Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background

Superoxide dismutase 3 (SOD3), recognized as a potent free radical scavenger, exhibits antioxidant, anti-inflammatory, and anti-angiogenic properties. However, the molecular mechanisms underlying the protective effects of SOD3 on the vascular smooth muscle cell during atherosclerosis remain unclear.

Objectives

This study aimed to investigate the efficacy of the baculovirus expressing SOD3 gene delivery to vascular smooth muscle cells (VSMCs) and investigate whether the overexpression of SOD3 mitigates cell proliferation and migration induced by tumor necrosis factor-α (TNF-α).

Methods

A baculoviral vector containing SOD3 cDNA (vAcMBac-CMV-IE-SOD3) was constructed and utilized to deliver the SOD3 gene into primary rat VSMCs. Cells were stimulated with recombinant TNF-α, and then cell proliferation and migration were evaluated using the bromodeoxyuridine and wound healing assay. Western blot was used to verify the expression of cell cycle regulators, cellular mediators, and proliferative biomarkers. Zymography, immunofluorescence staining, and ELISA assay were conducted to assess the expression levels of matrix metalloproteinases.

Results

The results demonstrated efficient and non-cytotoxic transduction of vAcMBac-CMV-IE-SOD3 in VSMCs. SOD3 overexpression significantly suppressed cell proliferation and motility by inhibiting cell cycle regulators in TNF-α-induced cells. TNF-α elevated protein levels of phospho-ERK and phospho-Akt were reduced markedly by SOD3-overexpressing. Additionally, SOD3 overexpression attenuated the elevation of MMP-2 and MMP-9, the pro-inflammatory and proliferative biomarkers. Overall, the SOD3 gene delivery exhibited potent anti-proliferation and anti-inflammation effects on TNF-α-induced VSMCs.

Conclusion

An effective SOD3 gene delivery using a recombinant baculoviral vector has been successfully established and is useful for overexpression of the SOD gene family. This approach provides new therapeutic strategies in gene therapy against atherosclerosis.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232308789240823052607
2024-09-05
2025-09-01
Loading full text...

Full text loading...

