenningerP. YerlyL. AbeJ. Naïve primary mouse CD8+ T cells retain in vivo immune responsiveness after electroporation-based CRISPR/Cas9 genetic engineering.Front. Immunol.20221377711310.3389/fimmu.2022.77711335844563
    [Google Scholar]
  38. YinX. HarmanceyR. McPhersonD.D. KimH. HuangS.L. Liposome-based carriers for CRISPR genome editing.Int. J. Mol. Sci.202324161284410.3390/ijms24161284437629024
    [Google Scholar]
  39. ZhangZ. WangJ. LiJ. LiuX. LiuL. ZhaoC. TaoW. WangD. WeiJ. Establishment of an integrated CRISPR/Cas9 plasmid system for simple and efficient genome editing in medaka in vitro and in vivo.Biology (Basel)202312233610.3390/biology1202033636829610
    [Google Scholar]
  40. UchidaN. DrysdaleC.M. NassehiT. GamerJ. YapundichM. DiNicolaJ. ShibataY. HindsM. GudmundsdottirB. Haro-MoraJ.J. DemirciS. TisdaleJ.F. Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease.Mol. Ther. Methods Clin. Dev.20212112113210.1016/j.omtm.2021.02.02233816645
    [Google Scholar]
  41. LuoM. WangJ. DongZ. WangC. LuG. CRISPR-Cas9 sgRNA design and outcome assessment: Bioinformatics tools and aquaculture applications.Aquac. Fish.20227212113010.1016/j.aaf.2021.10.002
    [Google Scholar]
  42. BaoX.R. PanY. LeeC.M. DavisT.H. BaoG. Tools for experimental and computational analyses of off-target editing by programmable nucleases.Nat. Protoc.2021161102610.1038/s41596‑020‑00431‑y33288953
    [Google Scholar]
  43. AtkinsA. ChungC.H. AllenA.G. DampierW. GurrolaT.E. SariyerI.K. Off-target analysis in gene editing and applications for clinical translation of CRISPR/Cas9 in HIV-1 therapy.Front Genome Ed.20213673022
    [Google Scholar]
  44. SinghK.P. MiaskowskiC. DhruvaA.A. FlowersE. KoberK.M. Mechanisms and measurement of changes in gene expression.Biol. Res. Nurs.201820436938210.1177/109980041877216129706088
    [Google Scholar]
  45. HorodeckaK. DüchlerM. CRISPR/Cas9: Principle, applications, and delivery through extracellular vesicles.Int. J. Mol. Sci.20212211607210.3390/ijms2211607234199901
    [Google Scholar]
  46. IsgròA. GazievJ. SodaniP. LucarelliG. Progress in hematopoietic stem cell transplantation as allogeneic cellular gene therapy in thalassemia.Ann. N. Y. Acad. Sci.20101202114915410.1111/j.1749‑6632.2010.05543.x20712786
    [Google Scholar]
  47. WuY. ZengJ. RoscoeB.P. LiuP. YaoQ. LazzarottoC.R. ClementK. ColeM.A. LukK. BaricordiC. ShenA.H. RenC. EsrickE.B. ManisJ.P. DorfmanD.M. WilliamsD.A. BiffiA. BrugnaraC. BiascoL. BrendelC. PinelloL. TsaiS.Q. WolfeS.A. BauerD.E. Highly efficient therapeutic gene editing of human hematopoietic stem cells.Nat. Med.201925577678310.1038/s41591‑019‑0401‑y30911135
    [Google Scholar]
  48. FrangoulH. AltshulerD. CappelliniM.D. ChenY.S. DommJ. EustaceB.K. FoellJ. de la FuenteJ. GruppS. HandgretingerR. HoT.W. KattamisA. KernytskyA. Lekstrom-HimesJ. LiA.M. LocatelliF. MaparaM.Y. de MontalembertM. RondelliD. SharmaA. ShethS. SoniS. SteinbergM.H. WallD. YenA. CorbaciogluS. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia.N. Engl. J. Med.2021384325226010.1056/NEJMoa203105433283989
    [Google Scholar]
  49. SharmaA. BoelensJ.J. CancioM. HankinsJ.S. BhadP. AzizyM. LewandowskiA. ZhaoX. ChitnisS. PeddintiR. ZhengY. KapoorN. CiceriF. MaclachlanT. YangY. LiuY. YuanJ. NaumannU. YuV.W.C. StevensonS.C. De VitaS. LaBelleJ.L. CRISPR-Cas9 editing of the HBG1 and HBG2 promoters to treat sickle cell disease.N. Engl. J. Med.2023389982083210.1056/NEJMoa221564337646679
    [Google Scholar]
  50. SheridanC. The world’s first CRISPR therapy is approved: Who will receive it?2023Available from: https://www.nature.com/articles/d41587-023-00016-6
  51. New genetic technology developed to halt malaria-spreading mosquitoes.2023Available from: https://www.sciencedaily.com/releases/2023/07/230705154012.htm
  52. CRISPR use creates malaria-resistant mosquitoes.2018Available from: https://www.genengnews.com/news/crispr-use-creates-malaria-resistant-mosquitoes/
  53. LiuZ. ShiM. RenY. XuH. WengS. NingW. GeX. LiuL. GuoC. DuoM. LiL. LiJ. HanX. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy.Mol. Cancer20232213510.1186/s12943‑023‑01738‑636797756
    [Google Scholar]
  54. Researchers use CRISPR to build melanoma models from scratch using human cells.2022Available from: https://www.broadinstitute.org/news/researchers-use-crispr-build-melanoma-models-scratch-using-human-cells
