Skip to content
2000
image of Immunoinformatic Based Designing of Immune Boosting and Non-allergenic Multi-epitope Subunit Vaccine Against the Enterovirus D68

Abstract

Introduction

Enterovirus D68 (EV-D68) is a non-enveloped, positive-sense, single-stranded RNA virus known for causing severe respiratory illnesses and its association with acute flaccid myelitis (AFM) in children. Despite its increasing public health significance, no vaccines or antiviral drugs are currently available for EV-D68. This study aimed to design an immune-boosting multi-epitope subunit vaccine against EV-D68 using advanced immunoinformatic and machine learning approaches.

Methods

Capsid proteins VP1, VP2, and VP3 of EV-D68 were screened for immunogenic HTL, CTL, and B-cell epitopes to develop a non-allergenic, highly immunogenic multi-epitope vaccine. Predicted epitopes were subjected to 3D structural modeling and molecular dynamics simulations to validate folding and structural stability. Molecular docking and immune simulation techniques were employed to evaluate vaccine-TLR3 interactions and predict immune responses, respectively.

Results

Molecular docking analysis revealed strong binding affinities between the vaccine constructs and the TLR3 receptor, with scores of -299 kcal/mol, -361 kcal/mol, -258 kcal/mol, and -312 kcal/mol for VP1, VP2, VP3, and combined vaccine-TLR3 complexes. Molecular dynamic simulation and dissociation constant analyses confirmed the strength of these interactions, with binding free energies ranging from -57.75 kcal/mol to -101.35 kcal/mol. Codon adaptation index (CAI) values of 0.96 and GC content of ~69% supported the high expression potential of the vaccine constructs. Immune simulations demonstrated robust immune responses characterized by elevated IgG, IgM, cytokines, and interleukins, along with effective antigen clearance.

Discussion

The strong molecular interactions with TLR3 and simulated immune responses suggest that the designed vaccines can activate both innate and adaptive immunity. The high CAI and GC values support their expression feasibility in , enhancing prospects for production.

Conclusion

This study provides a strong foundation for the development of a safe and effective EV-D68 vaccine, showcasing the potential of computational vaccine design.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232336511250626200218
2025-07-11
2025-12-16
Loading full text...

Full text loading...

