Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

MicroRNAs (miRNAs) have emerged as a significant tool in the realm of vaccinology, offering novel approaches to vaccine development. This study investigates the potential of miRNAs in the development of advanced vaccines, with an emphasis on how they regulate immune response and control viral replication. We go over the molecular features of miRNAs, such as their capacity to direct post-transcriptional regulation toward mRNAs, hence regulating the expression of genes in diverse tissues and cells. This property is harnessed to develop live attenuated vaccines that are tissue-specific, enhancing safety and immunogenicity. The review highlights recent advancements in using miRNA-targeted vaccines against viruses like influenza, poliovirus, and tick-borne encephalitis virus, demonstrating their attenuated replication in specific tissues while retaining immunogenicity. We also explored the function of miRNAs in the biology of cancer, highlighting their potential to develop cancer vaccines through targeting miRNAs that are overexpressed in tumor cells. The difficulties in developing miRNA vaccines are also covered in this work, including delivery, stability, off-target effects, and the requirement for individualized cancer treatment plans. We wrap off by discussing the potential of miRNA vaccines and highlighting how they will influence the development of vaccination techniques for cancer and infectious diseases in the future.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232305431240726113347
2024-07-31
2025-10-17
Loading full text...

Full text loading...

References

  1. FayE.J. LangloisR.A. MicroRNA-Attenuated Virus Vaccines.Noncoding RNA2018442510.3390/ncrna404002530279330
    [Google Scholar]
  2. LiJ. ArévaloM.T. Diaz-ArévaloD. ChenY. ChoiJ.G. ZengM. Generation of a safe and effective live viral vaccine by virus self-attenuation using species-specific artificial microRNA.J. Control. Release2015207707610.1016/j.jconrel.2015.04.00125858415
    [Google Scholar]
  3. TsetsarkinK.A. MaximovaO.A. LiuG. KenneyH. TeterinaN.L. PletnevA.G. Stable and highly immunogenic microrna-targeted single-dose live attenuated vaccine candidate against tick-borne encephalitis constructed using genetic backbone of langat virus.mBio.2019102e02904e02918
    [Google Scholar]
  4. FengC. TanM. SunW. ShiY. XingZ. Attenuation of the influenza virus by microRNA response element in vivo and protective efficacy against 2009 pandemic H1N1 virus in mice.Int. J. Infect. Dis.20153814615210.1016/j.ijid.2015.07.00226163223
    [Google Scholar]
  5. YeeP. PohC. Development of novel miRNA-based vaccines and antivirals against Enterovirus 71.Curr. Pharm. Des.201722446694670010.2174/138161282266616072016561327510488
    [Google Scholar]
  6. HannaJ. HossainG.S. KocerhaJ. The potential for microRNA therapeutics and clinical research.Front. Genet.20191047810.3389/fgene.2019.0047831156715
    [Google Scholar]
  7. GulyaevaL.F. KushlinskiyN.E. Regulatory mechanisms of microRNA expression.J. Transl. Med.201614114310.1186/s12967‑016‑0893‑x27197967
    [Google Scholar]