  55. WangS.W. GaoC. ZhengY.M. YiL. LuJ.C. HuangX.Y. CaiJ.B. ZhangP.F. CuiY.H. KeA.W. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer.Mol. Cancer20222115710.1186/s12943‑022‑01518‑835189910
    [Google Scholar]
  56. WadaN. UetaR. OsakabeY. OsakabeK. Precision genome editing in plants: State-of-the-art in CRISPR/Cas9-based genome engineering.BMC Plant Biol.202020123410.1186/s12870‑020‑02385‑532450802
    [Google Scholar]
  57. ImpensL. JacobsT.B. NelissenH. InzéD. PauwelsL. Mini-Review: Transgenerational CRISPR/Cas9 Gene Editing in Plants.Front. Genome Editing2022482504210.3389/fgeed.2022.82504235187531
    [Google Scholar]
  58. HappiM.C. LamotheG. TremblayG. TremblayJ.P. CRISPR-Cas9 gene therapy for duchenne muscular dystrophy.Neurotherapeutics202219393194110.1007/s13311‑022‑01197‑935165856
    [Google Scholar]
  59. UC San Diego scientists develop the first CRISPR/Cas9-based gene drive in plants.2021Available from: https://www.eurekalert.org/news-releases/697500
  60. RasulM.F. HussenB.M. SalihiA. IsmaelB.S. JalalP.J. ZanichelliA. JamaliE. BaniahmadA. Ghafouri-FardS. BasiriA. TaheriM. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy.Mol. Cancer20222116410.1186/s12943‑021‑01487‑435241090
    [Google Scholar]
  61. HeigwerF. KerrG. BoutrosM. E-CRISP: Fast CRISPR target site identification.Nat. Methods201411212212310.1038/nmeth.281224481216
    [Google Scholar]
  62. ListgartenJ. WeinsteinM. KleinstiverB.P. SousaA.A. JoungJ.K. CrawfordJ. GaoK. HoangL. ElibolM. DoenchJ.G. FusiN. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs.Nat. Biomed. Eng.201821384710.1038/s41551‑017‑0178‑629998038
    [Google Scholar]
  63. ChuaiG. MaH. YanJ. ChenM. HongN. XueD. ZhouC. ZhuC. ChenK. DuanB. GuF. QuS. HuangD. WeiJ. LiuQ. DeepCRISPR: Optimized CRISPR guide RNA design by deep learning.Genome Biol.20181918010.1186/s13059‑018‑1459‑429945655
    [Google Scholar]
  64. LabunK. MontagueT.G. KrauseM. Torres CleurenY.N. TjeldnesH. ValenE. CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing.Nucleic Acids Res.201947W1W171W17410.1093/nar/gkz36531106371
    [Google Scholar]
  65. DoenchJ.G. HartenianE. GrahamD.B. TothovaZ. HegdeM. SmithI. SullenderM. EbertB.L. XavierR.J. RootD.E. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation.Nat. Biotechnol.201432121262126710.1038/nbt.302625184501
    [Google Scholar]
  66. XuH. XiaoT. ChenC.H. LiW. MeyerC.A. WuQ. WuD. CongL. ZhangF. LiuJ.S. BrownM. LiuX.S. Sequence determinants of improved CRISPR sgRNA design.Genome Res.20152581147115710.1101/gr.191452.11526063738
    [Google Scholar]
  67. ZhangG. ZengT. DaiZ. DaiX. Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks.Comput. Struct. Biotechnol. J.2021191445145710.1016/j.csbj.2021.03.00133841753
    [Google Scholar]
  68. WongN. LiuW. WangX. WU-CRISPR: Characteristics of functional guide RNAs for the CRISPR/Cas9 system.Genome Biol.201516121810.1186/s13059‑015‑0784‑026521937
    [Google Scholar]
  69. MontagueT.G. CruzJ.M. GagnonJ.A. ChurchG.M. ValenE. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing.Nucleic Acids Res.201442W1W401W40710.1093/nar/gku41024861617
    [Google Scholar]
  70. LabunK. MontagueT.G. GagnonJ.A. ThymeS.B. ValenE. CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering.Nucleic Acids Res.201644W1W272W27610.1093/nar/gkw39827185894
    [Google Scholar]
  71. ThymeS.B. AkhmetovaL. MontagueT.G. ValenE. SchierA.F. Internal guide RNA interactions interfere with Cas9-mediated cleavage.Nat. Commun.2016711175010.1038/ncomms1175027282953
    [Google Scholar]
  72. DoenchJ.G. FusiN. SullenderM. HegdeM. VaimbergE.W. DonovanK.F. SmithI. TothovaZ. WilenC. OrchardR. VirginH.W. ListgartenJ. RootD.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.Nat. Biotechnol.201634218419110.1038/nbt.343726780180
    [Google Scholar]
  73. WilsonL.O.W. RetiD. O’BrienA.R. DunneR.A. BauerD.C. High activity target-site identification using phenotypic independent CRISPR-Cas9 core functionality.CRISPR J.20181218219010.1089/crispr.2017.002131021206
    [Google Scholar]
  74. WangJ. ZhangX. ChengL. LuoY. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools.RNA Biol.2020171132210.1080/15476286.2019.166940631533522