References

  1. SongP. FangZ. WangH. CaiY. RahimiK. ZhuY. FowkesF.G.R. FowkesF.J.I. RudanI. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study.Lancet Glob. Health202085e721e72910.1016/S2214‑109X(20)30117‑032353319
    [Google Scholar]
  2. LibbyP. Inflammation in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20123292045205110.1161/ATVBAHA.108.17970522895665
    [Google Scholar]
  3. NeumannF.J. Sousa-UvaM. AhlssonA. AlfonsoF. BanningA.P. BenedettoU. ByrneR.A. ColletJ.P. FalkV. HeadS.J. JüniP. KastratiA. KollerA. KristensenS.D. NiebauerJ. RichterD.J. SeferovićP.M. SibbingD. StefaniniG.G. WindeckerS. YadavR. ZembalaM.O. WijnsW. GlineurD. AboyansV. AchenbachS. AgewallS. AndreottiF. BarbatoE. BaumbachA. BrophyJ. BuenoH. CalvertP.A. CapodannoD. DavierwalaP.M. DelgadoV. DudekD. FreemantleN. Funck-BrentanoC. GaemperliO. GielenS. GilardM. GorenekB. HaasenritterJ. HaudeM. IbanezB. IungB. JeppssonA. KatritsisD. KnuutiJ. KolhP. Leite-MoreiraA. LundL.H. MaisanoF. MehilliJ. MetzlerB. MontalescotG. PaganoD. PetronioA.S. PiepoliM.F. PopescuB.A. SádabaR. ShlyakhtoE. SilberS. SimpsonI.A. SparvD. TavillaG. ThieleH. TousekP. Van BelleE. VranckxP. WitkowskiA. ZamoranoJ.L. RoffiM. WindeckerS. AboyansV. AgewallS. BarbatoE. BuenoH. CocaA. ColletJ-P. ComanI.M. DeanV. DelgadoV. FitzsimonsD. GaemperliO. HindricksG. IungB. JüniP. KatusH.A. KnuutiJ. LancellottiP. LeclercqC. McDonaghT.A. PiepoliM.F. PonikowskiP. RichterD.J. RoffiM. ShlyakhtoE. Sousa-UvaM. SimpsonI.A. ZamoranoJ.L. PaganoD. FreemantleN. Sousa-UvaM. ChettibiM. SisakianH. MetzlerB. İbrahimovF. StelmashokV.I. PostadzhiyanA. SkoricB. EftychiouC. KalaP. TerkelsenC.J. MagdyA. EhaJ. NiemeläM. KedevS. MotreffP. AladashviliA. MehilliJ. KanakakisI-G. BeckerD. GudnasonT. PeaceA. RomeoF. BajraktariG. KerimkulovaA. RudzītisA. GhazzalZ. KibarskisA. PereiraB. XuerebR.G. HofmaS.H. SteigenT.K. WitkowskiA. de OliveiraE.I. MotS. DuplyakovD. ZavattaM. BeleslinB. KovarF. BuncM. OjedaS. WittN. JegerR. AddadF. AkdemirR. ParkhomenkoA. HendersonR. 2018 ESC/EACTS guidelines on myocardial revascularization.Eur. Heart J.20194028716510.1093/eurheartj/ehy39430165437
    [Google Scholar]
  4. MarxS.O. Totary-JainH. MarksA.R. Vascular smooth muscle cell proliferation in restenosis.Circ. Cardiovasc. Interv.20114110411110.1161/CIRCINTERVENTIONS.110.95733221325199
    [Google Scholar]
  5. KomiyamaH. TakanoM. HataN. SeinoY. ShimizuW. MizunoK. Neoatherosclerosis: Coronary stents seal atherosclerotic lesions but result in making a new problem of atherosclerosis.World J. Cardiol.201571177678310.4330/wjc.v7.i11.77626635925
    [Google Scholar]
  6. VioliniR. MustoC. De FeliceF. NazzaroM.S. CifarelliA. PetittiT. FiorilliR. Maintenance of long-term clinical benefit with sirolimus-eluting stents in patients with ST-segment elevation myocardial infarction 3-year results of the SESAMI (sirolimus-eluting stent versus bare-metal stent in acute myocardial infarction) trial.J. Am. Coll. Cardiol.201055881081410.1016/j.jacc.2009.09.04620170821
    [Google Scholar]
  7. AtaryJ.Z. van der HoevenB.L. LiemS.S. JukemaJ.W. van der BomJ.G. AtsmaD.E. BootsmaM. ZeppenfeldK. van der WallE.E. SchalijM.J. Three-year outcome of sirolimus-eluting versus bare-metal stents for the treatment of ST-segment elevation myocardial infarction (from the MISSION! Intervention Study).Am. J. Cardiol.2010106141210.1016/j.amjcard.2010.02.00520609639