References

  1. Huang W. Wang G. Zhuge J. Nolan S.M. Dimitrova N. Fallon J.T. Whole-genome sequence analysis reveals the enterovirus D68 isolates during the United States 2014 outbreak mainly belong to a novel clade. Sci. Rep. 2015 5 1 15223 10.1038/srep15223 26469882
    [Google Scholar]
  2. Holm-Hansen C.C. Midgley S.E. Fischer T.K. Global emergence of enterovirus D68: A systematic review. Lancet Infect. Dis. 2016 16 5 e64 e75 10.1016/S1473‑3099(15)00543‑5 26929196
    [Google Scholar]
  3. Hixon A.M. Frost J. Rudy M.J. Messacar K. Clarke P. Tyler K.L. Understanding enterovirus D68-induced neurologic disease: A basic science review. Viruses 2019 11 9 821 10.3390/v11090821 31487952
    [Google Scholar]
  4. Hodcroft E.B. Dyrdak R. Andrés C. Evolution, geographic spreading, and demographic distribution of Enterovirus D68. PLoS Pathog. 2022 18 5 e1010515 10.1371/journal.ppat.1010515 35639811
    [Google Scholar]
  5. Olsen S.J. Winn A.K. Budd A.P. Changes in influenza and other respiratory virus activity during the COVID-19 pandemic—United States, 2020–2021. MMWR Morb. Mortal. Wkly. Rep. 2021 70 29 1013 1019 10.15585/mmwr.mm7029a1 34292924
    [Google Scholar]
  6. Triantafilou K. Orthopoulos G. Vakakis E. Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell. Microbiol. 2005 7 8 1117 1126 10.1111/j.1462‑5822.2005.00537.x 16008579
    [Google Scholar]
  7. Richer M.J. Lavallée D.J. Shanina I. Horwitz M.S. Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection. PLoS One 2009 4 1 e4127 10.1371/journal.pone.0004127 19122812
    [Google Scholar]
  8. Sabin A.B. Oral, live poliovirus vaccine for elimination of poliomyelitis. Arch. Intern. Med. 1960 106 1 5 9 10.1001/archinte.1960.03820010007003 14440554
    [Google Scholar]
  9. Salk J.E. Bennett B.L. Lewis L.J. Ward E.N. Youngner J.S. Studies in human subjects on active immunization against poliomyelitis. I. A preliminary report of experiments in progress. J. Am. Med. Assoc. 1953 151 13 1081 1098 10.1001/jama.1953.13.1081 13034436
    [Google Scholar]
  10. Mena I. Perry C.M. Harkins S. Rodriguez F. Gebhard J. Whitton J.L. The role of B lymphocytes in coxsackievirus B3 infection. Am. J. Pathol. 1999 155 4 1205 1215 10.1016/S0002‑9440(10)65223‑6 10514403
    [Google Scholar]
  11. Geller T.J. Condie D. A case of protracted coxsackie virus meningoencephalitis in a marginally immunodeficient child treated successfully with intravenous immunoglobulin. J. Neurol. Sci. 1995 129 2 131 133 10.1016/0022‑510X(94)00261‑L 7608726
    [Google Scholar]
  12. Christy A. Messacar K. Acute flaccid myelitis associated with enterovirus D68: A review. J. Child Neurol. 2019 34 9 511 516 10.1177/0883073819838376 31014167
    [Google Scholar]
  13. Krug P.W. Wang L. Shi W. EV-D68 virus-like particle vaccines elicit cross-clade neutralizing antibodies that inhibit infection and block dissemination. Sci. Adv. 2023 9 20 eadg6076 10.1126/sciadv.adg6076 37196074
    [Google Scholar]
  14. Rudy M.J. Frost J. Clarke P. Tyler K.L. Neutralizing antibody given after paralysis onset reduces the severity of paralysis compared to nonspecific antibody-treated controls in a mouse model of EV-D68-associated acute flaccid myelitis. Antimicrob. Agents Chemother. 2022 66 8 e00227 e22 10.1128/aac.00227‑22 35894595
    [Google Scholar]
  15. Vogt M.R. Fu J. Kose N. Human antibodies neutralize enterovirus D68 and protect against infection and paralytic disease. Sci. Immunol. 2020 5 49 eaba4902 10.1126/sciimmunol.aba4902 32620559
    [Google Scholar]
  16. Zhang C. Xu C. Dai W. Functional and structural characterization of a two-MAb cocktail for delayed treatment of enterovirus D68 infections. Nat. Commun. 2021 12 1 2904 10.1038/s41467‑021‑23199‑5 34006855
    [Google Scholar]