    [Google Scholar]
  75. RahmanM.K. RahmanM.S. CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems.PLoS One2017128e018194310.1371/journal.pone.018194328767689
    [Google Scholar]
  76. ChariR. MaliP. MoosburnerM. ChurchG.M. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach.Nat. Methods201512982382610.1038/nmeth.347326167643
    [Google Scholar]
  77. LabuhnM. AdamsF.F. NgM. KnoessS. SchambachA. CharpentierE.M. SchwarzerA. MateoJ.L. KlusmannJ.H. HecklD. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR–Cas9 applications.Nucleic Acids Res.20184631375138510.1093/nar/gkx126829267886
    [Google Scholar]
  78. LiuG. ZhangY. ZhangT. Computational approaches for effective CRISPR guide RNA design and evaluation.Comput. Struct. Biotechnol. J.202018354410.1016/j.csbj.2019.11.00631890142
    [Google Scholar]
  79. Carlson-StevermerJ. KelsoR. KadinaA. JoshiS. RossiN. WalkerJ. StonerR. MauresT. CRISPRoff enables spatio-temporal control of CRISPR editing.Nat. Commun.2020111504110.1038/s41467‑020‑18853‑333028827
    [Google Scholar]
  80. KonstantakosV. NentidisA. KritharaA. PaliourasG. CRISPRedict: A CRISPR-Cas9 web tool for interpretable efficiency predictions.Nucleic Acids Res.202250W1W191W19810.1093/nar/gkac46635670672
    [Google Scholar]
  81. DempsterJ.M. PaciniC. PantelS. BehanF.M. GreenT. Krill-BurgerJ. BeaverC.M. YoungerS.T. ZhivichV. NajgebauerH. AllenF. GonçalvesE. ShepherdR. DoenchJ.G. YusaK. VazquezF. PartsL. BoehmJ.S. GolubT.R. HahnW.C. RootD.E. GarnettM.J. TsherniakA. IorioF. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets.Nat. Commun.2019101581710.1038/s41467‑019‑13805‑y31862961
    [Google Scholar]
  82. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  83. WangD. ZhangC. WangB. LiB. WangQ. LiuD. WangH. ZhouY. ShiL. LanF. WangY. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning.Nat. Commun.2019101428410.1038/s41467‑019‑12281‑831537810
    [Google Scholar]
  84. LeeM. Deep learning in CRISPR-Cas systems: A review of recent studies.Front. Bioeng. Biotechnol.2023111226182https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352112/10.3389/fbioe.2023.122618237469443
    [Google Scholar]
  85. XueL. TangB. ChenW. LuoJ. Prediction of CRISPR sgRNA activity using a deep convolutional neural network.J. Chem. Inf. Model.201959161562410.1021/acs.jcim.8b0036830485088
    [Google Scholar]
  86. DimauroG. ColagrandeP. CarlucciR. VenturaM. BevilacquaV. CaivanoD. CRISPRLearner: A deep learning-based system to predict CRISPR/Cas9 sgRNA on-target cleavage efficiency.Electronics (Basel)2019812147810.3390/electronics8121478
    [Google Scholar]
  87. SavitskayaE. SemenovaE. DedkovV. MetlitskayaA. SeverinovK. High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli.RNA Biol.201310571672510.4161/rna.2432523619643
    [Google Scholar]
  88. KimH.K. KimY. LeeS. MinS. BaeJ.Y. ChoiJ.W. ParkJ. JungD. YoonS. KimH.H. SpCas9 activity prediction by DeepSpCas9, a deep learning–based model with high generalization performance.Sci. Adv.2019511eaax924910.1126/sciadv.aax924931723604
    [Google Scholar]
  89. ZhangG. DaiZ. DaiX. A novel hybrid CNN-SVR for CRISPR/Cas9 guide RNA activity prediction.Front. Genet.2020101303https://www.frontiersin.org/articles/10.3389/fgene.2019.0130310.3389/fgene.2019.0130331969902
    [Google Scholar]
  90. ZhangG. DaiZ. DaiX. C-RNNCrispr: Prediction of CRISPR/Cas9 sgRNA activity using convolutional and recurrent neural networks.Comput. Struct. Biotechnol. J.20201834435410.1016/j.csbj.2020.01.01332123556
    [Google Scholar]
  91. ZhangG. LuoY. DaiX. DaiZ. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities.Brief. Bioinform.2023246bbad33310.1093/bib/bbad33337775147
    [Google Scholar]
  92. DaneshpajouhA. FowlerM. WieseK.C. 2023Navitas/Optimus: A novel computational tool for enhanced CRISPR/Cas genome editing.Available from: https://caiac.pubpub.org/pub/whhnf8xp/release/1
  93. TheanD.G.L. ChuH.Y. FongJ.H.C. ChanB.K.C. ZhouP. KwokC.C.S. ChanY.M. MakS.Y.L. ChoiG.C.G. HoJ.W.K. ZhengZ. WongA.S.L. Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities.Nat. Commun.2022131221910.1038/s41467‑022‑29874‑535468907
    [Google Scholar]