  8. DuT. ZamoreP.D. Beginning to understand microRNA function.Cell Res.200717866166310.1038/cr.2007.6717694094
    [Google Scholar]
  9. RedfernA.D. ColleyS.M. BeveridgeD.J. IkedaN. EpisM.R. LiX. FouldsC.E. StuartL.M. BarkerA. RussellV.J. RamsayK. KobelkeS.J. LiX. HatchellE.C. PayneC. GilesK.M. MessineoA. GatignolA. LanzR.B. O’MalleyB.W. LeedmanP.J. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.Proc. Natl. Acad. Sci. USA2013110166536654110.1073/pnas.130162011023550157
    [Google Scholar]
  10. ChendrimadaT.P. GregoryR.I. KumaraswamyE. NormanJ. CoochN. NishikuraK. ShiekhattarR. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.Nature2005436705174074410.1038/nature0386815973356
    [Google Scholar]
  11. WangY. ZhaoR. LiuW. WangZ. RongJ. LongX. LiuZ. GeJ. ShiB. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway.Oxid. Med. Cell. Longev.2019201912810.1155/2019/795465731885817
    [Google Scholar]
  12. PastukhV. RobertsJ.T. ClarkD.W. BardwellG.C. PatelM. Al-MehdiA.B. BorchertG.M. GillespieM.N. An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression.Am. J. Physiol. Lung Cell. Mol. Physiol.201530911L1367L137510.1152/ajplung.00236.201526432868
    [Google Scholar]
  13. MelnikovaI. RNA-based therapies.Nat. Rev. Drug Discov.200761186386410.1038/nrd2443
    [Google Scholar]
  14. LingH. FabbriM. CalinG.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development.Nat. Rev. Drug Discov.2013121184786510.1038/nrd414024172333
    [Google Scholar]
  15. Ali SyedaZ. LangdenS.S.S. MunkhzulC. LeeM. SongS.J. Regulatory mechanism of MicroRNA expression in cancer.Int. J. Mol. Sci.2020215172310.3390/ijms2105172332138313
    [Google Scholar]
  16. GarzonR. FabbriM. CimminoA. CalinG.A. CroceC.M. MicroRNA expression and function in cancer.Trends Mol. Med.2006121258058710.1016/j.molmed.2006.10.00617071139
    [Google Scholar]
  17. RathS.N. DasD. KonkimallaV.B. PradhanS.K. In silico study of miRNA based gene regulation, involved in solid cancer, by the assistance of argonaute protein.Genomics Inform.201614311212410.5808/GI.2016.14.3.11227729841
    [Google Scholar]
  18. ZhangB. PanX. CobbG.P. AndersonT.A. microRNAs as oncogenes and tumor suppressors.Dev. Biol.2007302111210.1016/j.ydbio.2006.08.02816989803
    [Google Scholar]
  19. YuF. YaoH. ZhuP. ZhangX. PanQ. GongC. HuangY. HuX. SuF. LiebermanJ. SongE. let-7 regulates self renewal and tumorigenicity of breast cancer cells.Cell200713161109112310.1016/j.cell.2007.10.05418083101
    [Google Scholar]
  20. El HelouR. PinnaG. CabaudO. WicinskiJ. BhajunR. GuyonL. RioualenC. FinettiP. GrosA. MariB. BarbryP. BertucciF. BidautG. Harel-BellanA. BirnbaumD. Charafe-JauffretE. GinestierC. miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling.Cell Rep.20171892256226810.1016/j.celrep.2017.02.01628249169
    [Google Scholar]
  21. ZhangB. NguyenL.X.T. LiL. ZhaoD. KumarB. WuH. LinA. PellicanoF. HopcroftL. SuY.L. CoplandM. HolyoakeT.L. KuoC.J. BhatiaR. SnyderD.S. AliH. SteinA.S. BrewerC. WangH. McDonaldT. SwiderskiP. TroadecE. ChenC.C. DorranceA. PullarkatV. YuanY.C. PerrottiD. CarlessoN. FormanS.J. KortylewskiM. KuoY.H. MarcucciG. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia.Nat. Med.201824445046210.1038/nm.449929505034