  17. Ebada M.A. Enterovirus D-68 molecular virology, epidemiology, and treatment: an update and way forward. Infect. Disord. Drug Targets 2021 21 3 320 327 10.2174/1871526520666200715101230
    [Google Scholar]
  18. Fall A. Kenmoe S. Ebogo-Belobo J.T. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2022 16 2 e0010073 10.1371/journal.pntd.0010073 35134062
    [Google Scholar]
  19. Clusters of acute respiratory illness associated with human enterovirus 68-Asia, Europe, and United States, 2008–2010. MMWR Morb. Mortal. Wkly. Rep. 2011 60 38 1301 1304
    [Google Scholar]
  20. Roux A. A polio-like syndrome in California: Clinical, radiologic, and serologic evaluation of five children identified by a statewide laboratory over a twelve-months period. Neurology 2014 82 (10_supplement): P3.335. 10.1212/WNL.82.10_supplement.P3.335
    [Google Scholar]
  21. Horstmann D.M. Control of poliomyelitis: A continuing paradox. J. Infect. Dis. 1982 146 4 540 551 10.1093/infdis/146.4.540 6288809
    [Google Scholar]
  22. Chumakov K. Ehrenfeld E. Agol V.I. Wimmer E. Polio eradication at the crossroads. Lancet Glob. Health 2021 9 8 e1172 e1175 10.1016/S2214‑109X(21)00205‑9 34118192
    [Google Scholar]
  23. Zhu X. Wang X. Liu T. Zhang D. Jin T. Design of multi-epitope vaccine against porcine rotavirus using computational biology and molecular dynamics simulation approaches. Virol. J. 2024 21 1 160 10.1186/s12985‑024‑02440‑9 39039549
    [Google Scholar]
  24. Sharma A.D. Singh H. In-silico design of a multi-epitope vaccine candidate against rotaviruses by targeting the outer capsid protein VP-4. Int. J. Bioinform. Res. Appl. 2024 20 3 264 286 10.1504/IJBRA.2024.140040
    [Google Scholar]
  25. Mamun T.I. Ali M.A. Hosen M.N. Designing a multi-epitope vaccine candidate against human rhinovirus C utilizing immunoinformatics approach. Front. Immunol. 2025 15 1364129 10.3389/fimmu.2024.1364129 39840071
    [Google Scholar]
  26. Prosper P. Puertas R.R. Guérin D.M.A. Branda M.M. Computational method for designing vaccines applied to virus-like particles (VLPs) as epitope carriers. Vaccine 2024 42 18 3916 3929 10.1016/j.vaccine.2024.05.025 38782665
    [Google Scholar]
  27. Rossmann M.G. Arnold E. Erickson J.W. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 1985 317 6033 145 153 10.1038/317145a0 2993920
    [Google Scholar]
  28. Hogle J.M. Chow M. Filman D.J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 1985 229 4720 1358 1365 10.1126/science.2994218 2994218
    [Google Scholar]
  29. Anasir M.I. Poh C.L. Structural vaccinology for viral vaccine design. Front. Microbiol. 2019 10 738 10.3389/fmicb.2019.00738 31040832
    [Google Scholar]
  30. Magrane M. UniProt knowledgebase: A hub of integrated protein data. Database 2011 2011 bar009 10.1093/database/bar009
    [Google Scholar]
  31. Doytchinova I.A. Flower D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007 8 1 4 10.1186/1471‑2105‑8‑4 17207271
    [Google Scholar]
  32. Dimitrov I. Bangov I. Flower D.R. Doytchinova I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model. 2014 20 6 2278 10.1007/s00894‑014‑2278‑5 24878803
    [Google Scholar]
  33. Suleman M. Khan S.H. Rashid F. Designing a multi-epitopes subunit vaccine against human herpes virus 6A based on molecular dynamics and immune stimulation. Int. J. Biol. Macromol. 2023 244 125068 10.1016/j.ijbiomac.2023.125068 37245745
    [Google Scholar]
  34. Khan S. Ali S.S. Zaheer I. Proteome-wide mapping and reverse vaccinology-based B and T cell multi-epitope subunit vaccine designing for immune response reinforcement against Porphyromonas gingivalis. J. Biomol. Struct. Dyn. 2022 40 2 833 847 10.1080/07391102.2020.1819423 32928063
    [Google Scholar]