  94. AmeenZ.S. OzsozM. MubarakA.S. TurjmanF.A. SerteS. C-SVR Crispr: Prediction of CRISPR/Cas12 guideRNA activity using deep learning models.Alex. Eng. J.20216043501350810.1016/j.aej.2021.02.007
    [Google Scholar]
  95. NaikS. ShreyaA.B. RaychaudhuriR. PandeyA. LewisS.A. HazarikaM. BhandaryS.V. RaoB.S.S. MutalikS. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives.Life Sci.202126411871210.1016/j.lfs.2020.11871233159955
    [Google Scholar]
  96. WangH.X. LiM. LeeC.M. ChakrabortyS. KimH.W. BaoG. LeongK.W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery.Chem. Rev.2017117159874990610.1021/acs.chemrev.6b0079928640612
    [Google Scholar]
  97. NeggersJ.E. KwantenB. DierckxT. NoguchiH. VoetA. BralL. MinnerK. MassantB. KintN. DelforgeM. VercruysseT. BalogluE. SenapedisW. JacquemynM. DaelemansD. Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes.Nat. Commun.20189150210.1038/s41467‑017‑02349‑829402884
    [Google Scholar]
  98. HeJ. BiswasR. BugdeP. LiJ. LiuD.X. LiY. Application of CRISPR-Cas9 system to study biological barriers to drug delivery.Pharmaceutics202214589410.3390/pharmaceutics1405089435631480
    [Google Scholar]
  99. GottesmanM.M. FojoT. BatesS.E. Multidrug resistance in cancer: Role of ATP–dependent transporters.Nat. Rev. Cancer200221485810.1038/nrc70611902585
    [Google Scholar]
  100. McDermottM. EustaceA.J. BusschotsS. BreenL. CrownJ. ClynesM. O’DonovanN. StordalB. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: A practical guide with case studies.Front. Oncol.201444010.3389/fonc.2014.0004024639951
    [Google Scholar]
  101. DalvieN.C. LorgereeT. BiedermannA.M. LoveK.R. LoveJ.C. Simplified gene knockout by CRISPR-Cas9-induced homologous recombination.ACS Synth. Biol.202211149750110.1021/acssynbio.1c0019434882409
    [Google Scholar]
  102. Knockout mice fact sheet.Available from: https://www.genome.gov/about-genomics/fact-sheets/Knockout-Mice-Fact-Sheet
  103. GuhaT. MalkinD. Inherited TP53 mutations and the li–fraumeni syndrome.Cold Spring Harb. Perspect. Med.201774a02618710.1101/cshperspect.a02618728270529
    [Google Scholar]
  104. DalvieN.C. LealJ. WhittakerC.A. YangY. BradyJ.R. LoveK.R. LoveJ.C. Host-informed expression of CRISPR guide RNA for genomic engineering in Komagataella phaffii.ACS Synth. Biol.202091263510.1021/acssynbio.9b0037231825599
    [Google Scholar]
  105. LoveK.R. DalvieN.C. LoveJ.C. The yeast stands alone: The future of protein biologic production.Curr. Opin. Biotechnol.201853505810.1016/j.copbio.2017.12.01029277062
    [Google Scholar]
  106. FellmannC. GowenB.G. LinP.C. DoudnaJ.A. CornJ.E. Cornerstones of CRISPR–Cas in drug discovery and therapy.Nat. Rev. Drug Discov.20171628910010.1038/nrd.2016.23828008168
    [Google Scholar]
  107. Target validation with CRISPR.2022Available from: https://www.biocompare.com/Editorial-Articles/591435-Target-Validation-with-CRISPR/
  108. PottingC. CrochemoreC. MorettiF. NigschF. SchmidtI. MannevilleC. CarboneW. KnehrJ. DeJesusR. LindemanA. MaherR. RussC. McAllisterG. Reece-HoyesJ.S. HoffmanG.R. RomaG. MüllerM. SailerA.W. HelliwellS.B. Genome-wide CRISPR screen for PARKIN regulators reveals transcriptional repression as a determinant of mitophagy.Proc. Natl. Acad. Sci. USA20181152E180E18910.1073/pnas.171102311529269392
    [Google Scholar]
  109. XuC.L. RuanM.Z.C. MahajanV.B. TsangS.H. Viral delivery systems for CRISPR.Viruses20191112810.3390/v1101002830621179
    [Google Scholar]
  110. ZhangX. LiB. LuoX. ZhaoW. JiangJ. ZhangC. GaoM. ChenX. DongY. Biodegradable amino-ester nanomaterials for cas9 mRNA delivery in vitro and in vivo.ACS Appl. Mater. Interfaces2017930254812548710.1021/acsami.7b0816328685575
    [Google Scholar]
  111. LiuQ. ZhaoK. WangC. ZhangZ. ZhengC. ZhaoY. ZhengY. LiuC. AnY. ShiL. KangC. LiuY. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo.Adv. Sci. (Weinh.)201961180142310.1002/advs.20180142330643726
    [Google Scholar]
  112. TaoY. YiK. HuH. ShaoD. LiM. Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing.J. Mater. Chem. B Mater. Biol. Med.2021919410010.1039/D0TB01925A33220661
    [Google Scholar]
  113. DuanL. OuyangK. XuX. XuL. WenC. ZhouX. QinZ. XuZ. SunW. LiangY. Nanoparticle delivery of CRISPR/Cas9 for genome editing.Front. Genet.20211267328610.3389/fgene.2021.67328634054927
    [Google Scholar]