    [Google Scholar]
  22. TakahashiR. MiyazakiH. TakeshitaF. YamamotoY. MinouraK. OnoM. KodairaM. TamuraK. MoriM. OchiyaT. Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1.Nat. Commun.201561731810.1038/ncomms831826065921
    [Google Scholar]
  23. FornariF. PollutriD. PatriziC. La BellaT. MarinelliS. Casadei GardiniA. MarisiG. Baron ToaldoM. BaglioniM. SalvatoreV. CallegariE. BaldassarreM. GalassiM. GiovanniniC. CesconM. RavaioliM. NegriniM. BolondiL. GramantieriL. In hepatocellular carcinoma miR-221 modulates sorafenib resistance through inhibition of caspase-3–mediated apoptosis.Clin. Cancer Res.201723143953396510.1158/1078‑0432.CCR‑16‑146428096271
    [Google Scholar]
  24. Al-harbiS. ChoudharyG.S. EbronJ.S. HillB.T. VivekanathanN. TingA.H. RadivoyevitchT. SmithM.R. ShuklaG.C. AlmasanA. miR-377-dependent BCL-xL regulation drives chemotherapeutic resistance in B-cell lymphoid malignancies.Mol. Cancer201514118510.1186/s12943‑015‑0460‑826537004
    [Google Scholar]
  25. GregoryP.A. BertA.G. PatersonE.L. BarryS.C. TsykinA. FarshidG. VadasM.A. Khew-GoodallY. GoodallG.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.Nat. Cell Biol.200810559360110.1038/ncb172218376396
    [Google Scholar]
  26. SongS.J. PolisenoL. SongM.S. AlaU. WebsterK. NgC. BeringerG. BrikbakN.J. YuanX. CantleyL.C. RichardsonA.L. PandolfiP.P. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling.Cell2013154231132410.1016/j.cell.2013.06.02623830207
    [Google Scholar]
  27. ValeriN. BraconiC. GaspariniP. MurgiaC. LampisA. Paulus-HockV. HartJ.R. UenoL. GrivennikovS.I. LovatF. PaoneA. CascioneL. SumaniK.M. VeroneseA. FabbriM. CarasiS. AlderH. LanzaG. Gafa’R. MoyerM.P. RidgwayR.A. CorderoJ. NuovoG.J. FrankelW.L. RuggeM. FassanM. GrodenJ. VogtP.K. KarinM. SansomO.J. CroceC.M. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer.Cancer Cell201425446948310.1016/j.ccr.2014.03.00624735923
    [Google Scholar]
  28. ZhouW. FongM.Y. MinY. SomloG. LiuL. PalomaresM.R. YuY. ChowA. O’ConnorS.T.F. ChinA.R. YenY. WangY. MarcussonE.G. ChuP. WuJ. WuX. LiA.X. LiZ. GaoH. RenX. BoldinM.P. LinP.C. WangS.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis.Cancer Cell201425450151510.1016/j.ccr.2014.03.00724735924
    [Google Scholar]
  29. FongM.Y. ZhouW. LiuL. AlontagaA.Y. ChandraM. AshbyJ. ChowA. O’ConnorS.T.F. LiS. ChinA.R. SomloG. PalomaresM. LiZ. TremblayJ.R. TsuyadaA. SunG. ReidM.A. WuX. SwiderskiP. RenX. ShiY. KongM. ZhongW. ChenY. WangS.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis.Nat. Cell Biol.201517218319410.1038/ncb309425621950
    [Google Scholar]
  30. ChouJ. LinJ.H. BrenotA. KimJ. ProvotS. WerbZ. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression.Nat. Cell Biol.201315220121310.1038/ncb267223354167
    [Google Scholar]
  31. MantovaniA. AllavenaP. MarchesiF. GarlandaC. Macrophages as tools and targets in cancer therapy.Nat. Rev. Drug Discov.2022211179982010.1038/s41573‑022‑00520‑535974096
    [Google Scholar]
  32. SiW. ShenJ. ZhengH. FanW. The role and mechanisms of action of microRNAs in cancer drug resistance.Clin. Epigenetics20191112510.1186/s13148‑018‑0587‑830744689
    [Google Scholar]