  35. Larsen M.V. Lundegaard C. Lamberth K. Buus S. Lund O. Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 2007 8 1 424 10.1186/1471‑2105‑8‑424 17973982
    [Google Scholar]
  36. Vita R. Mahajan S. Overton J.A. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019 47 D1 D339 D343 10.1093/nar/gky1006 30357391
    [Google Scholar]
  37. Saha S. Raghava G.P. Prediction methods for B-cell epitopes. In: Immunoinformatics: Predicting Immunogenicity In Silico. Humana Press 2007 387 394 10.1007/978‑1‑60327‑118‑9_29
    [Google Scholar]
  38. Zheng B. Suleman M. Zafar Z. Towards an ensemble vaccine against the pegivirus using computational modelling approaches and its validation through in silico cloning and immune simulation. Vaccines 2021 9 8 818 10.3390/vaccines9080818 34451943
    [Google Scholar]
  39. Kim J. Yang Y.L. Jang S.H. Jang Y.S. Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol. J. 2018 15 1 124 10.1186/s12985‑018‑1035‑2 30089512
    [Google Scholar]
  40. Schröder J.M. Harder J. Human beta-defensin-2. Int. J. Biochem. Cell Biol. 1999 31 6 645 651 10.1016/S1357‑2725(99)00013‑8 10404637
    [Google Scholar]
  41. Gasteiger E. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook Springer Protocols Handbooks. Humana Press 2005 571 607 10.1385/1‑59259‑890‑0:571
    [Google Scholar]
  42. Kim DE Chivian D Baker D Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004 32 W526 31 (Suppl. 2) 10.1093/nar/gkh468 15215442
    [Google Scholar]
  43. Wiederstein M Sippl MJ ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007 35 W407 10 (Suppl. 2) 10.1093/nar/gkm290 17517781
    [Google Scholar]
  44. Laskowski R.A. Jabłońska J. Pravda L. Vařeková R.S. Thornton J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018 27 1 129 134 10.1002/pro.3289 28875543
    [Google Scholar]
  45. Salomon-Ferrer R. Case D.A. Walker R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013 3 2 198 210 10.1002/wcms.1121
    [Google Scholar]
  46. Case D.A. Cheatham T.E. Darden T. The Amber biomolecular simulation programs. J. Comput. Chem. 2005 26 16 1668 1688 10.1002/jcc.20290 16200636
    [Google Scholar]
  47. Meza J.C. Steepest descent. Wiley Interdiscip. Rev. Comput. Stat. 2010 2 6 719 722 10.1002/wics.117
    [Google Scholar]
  48. Watowich S.J. Meyer E.S. Hagstrom R. Josephs R. A stable, rapidly converging conjugate gradient method for energy minimization. J. Comput. Chem. 1988 9 6 650 661 10.1002/jcc.540090611
    [Google Scholar]
  49. Roe D.R. Cheatham T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013 9 7 3084 3095 10.1021/ct400341p 26583988
    [Google Scholar]
  50. Ahmad I. Ali S.S. Zafar B. Development of multi-epitope subunit vaccine for protection against the norovirus’ infections based on computational vaccinology. J. Biomol. Struct. Dyn. 2022 40 7 3098 3109 10.1080/07391102.2020.1845799 33170093
    [Google Scholar]
  51. Babar Z. Khan M. Zahra M. Drug similarity and structure-based screening of medicinal compounds to target macrodomain-I from SARS-CoV-2 to rescue the host immune system: A molecular dynamics study. J. Biomol. Struct. Dyn. 2022 40 1 523 537 10.1080/07391102.2020.1815583 32897173
    [Google Scholar]
  52. Yan Y. Tao H. He J. Huang S.Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020 15 5 1829 1852 10.1038/s41596‑020‑0312‑x 32269383
    [Google Scholar]
  53. Pulendran B. Ahmed R. Immunological mechanisms of vaccination. Nat. Immunol. 2011 12 6 509 517 10.1038/ni.2039 21739679
    [Google Scholar]
  54. Xagorari A. Chlichlia K. Toll-like receptors and viruses: Induction of innate antiviral immune responses. Open Microbiol. J. 2008 2 49 59 10.2174/1874285800802010049
    [Google Scholar]