    [Google Scholar]
  8. ChiraS. JacksonC.S. OpreaI. OzturkF. PepperM.S. DiaconuI. BraicuC. RadulyL.Z. CalinG.A. Berindan-NeagoeI. Progresses towards safe and efficient gene therapy vectors.Oncotarget2015631306753070310.18632/oncotarget.516926362400
    [Google Scholar]
  9. KeoghM-C. ChenD. LupuF. ShaperN. SchmittJ.F. KakkarV.V. LemoineN.R. High efficiency reporter gene transfection of vascular tissue in vitro and in vivo using a cationic lipid–DNA complex.Gene Ther.19974216217110.1038/sj.gt.33003749081707
    [Google Scholar]
  10. WoffendinC. RangaU. YangZ. XuL. NabelG.J. Expression of a protective gene-prolongs survival of T cells in human immunodeficiency virus-infected patients.Proc. Natl. Acad. Sci.19969372889289410.1073/pnas.93.7.28898610137
    [Google Scholar]
  11. LeidenJ.M. Human gene therapy: the good, the bad, and the ugly.Circ. Res.200086992392510.1161/01.RES.86.9.92310807862
    [Google Scholar]
  12. MarshallE. Gene therapy death prompts review of adenovirus vector.Science199928654482244224510.1126/science.286.5448.224410636774
    [Google Scholar]
  13. SmithG.E. SummersM.D. FraserM.J. Production of human beta interferon in insect cells infected with a baculovirus expression vector.Mol. Cell. Biol.1983312215621656318086
    [Google Scholar]
  14. PennockG.D. ShoemakerC. MillerL.K. Strong and regulated expression of Escherichia coli beta-galactosidase in insect cells with a baculovirus vector.Mol. Cell. Biol.19844339940610.1128/MCB.4.3.3996325875
    [Google Scholar]
  15. LacknerA. KreidlE. Peter-VörösmartyB. Spiegl-KreineckerS. BergerW. GruschM. Stable protein expression in mammalian cells using baculoviruses.Methods Mol. Biol.2012801759210.1007/978‑1‑61779‑352‑3_621987248
    [Google Scholar]
  16. LacknerA. GentaK. KoppensteinerH. HerbacekI. HolzmannK. Spiegl-KreineckerS. BergerW. GruschM. A bicistronic baculovirus vector for transient and stable protein expression in mammalian cells.Anal. Biochem.2008380114614810.1016/j.ab.2008.05.02018541133
    [Google Scholar]
  17. StanbridgeL.J. DussuptV. MaitlandN.J. Baculoviruses as vectors for gene therapy against human prostate cancer.J. Biomed. Biotechnol.200320032799112721513
    [Google Scholar]
  18. NewbyA.C. ZaltsmanA.B. Molecular mechanisms in intimal hyperplasia.J. Pathol.2000190330030910.1002/(SICI)1096‑9896(200002)190:3<300::AID‑PATH596>3.0.CO;2‑I10685064
    [Google Scholar]
  19. KomatsuR. UedaM. NarukoT. KojimaA. BeckerA.E. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses.Circulation199898322423310.1161/01.CIR.98.3.2249697822
    [Google Scholar]
  20. KarlssonK. SandströmJ. EdlundA. EdlundT. MarklundS. Pharmacokinetics of extracellular-superoxide dismutase in the vascular system.Free Radic. Biol. Med.199314218519010.1016/0891‑5849(93)90009‑J8381106
    [Google Scholar]
  21. QinZ. ReszkaK.J. FukaiT. WeintraubN.L. Extracellular superoxide dismutase (ecSOD) in vascular biology: An update on exogenous gene transfer and endogenous regulators of ecSOD.Transl. Res.20081512687810.1016/j.trsl.2007.10.00318201674
    [Google Scholar]
  22. TravagliniK.J. NabhanA.N. PenlandL. SinhaR. GillichA. SitR.V. ChangS. ConleyS.D. MoriY. SeitaJ. BerryG.J. ShragerJ.B. MetzgerR.J. KuoC.S. NeffN. WeissmanI.L. QuakeS.R. KrasnowM.A. A molecular cell atlas of the human lung from single-cell RNA sequencing.Nature2020587783561962510.1038/s41586‑020‑2922‑433208946