  114. SelvakumarS.C. PreethiK.A. RossK. TusubiraD. KhanM.W.A. ManiP. RaoT.N. SekarD. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer.Mol. Cancer20222118310.1186/s12943‑022‑01565‑135331236
    [Google Scholar]
  115. ChehelgerdiM. ChehelgerdiM. Khorramian-GhahfarokhiM. ShafieizadehM. MahmoudiE. EskandariF. RashidiM. ArshiA. Mokhtari-FarsaniA. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy.Mol. Cancer2024231910.1186/s12943‑023‑01925‑538195537
    [Google Scholar]
  116. RothganglT. DennisM.K. LinP.J.C. OkaR. WitzigmannD. VilligerL. QiW. HruzovaM. KisslingL. LenggenhagerD. BorrelliC. EgliS. FreyN. BakkerN. WalkerJ.A. KadinaA.P. VictorovD.V. PacesaM. KreutzerS. KontarakisZ. MoorA. JinekM. WeissmanD. StoffelM. van BoxtelR. HoldenK. PardiN. ThönyB. HäberleJ. TamY.K. SempleS.C. SchwankG. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels.Nat. Biotechnol.202139894995710.1038/s41587‑021‑00933‑434012094
    [Google Scholar]
  117. MusunuruK. ChadwickA.C. MizoguchiT. GarciaS.P. DeNizioJ.E. ReissC.W. WangK. IyerS. DuttaC. ClendanielV. AmaonyeM. BeachA. BerthK. BiswasS. BraunM.C. ChenH.M. ColaceT.V. GaneyJ.D. GangopadhyayS.A. GarrityR. KasiewiczL.N. LavoieJ. MadsenJ.A. MatsumotoY. MazzolaA.M. NasrullahY.S. NnejiJ. RenH. SanjeevA. ShayM. StahleyM.R. FanS.H.Y. TamY.K. GaudelliN.M. CiaramellaG. StolzL.E. MalyalaP. ChengC.J. RajeevK.G. RohdeE. BellingerA.M. KathiresanS. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates.Nature2021593785942943410.1038/s41586‑021‑03534‑y34012082
    [Google Scholar]
  118. MauleG. EnsinckM. BulcaenM. CarlonM.S. Chapter Six - Rewriting CFTR to cure cystic fibrosis.Progress in molecular biology and translational science.Elsevier202118522410.1016/bs.pmbts.2020.12.018
    [Google Scholar]
  119. GyörgyB. LöövC. ZaborowskiM.P. 2018CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer's disease.Mol. Ther. Nucleic Acids4294401110.1016/j.omtn.2018.03.00729858078
    [Google Scholar]
  120. ParkH. OhJ. ShimG. ChoB. ChangY. KimS. BaekS. KimH. ShinJ. ChoiH. YooJ. KimJ. JunW. LeeM. LengnerC.J. OhY.K. KimJ. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease.Nat. Neurosci.201922452452810.1038/s41593‑019‑0352‑030858603
    [Google Scholar]
  121. BarrangouR. First drug approval rises the CRISPR tide.CRISPR J.20236648710.1089/crispr.2023.29168.editorial
    [Google Scholar]
  122. WongC. UK first to approve CRISPR treatment for diseases: What you need to know.Nature2023623798867667710.1038/d41586‑023‑03590‑637974039
    [Google Scholar]
  123. KawaharaA. HisanoY. OtaS. TaimatsuK. Site-specific integration of exogenous genes using genome editing technologies in zebrafish.Int. J. Mol. Sci.201617572710.3390/ijms1705072727187373
    [Google Scholar]
  124. TessadoriF. RoesslerH.I. SavelbergS.M.C. ChocronS. KamelS.M. DuranK.J. van HaelstM.M. van HaaftenG. BakkersJ. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.Dis. Model. Mech.20181110dmm03546910.1242/dmm.03546930355756
    [Google Scholar]
  125. PetitpainN. AntoineM.L. BeurrierM. MicallefJ. FresseA. Pharmacovigilance of gene therapy medicinal products.Rare Dis. Orphan Drugs J.2023242510.20517/rdodj.2023.19
    [Google Scholar]
  126. XiangX. CorsiG.I. AnthonC. QuK. PanX. LiangX. HanP. DongZ. LiuL. ZhongJ. MaT. WangJ. ZhangX. JiangH. XuF. LiuX. XuX. WangJ. YangH. BolundL. ChurchG.M. LinL. GorodkinJ. LuoY. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning.Nat. Commun.2021121323810.1038/s41467‑021‑23576‑034050182
    [Google Scholar]
  127. XuX. LiJ. ZhuY. XieB. WangX. WangS. XieH. YanH. YingY. LinY. LiuB. WangW. ZhengX. CRISPR-ON-Mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer in vitro and in vivo.Oncotarget201786010207810208710.18632/oncotarget.2215829254226
    [Google Scholar]
  128. ZhengH. A safety and efficacy study of TALEN and CRISPR/​Cas9 in the treatment of HPV-related cervical intraepithelial neoplasiaI.NCT030579122017
  129. LuY. PD-1 knockout engineered T cells for metastatic non-small cell lung cancer.NCT02793852020
  130. GandiniS. MassiD. MandalàM. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis.Crit. Rev. Oncol. Hematol.2016100889810.1016/j.critrevonc.2016.02.00126895815
    [Google Scholar]
  131. LiuW. PD-1 knockout engineered T cells for metastatic renal cell carcinoma.NCT028673322019