  55. Xue L.C. Rodrigues J.P. Kastritis P.L. Bonvin A.M. Vangone A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016 32 23 3676 3678 10.1093/bioinformatics/btw514 27503228
    [Google Scholar]
  56. Grote A Hiller K Scheer M JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 2005 33 W526 31 (Suppl. 2) 10.1093/nar/gki376 15980527
    [Google Scholar]
  57. Rapin N. Lund O. Castiglione F. Immune system simulation online. Bioinformatics 2011 27 14 2013 2014 10.1093/bioinformatics/btr335 21685045
    [Google Scholar]
  58. Suleman M ul Qamar M, Kiran , et al. Immunoinformatics and immunogenetics-based design of immunogenic peptides vaccine against the emerging tick-borne encephalitis virus (Tbev) and its validation through in silico cloning and immune simulation. Vaccines 2021 9 11 1210 10.3390/vaccines9111210 34835141
    [Google Scholar]
  59. Angelidou A. Levy O. Vaccination of term and preterm infants. Neoreviews 2020 21 12 e817 e827 10.1542/neo.21‑12‑e817 33262208
    [Google Scholar]
  60. Soni D. Van Haren S.D. Idoko O.T. Towards precision vaccines: Lessons from the second international precision vaccines conference. Front. Immunol. 2020 11 590373 10.3389/fimmu.2020.590373 33178222
    [Google Scholar]
  61. Schiller J.T. Lowy D.R. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 2012 10 10 681 692 10.1038/nrmicro2872 22961341
    [Google Scholar]
  62. Poland G.A. Kennedy R.B. Ovsyannikova I.G. Vaccinomics and personalized vaccinology: Is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog. 2011 7 12 e1002344 10.1371/journal.ppat.1002344 22241978
    [Google Scholar]
  63. Graham B.S. Rapid COVID-19 vaccine development. Science 2020 368 6494 945 946 10.1126/science.abb8923 32385100
    [Google Scholar]
  64. Jomaa M. Yuste J. Paton J.C. Jones C. Dougan G. Brown J.S. Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infect. Immun. 2005 73 10 6852 6859 10.1128/IAI.73.10.6852‑6859.2005 16177364
    [Google Scholar]
  65. Andersen M.H. Schrama D. thor Straten P, Becker JC. Cytotoxic T cells. J. Invest. Dermatol. 2006 126 1 32 41 10.1038/sj.jid.5700001 16417215
    [Google Scholar]
  66. Elrick M.J. Pekosz A. Duggal P. Enterovirus D68 molecular and cellular biology and pathogenesis. J. Biol. Chem. 2021 296
    [Google Scholar]
  67. Alberts B. Molecular biology of the cell. 4th ed New York Garland Science 2017
    [Google Scholar]
  68. Mosmann T.R. Cherwinski H. Bond M.W. Giedlin M.A. Coffman R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986 136 7 2348 2357 10.4049/jimmunol.136.7.2348 2419430
    [Google Scholar]
  69. Tsai D.Y. Hung K.H. Chang C.W. Lin K.I. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J. Biomed. Sci. 2019 26 1 64 10.1186/s12929‑019‑0558‑1 31472685
    [Google Scholar]
  70. Suleman M. Asad U. Arshad S. Screening of immune epitope in the proteome of the Dabie bandavirus, SFTS, to design a protein-specific and proteome-wide vaccine for immune response instigation using an immunoinformatics approaches. Comput. Biol. Med. 2022 148 105893 10.1016/j.compbiomed.2022.105893 35961087
    [Google Scholar]
  71. Casadevall A. Pirofski L. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol. 2003 24 9 474 478 10.1016/S1471‑4906(03)00228‑X 12967670
    [Google Scholar]
  72. Sunita Sajid A Singh Y. Shukla P. Computational tools for modern vaccine development. Hum. Vaccin. Immunother. 2020 16 3 723 735 10.1080/21645515.2019.1670035 31545127
    [Google Scholar]
  73. Chen X. Zaro J.L. Shen W.C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 2013 65 10 1357 1369 10.1016/j.addr.2012.09.039 23026637
    [Google Scholar]