    [Google Scholar]
  23. LaukkanenM.O. Extracellular superoxide dismutase: Growth promoter or tumor suppressor?Oxid. Med. Cell. Longev.201620161910.1155/2016/361258927293512
    [Google Scholar]
  24. BruunsgaardH. SkinhøjP. PedersenA.N. SchrollM. PedersenB.K. Ageing, tumour necrosis factor-alpha (TNF- α) and atherosclerosis.Clin. Exp. Immunol.2008121225526010.1046/j.1365‑2249.2000.01281.x10931139
    [Google Scholar]
  25. WangX. YueT.L. BaroneF.C. WhiteR.F. GagnonR.C. FeuersteinG.Z. Concomitant cortical expression of TNF-α and IL-1β mRNAs follows early response gene expression in transient focal ischemia.Mol. Chem. Neuropathol.1994232-310311410.1007/BF028154047702701
    [Google Scholar]
  26. DavisR. PillaiS. LawrenceN. ChellappanS.P. ChellappanS.P. TNF-α-mediated proliferation of vascular smooth muscle cells involves Raf-1-mediated inactivation of Rb and transcription of E2F1-regulated genes.Cell Cycle201211110911810.4161/cc.11.1.1847322185776
    [Google Scholar]
  27. NiemietzI. BrownK.L. Hyaluronan promotes intracellular ROS production and apoptosis in TNFα-stimulated neutrophils.Front. Immunol.202314103246910.3389/fimmu.2023.103246936814915
    [Google Scholar]
  28. AkhterN. WilsonA. ArefanianH. ThomasR. KochumonS. Al-RashedF. Abu-FarhaM. Al-MadhounA. Al-MullaF. AhmadR. SindhuS. Endoplasmic reticulum stress promotes the expression of TNF-α in THP-1 cells by mechanisms involving ROS/CHOP/HIF-1α and MAPK/NF-κB pathways.Int. J. Mol. Sci.202324201518610.3390/ijms24201518637894865
    [Google Scholar]
  29. ChoiH. DikalovaA. StarkR.J. LambF.S. c-Jun N-terminal kinase attenuates TNFα signaling by reducing Nox1-dependent endosomal ROS production in vascular smooth muscle cells.Free Radic. Biol. Med.20158621922710.1016/j.freeradbiomed.2015.05.01526001727
    [Google Scholar]
  30. ClaytonZ.S. BruntV.E. HuttonD.A. CassoA.G. ZiembaB.P. MelovS. CampisiJ. SealsD.R. Tumor necrosis factor alpha-mediated inflammation and remodeling of the extracellular matrix underlies aortic stiffening induced by the common chemotherapeutic agent doxorubicin.Hypertension20217751581159010.1161/HYPERTENSIONAHA.120.1675933719511
    [Google Scholar]
  31. BeloV.A. GuimarãesD.A. CastroM.M. Matrix metalloproteinase 2 as a potential mediator of vascular smooth muscle cell migration and chronic vascular remodeling in hypertension.J. Vasc. Res.201552422123110.1159/00044162126731549
    [Google Scholar]
  32. SulistyowatiE. HuangS.E. ChengT.L. ChaoY.Y. LiC.Y. ChangC.W. LinM.X. LinM.C. YehJ.L. Vasculoprotective potential of baicalein in angiotensin II-infused abdominal aortic aneurysms through inhibiting inflammation and oxidative Stress.Int. J. Mol. Sci.202324211600410.3390/ijms24211600437958985
    [Google Scholar]
  33. HofmannC. SandigV. JenningsG. RudolphM. SchlagP. StraussM. Efficient gene transfer into human hepatocytes by baculovirus vectors.Proc. Natl. Acad. Sci.19959222100991010310.1073/pnas.92.22.100997479733
    [Google Scholar]
  34. LiouS.F. YehJ.L. LiangJ.C. ChiuC.C. LinY.T. ChenI.J. Inhibition of mitogen-mediated proliferation of rat vascular smooth muscle cells by labedipinedilol-A through PKC and ERK 1/2 pathway.J. Cardiovasc. Pharmacol.200444553955110.1097/00005344‑200411000‑0000515505490
    [Google Scholar]
  35. HuangS.E. KuoC.H. ShiaoS.Y. ShenC.R. LeeF.T. ChangB.I. HsuJ.H. WuH.L. YehJ.L. LaiC.H. Soluble CD93 lectin-like domain sequesters HMGB1 to ameliorate inflammatory diseases.Theranostics202313124059407810.7150/thno.8493537554277