  132. StadtmauerE.A. FraiettaJ.A. DavisM.M. CohenA.D. WeberK.L. LancasterE. ManganP.A. KulikovskayaI. GuptaM. ChenF. TianL. GonzalezV.E. XuJ. JungI. MelenhorstJ.J. PlesaG. SheaJ. MatlawskiT. CerviniA. GaymonA.L. DesjardinsS. LamontagneA. Salas-MckeeJ. FesnakA. SiegelD.L. LevineB.L. JadlowskyJ.K. YoungR.M. ChewA. HwangW.T. HexnerE.O. CarrenoB.M. NoblesC.L. BushmanF.D. ParkerK.R. QiY. SatpathyA.T. ChangH.Y. ZhaoY. LaceyS.F. JuneC.H. CRISPR-engineered T cells in patients with refractory cancer.Science20203676481eaba736510.1126/science.aba736532029687
    [Google Scholar]
  133. LiuW. PD-1 knockout engineered T cells for muscle-invasive bladder cancer.NCT028639132019
  134. WeiJ. YanJ. SuS. ShaoJ. ZhaoY. XuQ. YangY. ZouZ. HuangX. LiuB. A phase I/II Trial of CRISPR-Cas9-mediated PD-1 knockout Epstein-Barr virus cytotoxic lymphocytes (EBV-CTLs) for advanced stage EBV associated malignancies.J. Clin. Oncol.201836Suppl 15TPS3118TPS311810.1200/JCO.2018.36.15_suppl.TPS3118
    [Google Scholar]
  135. BaiB. MyklebustJ.H. WälchliS. Gene Editing in B-Lymphoma Cell Lines Using CRISPR/Cas9 Technology.Methods Mol. Biol.2020211544545410.1007/978‑1‑0716‑0290‑4_2532006416
    [Google Scholar]
  136. WuS. PD-1 knockout engineered T cells for advanced esophageal cancer.NCT030817152019
  137. MoutalA. YangX. LiW. GilbraithK.B. LuoS. CaiS. François-MoutalL. ChewL.A. YeonS.K. BellampalliS.S. QuC. XieJ.Y. IbrahimM.M. KhannaM. ParkK.D. PorrecaF. KhannaR. CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-Lacosamide.Pain2017158122301231910.1097/j.pain.000000000000100228809766
    [Google Scholar]
  138. CisnerosW.J. CornishD. HultquistJ.F. Application of CRISPR-Cas9 gene editing for HIV host factor discovery and validation.Pathogens202211889110.3390/pathogens1108089136015010
    [Google Scholar]
  139. ZarghamianP. KlermundJ. CathomenT. Clinical genome editing to treat sickle cell disease - A brief update.Front. Med. (Lausanne)20239106537710.3389/fmed.2022.106537736698803
    [Google Scholar]
  140. Single ascending dose study in participants with LCA10.NCT03872479Available from: https://clinicaltrials.gov/ct2/show/NCT03872479.
    [Google Scholar]
  141. ZengJ. NguyenM.A. CiuculescuM.F. MintzerE. LiuP. LinL.Y. RosanwoT.O. VermaA. NeriN. MaitlandS.A. RichterA. JustusD.G. ClementK. BrendelC. PinelloL. ManisJ.P. ArmantM. WolfeS.A. BauerD.E. Therapeutic gene editing of HSCs ex vivo without in vitro culture avoids genotoxicity, simplifies procedures, and preserves efficiency and stemness.Blood2022140Suppl. 1106711067210.1182/blood‑2022‑169900
    [Google Scholar]
  142. ErkutE. YokotaT. CRISPR therapeutics for duchenne muscular dystrophy.Int. J. Mol. Sci.2022233183210.3390/ijms2303183235163754
    [Google Scholar]
  143. HannaE. RémuzatC. AuquierP. ToumiM. Gene therapies development: Slow progress and promising prospect.J. Mark. Access Health Policy201751126529310.1080/20016689.2017.126529328265348
    [Google Scholar]
  144. LiX. MurataT. A hybrid method using multidimensional clustering-based collaborative filtering to improve recommendation diversity.IEEJ Trans. Electron. Inf. Syst.2013133474975510.1541/ieejeiss.133.749
    [Google Scholar]
  145. MarsdenG. TowseA. PearsonS.D. DreitleinB. HenshallC. Gene therapy: Understanding the science, assessing the evidence, and paying for value.2017Available from: https://icer.org/assessment/gene-therapy-2016/
  146. GreelyH.T. CRISPR’d babies: Human germline genome editing in the ‘He Jiankui affair’.J. Law Biosci.20196111118310.1093/jlb/lsz01031666967
    [Google Scholar]
  147. ArakiM. IshiiT. International regulatory landscape and integration of corrective genome editing into in vitro fertilization.Reprod. Biol. Endocrinol.201412110810.1186/1477‑7827‑12‑10825420886
    [Google Scholar]
  148. BaylisF. DarnovskyM. HassonK. KrahnT.M. Human germline and heritable genome editing: The global policy landscape.CRISPR J.20203536537710.1089/crispr.2020.008233095042
    [Google Scholar]
  149. WoltJ.D. Safety, security, and policy considerations for plant genome editing.Elsevier 2017; 149: pp. Chapter twelve - In: Progress in Molecular Biology and Translational Science. 215-41.10.1016/bs.pmbts.2017.03.005
    [Google Scholar]