  74. Athanasiou E. Agallou M. Tastsoglou S. A poly (lactic-co-glycolic) acid nanovaccine based on chimeric peptides from different Leishmania infantum proteins induces dendritic cells maturation and promotes peptide-specific IFNγ-producing CD8+ T cells essential for the protection against experimental visceral leishmaniasis. Front. Immunol. 2017 8 684 10.3389/fimmu.2017.00684 28659922
    [Google Scholar]
  75. Bohra N. Sasidharan S. Raj S. Balaji S.N. Saudagar P. Utilising capsid proteins of poliovirus to design a multi-epitope based subunit vaccine by immunoinformatics approach. Mol. Simul. 2020 46 5 419 428 10.1080/08927022.2020.1720916
    [Google Scholar]
  76. Mittal A. Sasidharan S. Raj S. Balaji S.N. Saudagar P. Exploring the Zika genome to design a potential multiepitope vaccine using an immunoinformatics approach. Int. J. Pept. Res. Ther. 2020 26 4 2231 2240 10.1007/s10989‑020‑10020‑y
    [Google Scholar]
  77. Dolenc I. Seemüller E. Baumeister W. Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett. 1998 434 3 357 361 10.1016/S0014‑5793(98)01010‑2 9742954
    [Google Scholar]
  78. Livingston B. Crimi C. Newman M. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J. Immunol. 2002 168 11 5499 5506 10.4049/jimmunol.168.11.5499 12023344
    [Google Scholar]
  79. Khan A. Khan S. Saleem S. Immunogenomics guided design of immunomodulatory multi-epitope subunit vaccine against the SARS-CoV-2 new variants, and its validation through in silico cloning and immune simulation. Comput. Biol. Med. 2021 133 104420 10.1016/j.compbiomed.2021.104420 33930764
    [Google Scholar]
  80. Lawko N. Plaskasovitis C. Stokes C. 3D tissue models as an effective tool for studying viruses and vaccine development. Front. Mater. 2021 8 631373 10.3389/fmats.2021.631373
    [Google Scholar]
  81. Suleman M. Rashid F. Ali S. Immunoinformatic-based design of immune-boosting multiepitope subunit vaccines against monkeypox virus and validation through molecular dynamics and immune simulation. Front. Immunol. 2022 13 1042997 10.3389/fimmu.2022.1042997 36311718
    [Google Scholar]
  82. Scheiblhofer S. Laimer J. Machado Y. Weiss R. Thalhamer J. Influence of protein fold stability on immunogenicity and its implications for vaccine design. Expert Rev. Vaccines 2017 16 5 479 489 10.1080/14760584.2017.1306441 28290225
    [Google Scholar]
  83. Lobanov M.Y. Bogatyreva N.S. Galzitskaya O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008 42 4 623 628 10.1134/S0026893308040195 18856071
    [Google Scholar]
  84. Kawai T. Akira S. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol. 2005 17 4 338 344 10.1016/j.coi.2005.02.007 15950447
    [Google Scholar]
  85. Chen D. Oezguen N. Urvil P. Ferguson C. Dann S.M. Savidge T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv. 2016 2 3 e1501240 10.1126/sciadv.1501240 27051863
    [Google Scholar]
  86. Wang E. Sun H. Wang J. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem. Rev. 2019 119 16 9478 9508 10.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  87. Khan A. Zia T. Suleman M. Higher infectivity of the SARS‐CoV‐2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. J. Cell. Physiol. 2021 236 10 7045 7057 10.1002/jcp.30367 33755190
    [Google Scholar]
  88. Ng T.H.S. Britton G.J. Hill E.V. Verhagen J. Burton B.R. Wraith D.C. Regulation of adaptive immunity; the role of interleukin-10. Front. Immunol. 2013 4 129 10.3389/fimmu.2013.00129 23755052
    [Google Scholar]
  89. Arango Duque G. Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014 5 491 10.3389/fimmu.2014.00491 25339958
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232336511250626200218
Loading
/content/journals/cgt/10.2174/0115665232336511250626200218
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: AFM ; MD simulation ; molecular docking ; EV-D68 ; vaccines designing ; capsid protein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test