    [Google Scholar]
  36. FörstermannU. XiaN. LiH. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis.Circ. Res.2017120471373510.1161/CIRCRESAHA.116.30932628209797
    [Google Scholar]
  37. FosterD.A. YellenP. XuL. SaqcenaM. Regulation of G1 cell cycle progression: Distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s).Genes Cancer20101111124113110.1177/194760191039298921779436
    [Google Scholar]
  38. StrzalkaW. ZiemienowiczA. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation.Ann. Bot.201110771127114010.1093/aob/mcq24321169293
    [Google Scholar]
  39. SiasosG. TousoulisD. KioufisS. OikonomouE. SiasouZ. LimperiM. PapavassiliouA.G. StefanadisC. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases.Curr. Top. Med. Chem.201212101132114810.2174/156802661120801113222519444
    [Google Scholar]
  40. CondreayJ.P. WitherspoonS.M. ClayW.C. KostT.A. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector.Proc. Natl. Acad. Sci.199996112713210.1073/pnas.96.1.1279874783
    [Google Scholar]
  41. MansouriM. BergerP. Baculovirus for gene delivery to mammalian cells: Past, present and future.Plasmid2018981710.1016/j.plasmid.2018.05.00229842913
    [Google Scholar]
  42. FelberbaumR.S. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.Biotechnol. J.201510570271410.1002/biot.20140043825800821
    [Google Scholar]
  43. ErlanssonM. BergqvistD. MarklundS.L. PerssonN.H. SvensjöE. Superoxide dismutase as an inhibitor of postischemic microvascular permeability increase in the hamster.Free Radic. Biol. Med.199091596510.1016/0891‑5849(90)90050‑S2170246
    [Google Scholar]
  44. LaukkanenM.O. LeppanenP. TurunenP. TuomistoT. NaaralaJ. Yla-HerttualaS. EC-SOD gene therapy reduces paracetamol-induced liver damage in mice.J. Gene Med.20013432132510.1002/jgm.19411529661
    [Google Scholar]
  45. LaukkanenM.O. KiveläA. RissanenT. RutanenJ. KarkkainenM.K. LeppanenO. BräsenJ.H. Yla-HerttualaS. Adenovirus-mediated extracellular superoxide dismutase gene therapy reduces neointima formation in balloon-denuded rabbit aorta.Circulation2002106151999200310.1161/01.CIR.0000031331.05368.9D12370226
    [Google Scholar]
  46. BräsenJ.H. LeppänenO. InkalaM. HeikuraT. LevinM. AhrensF. RutanenJ. PietschH. BergqvistD. LevonenA.L. BasuS. ZellerT. KlöppelG. LaukkanenM.O. Ylä-HerttualaS. Extracellular superoxide dismutase accelerates endothelial recovery and inhibits in-stent restenosis in stented atherosclerotic Watanabe heritable hyperlipidemic rabbit aorta.J. Am. Coll. Cardiol.200750232249225310.1016/j.jacc.2007.08.03818061074
    [Google Scholar]
  47. MarklundS.L. Human copper-containing superoxide dismutase of high molecular weight.Proc. Natl. Acad. Sci.198279247634763810.1073/pnas.79.24.76346961438
    [Google Scholar]
  48. HuL. ZachariaeE.D. LarsenU.G. VilhardtF. PetersenS.V. The dynamic uptake and release of SOD3 from intracellular stores in macrophages modulates the inflammatory response.Redox Biol.20192610126810.1016/j.redox.2019.10126831326693
    [Google Scholar]
  49. BertoliC. SkotheimJ.M. de BruinR.A.M. Control of cell cycle transcription during G1 and S phases.Nat. Rev. Mol. Cell Biol.201314851852810.1038/nrm362923877564
    [Google Scholar]