  150. EntineJ. FelipeM.S.S. GroenewaldJ.H. KershenD.L. LemaM. McHughenA. NepomucenoA.L. OhsawaR. OrdonioR.L. ParrottW.A. QuemadaH. RamageC. Slamet-LoedinI. SmythS.J. Wray-CahenD. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world.Transgenic Res.202130455158410.1007/s11248‑021‑00257‑833970411
    [Google Scholar]
  151. PolczS. LewisA.C.F. A menagerie of moral hazards: Regulating genetically modified animals.J. Law Med. Ethics201846118018410.1177/1073110518766031
    [Google Scholar]
  152. SchuttelaarP. The regulatory status of new breeding techniques in countries outside the European Union.2015
    [Google Scholar]
  153. WoltJ.D. WangK. YangB. The regulatory status of genome‐edited crops.Plant Biotechnol. J.201614251051810.1111/pbi.1244426251102
    [Google Scholar]
  154. SmythS.J. Canadian regulatory perspectives on genome engineered crops.GM Crops Food201781354310.1080/21645698.2016.125746827858499
    [Google Scholar]
  155. KleidermanE. StedmanI.N.K. Human germline genome editing is illegal in Canada, but could it be desirable for some members of the rare disease community?J. Community Genet.202011212913810.1007/s12687‑019‑00430‑x31420817
    [Google Scholar]
  156. SpicerA. MolnarA. Gene editing of microalgae: Scientific progress and regulatory challenges in Europe.Biology (Basel)2018712110.3390/biology701002129509719
    [Google Scholar]
  157. GlobusR. QimronU. A technological and regulatory outlook on CRISPR crop editing.J. Cell. Biochem.201811921291129810.1002/jcb.2630328731201
    [Google Scholar]
  158. LiuS. Legal reflections on the case of genome-edited babies.glob. health. res. policy.20205124
    [Google Scholar]
  159. StokstadE. UK set to loosen rules for gene-edited crops and animals.Science2021262021
    [Google Scholar]
  160. MallapatyS. Australian gene-editing rules adopt ‘middle ground’.2019Available from: https://www.nature.com/articles/d41586-019-01282-8
  161. TchetvertakovG. Australia approves cutting-edge CRISPR gene editing technology.2019Available from: https://smallcaps.com.au/australia-approves-cutting-edge-crispr-gene-editing-technology/
  162. KershenD.L. Sustainability council of New Zealand trust v. The environmental protection authority: Gene editing technologies and the law.GM Crops Food20156421622210.1080/21645698.2015.112285926618752
    [Google Scholar]
  163. ChimataM.K. BhartiG. Regulation of genome edited technologies in India.Transgenic Res.201928Suppl 217518110.1007/s11248‑019‑00148‑z31321702
    [Google Scholar]
  164. GaoW. XuW.T. HuangK.L. GuoM. LuoY-B. Risk analysis for genome editing-derived food safety in China.Food Control20188412813710.1016/j.foodcont.2017.07.032
    [Google Scholar]
  165. HuangS. WeigelD. BeachyR.N. LiJ. A proposed regulatory framework for genome-edited crops.Nat. Genet.201648210911110.1038/ng.348426813761
    [Google Scholar]
  166. NieJ.B. XieG. ChenH. CongY. Conflict of interest in scientific research in China: A socio-ethical analysis of he jiankui’s human genome-editing experiment.J. Bioeth. Inq.202017219120110.1007/s11673‑020‑09978‑732588181
    [Google Scholar]
  167. LeiR. QiuR. Ethical and regulatory issues in human gene editing: Chinese perspective.Biotechnol. Appl. Biochem.202067688089110.1002/bab.203233011985
    [Google Scholar]
  168. SinghV. BraddickD. DharP.K. Exploring the potential of genome editing CRISPR-Cas9 technology.Gene201759911810.1016/j.gene.2016.11.00827836667
    [Google Scholar]
  169. MaederM.L. GersbachC.A. Genome-editing technologies for gene and cell therapy.Mol. Ther.201624343044610.1038/mt.2016.1026755333
    [Google Scholar]
  170. ZetscheB. GootenbergJ.S. AbudayyehO.O. SlaymakerI.M. MakarovaK.S. EssletzbichlerP. VolzS.E. JoungJ. van der OostJ. RegevA. KooninE.V. ZhangF. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.Cell2015163375977110.1016/j.cell.2015.09.03826422227
    [Google Scholar]
  171. WangH. La RussaM. QiL.S. CRISPR/Cas9 in genome editing and beyond.Annu. Rev. Biochem.201685122726410.1146/annurev‑biochem‑060815‑01460727145843
    [Google Scholar]
  172. TuZ. YangW. YanS. YinA. GaoJ. LiuX. ZhengY. ZhengJ. LiZ. YangS. LiS. GuoX. LiX.J. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos.Sci. Rep.2017714208110.1038/srep4208128155910
    [Google Scholar]