  33. StaedelC. DarfeuilleF. MicroRNAs and bacterial infection.Cell. Microbiol.20131591496150710.1111/cmi.1215923795564
    [Google Scholar]
  34. KumarM. KunduM. BasuJ. The role of microRNAs in bacterial infections. AGO-Driven Non-Coding RNAs.Elsevier2019pp. 57–73.10.1016/B978‑0‑12‑815669‑8.00003‑8
    [Google Scholar]
  35. DasK. GarnicaO. DhandayuthapaniS. Modulation of host miRNAs by intracellular bacterial pathogens.Front. Cell. Infect. Microbiol.201667910.3389/fcimb.2016.0007927536558
    [Google Scholar]
  36. MaudetC. ManoM. EulalioA. MicroRNAs in the interaction between host and bacterial pathogens.FEBS Lett.2014588224140414710.1016/j.febslet.2014.08.00225128459
    [Google Scholar]
  37. AguilarC. ManoM. EulalioA. Multifaceted roles of microRNAs in host-bacterial pathogen interaction.Microbiol Spectr.20197310.1128/microbiolspec.bai-0002-201910.1128/9781683670261.ch17
    [Google Scholar]
  38. EulalioA. SchulteL. VogelJ. The mammalian microRNA response to bacterial infections.RNA Biol.20129674275010.4161/rna.2001822664920
    [Google Scholar]
  39. LanfordR.E. Hildebrandt-EriksenE.S. PetriA. PerssonR. LindowM. MunkM.E. KauppinenS. ØrumH. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.Science2010327596219820110.1126/science.117817819965718
    [Google Scholar]
  40. ShimakamiT. YamaneD. JangraR.K. KempfB.J. SpanielC. BartonD.J. LemonS.M. Stabilization of hepatitis C virus RNA by an Ago2–miR-122 complex.Proc. Natl. Acad. Sci. USA2012109394194610.1073/pnas.111226310922215596
    [Google Scholar]
  41. IsraelowB. NarbusC.M. SourisseauM. EvansM.J. HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection.Hepatology20146041170117910.1002/hep.2722724833036
    [Google Scholar]
  42. FlemmingA. MicroRNA versus virus: uncovering new layers of complexity.Nat. Rev. Drug Discov.200761295795710.1038/nrd2472
    [Google Scholar]
  43. WangM. YuF. WuW. WangY. DingH. QianL. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses.Int. J. Biol. Sci.201814556557610.7150/ijbs.2456229805308
    [Google Scholar]
  44. FarinaA. PeruzziG. LacconiV. LennaS. QuartaS. RosatoE. VestriA.R. YorkM. DreyfusD.H. FaggioniA. MorroneS. TrojanowskaM. FarinaG.A. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes.Arthritis Res. Ther.20171913910.1186/s13075‑017‑1237‑928245863
    [Google Scholar]
  45. ZhangT. YuJ. ZhangY. LiL. ChenY. LiD. LiuF. ZhangC.Y. GuH. ZenK. Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor.J. Infect. Dis.2014209122000201110.1093/infdis/jiu00624415783
    [Google Scholar]
  46. AshidaH. MimuroH. OgawaM. KobayashiT. SanadaT. KimM. SasakawaC. Cell death and infection: A double-edged sword for host and pathogen survival.J. Cell Biol.2011195693194210.1083/jcb.20110808122123830
    [Google Scholar]
  47. PetersonL.W. PhilipN.H. DeLaneyA. Wynosky-DolfiM.A. AsklofK. GrayF. ChoaR. BjanesE. BuzaE.L. HuB. DillonC.P. GreenD.R. BergerS.B. GoughP.J. BertinJ. BrodskyI.E. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense.J. Exp. Med.2017214113171318210.1084/jem.2017034728855241
    [Google Scholar]
  48. MaraniniB. CiancioG. FerracinM. CultreraR. NegriniM. SabbioniS. GovoniM. microRNAs and inflammatory immune response in SARS-CoV-2 infection: A narrative review.Life (Basel)202212228810.3390/life1202028835207576