  50. JeonY.J. YooH. KimB.H. LeeY.S. JeonB. KimS.S. KimT.Y. IFNγ-mediated inhibition of cell proliferation through increased PKCδ-induced overexpression of EC-SOD.BMB Rep.2012451165966410.5483/BMBRep.2012.45.11.00323187006
    [Google Scholar]
  51. QueisserA. BoonL.M. VikkulaM. Etiology and genetics of congenital vascular lesions.Otolaryngol. Clin. North Am.2018511415310.1016/j.otc.2017.09.00629217067
    [Google Scholar]
  52. JenkinsG.M. CrowM.T. BilatoC. GluzbandY. RyuW.S. LiZ. Stetler-StevensonW. NaterC. FroehlichJ.P. LakattaE.G. ChengL. Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries.Circulation1998971829010.1161/01.CIR.97.1.829443435
    [Google Scholar]
  53. ZempoN. KenagyR.D. AuY.P.T. BendeckM. ClowesM.M. ReidyM.A. ClowesA.W. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery.J. Vasc. Surg.199420220921710.1016/0741‑5214(94)90008‑68040944
    [Google Scholar]
  54. JohnsonC. GalisZ.S. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization.Arterioscler. Thromb. Vasc. Biol.2004241546010.1161/01.ATV.0000100402.69997.C314551157
    [Google Scholar]
  55. TurnerN.A. HallK.T. BallS.G. PorterK.E. Selective gene silencing of either MMP-2 or MMP-9 inhibits invasion of human saphenous vein smooth muscle cells.Atherosclerosis20071931364310.1016/j.atherosclerosis.2006.08.01716979647
    [Google Scholar]
  56. KattoorA.J. PothineniN.V.K. PalagiriD. MehtaJ.L. Oxidative stress in atherosclerosis.Curr. Atheroscler. Rep.201719114210.1007/s11883‑017‑0678‑628921056
    [Google Scholar]
  57. LinS.L. YehJ.L. TsaiP.C. ChangT.H. HuangW.C. LeeS.T. WasslerM. GengY.J. SulistyowatiE. Inhibition of neointima hyperplasia, inflammation, and reactive oxygen species in balloon-injured arteries by HVJ envelope vector-mediated delivery of superoxide dismutase gene.Transl. Stroke Res.201910441342710.1007/s12975‑018‑0660‑930191468
    [Google Scholar]
  58. DurandE. Al Haj ZenA. AddadF. BrasseletC. CaligiuriG. VinchonF. LemarchandP. DesnosM. BrunevalP. LafontA. Adenovirus-mediated gene transfer of superoxide dismutase and catalase decreases restenosis after balloon angioplasty.J. Vasc. Res.200542325526510.1159/00008565815870505
    [Google Scholar]
  59. Brasen JH, Leppanen O, Inkala M, et al. Extracellular superoxide dismutase accelerates endothelial recovery and inhibits in-stent restenosis in stented atherosclerotic Watanabe heritable hyperlipidemic rabbit aorta. J Am Coll Cardiol. 2007; 50(23): 2249-53. https://doi.org/10.1016/j.jacc.2007.08.038 PMID: 18061074.
  60. WangJ.N. ShiN. ChenS.Y. Manganese superoxide dismutase inhibits neointima formation through attenuation of migration and proliferation of vascular smooth muscle cells.Free Radic. Biol. Med.201252117318110.1016/j.freeradbiomed.2011.10.44222062629
    [Google Scholar]
  61. ZelkoI.N. MarianiT.J. FolzR.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression.Free Radic. Biol. Med.200233333734910.1016/S0891‑5849(02)00905‑X12126755
    [Google Scholar]
  62. ChenG. GoeddelD.V. TNF-R1 signaling: A beautiful pathway.Science200229655731634163510.1126/science.107192412040173
    [Google Scholar]
  63. KokkinidisD.G. WaldoS.W. ArmstrongE.J. Treatment of coronary artery in-stent restenosis.Expert Rev. Cardiovasc. Ther.201715319120210.1080/14779072.2017.128458828116914
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232308789240823052607
Loading
/content/journals/cgt/10.2174/0115665232308789240823052607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test