  173. BosleyK.S. BotchanM. BredenoordA.L. CarrollD. CharoR.A. CharpentierE. CohenR. CornJ. DoudnaJ. FengG. GreelyH.T. IsasiR. JiW. KimJ.S. KnoppersB. LanphierE. LiJ. Lovell-BadgeR. MartinG.S. MorenoJ. NaldiniL. PeraM. PerryA.C.F. VenterJ.C. ZhangF. ZhouQ. CRISPR germline engineering - The community speaks.Nat. Biotechnol.201533547848610.1038/nbt.322725965754
    [Google Scholar]
  174. FuY. FodenJ.A. KhayterC. MaederM.L. ReyonD. JoungJ.K. SanderJ.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.Nat. Biotechnol.201331982282610.1038/nbt.262323792628
    [Google Scholar]
  175. HsuP.D. ScottD.A. WeinsteinJ.A. RanF.A. KonermannS. AgarwalaV. LiY. FineE.J. WuX. ShalemO. CradickT.J. MarraffiniL.A. BaoG. ZhangF. DNA targeting specificity of RNA-guided Cas9 nucleases.Nat. Biotechnol.201331982783210.1038/nbt.264723873081
    [Google Scholar]
  176. Moreno-MateosM.A. VejnarC.E. BeaudoinJ.D. FernandezJ.P. MisE.K. KhokhaM.K. GiraldezA.J. CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo.Nat. Methods2015121098298810.1038/nmeth.354326322839
    [Google Scholar]
  177. EitzingerS. AsifA. WattersK.E. IavaroneA.T. KnottG.J. DoudnaJ.A. MinhasF.A.A. Machine learning predicts new anti-CRISPR proteins.Nucleic Acids Res.20204894698470810.1093/nar/gkaa21932286628
    [Google Scholar]
  178. AhmadiS.E. SoleymaniM. ShahriyaryF. AmirzargarM.R. OfoghiM. FattahiM.D. SafaM. Viral vectors and extracellular vesicles: Innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy.Cancer Gene Ther.202330793695410.1038/s41417‑023‑00597‑z36854897
    [Google Scholar]
  179. SahelD.K. VoraL.K. SaraswatA. SharmaS. MonparaJ. D’SouzaA.A. MishraD. TryphenaK.P. KawakitaS. KhanS. AzharM. KhatriD.K. PatelK. Singh ThakurR.R. CRISPR/Cas9 genome editing for tissue‐specific in vivo targeting: Nanomaterials and translational perspective.Adv. Sci. (Weinh.)20231019220751210.1002/advs.20220751237166046
    [Google Scholar]
  180. AyanoğluF.B. Elçi̇nA.E. Elçi̇nY.M. Bioethical issues in genome editing by CRISPR-Cas9 technology.Turk. J. Biol.202044211012010.3906/biy‑1912‑5232256147
    [Google Scholar]
  181. KuD. The patentability of the Crispr-Cas9 genome editing tool.Chicago-Kent J. Intell. Prop.2017162408
    [Google Scholar]
  182. ZyontzS. Pomeroy-CarterC. Mapping of the research, innovation and diffusion activity of CRISPR across countries.Expertenkommission Forschung und Innovation (EFI)Berlin2021Available from: https://www.econstor.eu/handle/10419/231480
    [Google Scholar]
  183. SinghM. RuhelaN. Patenting genetic scissors: The global landscape and an Indian perspective.Available from: https://lexorbis.com/pdf/Patenting_genetic_scissors_%20an_Indian_perspective.pdf
  184. 2022For journalists: Statements and background on the CRISPR patent process.Available from: https://www.broadinstitute.org/crispr/journalists-statement-and-background-crispr-patent-process
  185. 2018Simply put: CRISPR gene technology, the patent dispute and the implications for pharma companies.Available from: https://www.thesmartcube.com/resources/blog/simply-put-crispr-gene-technology-the-patent-dispute-and-the-implications-for-pharma-companies/
  186. MatanoM. DateS. ShimokawaM. TakanoA. FujiiM. OhtaY. WatanabeT. KanaiT. SatoT. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids.Nat. Med.201521325626210.1038/nm.380225706875
    [Google Scholar]
  187. HazafaA. MumtazM. FarooqM.F. BilalS. ChaudhryS.N. FirdousM. NaeemH. UllahM.O. YameenM. MukhtiarM.S. ZafarF. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions.Life Sci.202026311852510.1016/j.lfs.2020.11852533031826
    [Google Scholar]
  188. AdhikariP. PoudelM. CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges.Malays. J. Halal Res.20203161610.2478/mjhr‑2020‑0002
    [Google Scholar]
  189. HsuP.D. LanderE.S. ZhangF. Development and applications of CRISPR-Cas9 for genome engineering.Cell201415761262127810.1016/j.cell.2014.05.01024906146
    [Google Scholar]
  190. GaudelliN.M. KomorA.C. ReesH.A. PackerM.S. BadranA.H. BrysonD.I. LiuD.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.Nature2017551768146447110.1038/nature2464429160308
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232342293241120033251
Loading
/content/journals/cgt/10.2174/0115665232342293241120033251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test