    [Google Scholar]
  49. ShenoyA. BlellochR.H. Regulation of microRNA function in somatic stem cell proliferation and differentiation.Nat. Rev. Mol. Cell Biol.201415956557610.1038/nrm385425118717
    [Google Scholar]
  50. LiuX. ZhanZ. XuL. MaF. LiD. GuoZ. LiN. CaoX. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα.J. Immunol.2010185127244725110.4049/jimmunol.100157321068402
    [Google Scholar]
  51. ZhouB. WangS. MayrC. BartelD.P. LodishH.F. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely.Proc. Natl. Acad. Sci. USA2007104177080708510.1073/pnas.070240910417438277
    [Google Scholar]
  52. ZiętaraN. ŁyszkiewiczM. WitzlauK. NaumannR. HurwitzR. LangemeierJ. BohneJ. SandrockI. BallmaierM. WeissS. PrinzI. KruegerA. Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells.Proc. Natl. Acad. Sci. USA2013110187407741210.1073/pnas.122198411023589855
    [Google Scholar]
  53. ZhangQ. BastardP. LiuZ. Le PenJ. Moncada-VelezM. ChenJ. OgishiM. SabliI.K.D. HodeibS. KorolC. RosainJ. BilguvarK. YeJ. BolzeA. BigioB. YangR. AriasA.A. ZhouQ. ZhangY. OnodiF. KorniotisS. KarpfL. PhilippotQ. ChbihiM. Bonnet-MadinL. DorghamK. SmithN. SchneiderW.M. RazookyB.S. HoffmannH.H. MichailidisE. MoensL. HanJ.E. LorenzoL. BizienL. MeadeP. NeehusA.L. UgurbilA.C. CorneauA. KernerG. ZhangP. RapaportF. SeeleuthnerY. ManryJ. MassonC. SchmittY. SchlüterA. Le VoyerT. KhanT. LiJ. FellayJ. RousselL. ShahrooeiM. AlosaimiM.F. MansouriD. Al-SaudH. Al-MullaF. AlmourfiF. Al-MuhsenS.Z. AlsohimeF. Al TurkiS. HasanatoR. van de BeekD. BiondiA. BettiniL.R. D’Angio’M. BonfantiP. ImbertiL. SottiniA. PagheraS. Quiros-RoldanE. RossiC. OlerA.J. TompkinsM.F. AlbaC. VandernootI. GoffardJ.C. SmitsG. MigeotteI. HaerynckF. Soler-PalacinP. Martin-NaldaA. ColobranR. MorangeP.E. KelesS. ÇölkesenF. OzcelikT. YasarK.K. SenogluS. KarabelaŞ.N. Rodríguez-GallegoC. NovelliG. HraiechS. Tandjaoui-LambiotteY. DuvalX. LaouénanC. SnowA.L. DalgardC.L. MilnerJ.D. VinhD.C. MogensenT.H. MarrN. SpaanA.N. BoissonB. Boisson-DupuisS. BustamanteJ. PuelA. CiancanelliM.J. MeytsI. ManiatisT. SoumelisV. AmaraA. NussenzweigM. García-SastreA. KrammerF. PujolA. DuffyD. LiftonR.P. ZhangS.Y. GorochovG. BéziatV. JouanguyE. Sancho-ShimizuV. RiceC.M. AbelL. NotarangeloL.D. CobatA. SuH.C. CasanovaJ.L. FotiG. BellaniG. CiterioG. ControE. PesciA. ValsecchiM.G. CazzanigaM. AbadJ. Aguilera-AlbesaS. AkcanO.M. DarazamI.A. AldaveJ.C. RamosM.A. NadjiS.A. AlkanG. Allardet-ServentJ. AllendeL.M. AlsinaL. AlyanakianM-A. Amador-BorreroB. AmouraZ. AntolíA. ArslanS. AssantS. AuguetT. AzotA. BajolleF. BaldolliA. BallesterM. FeldmanH.B. BarrouB. BeurtonA. BilbaoA. Blanchard-RohnerG. BlancoI. BlandinièresA. Blazquez-GameroD. BloomfieldM. Bolivar-PradosM. BorieR. BosteelsC. BousfihaA.A. BouvattierC. BoyarchukO. BuenoM.R.P. BustamanteJ. Cáceres AgraJ.J. CalimliS. CapraR. CarrabbaM. CasasnovasC. CaserisM. CastelleM. CastelliF. de VeraM.C. CastroM.V. CatherinotE. ChalumeauM. CharbitB. ChengM.P. ClavéP. ClotetB. CodinaA. ColkesenF. ÇölkesenF. ColobranR. ComarmondC. DalmauD. DarleyD.R. DaubyN. DaugerS. de PontualL. DehbanA. DelplancqG. DemouleA. DiehlJ-L. DobbelaereS. DurandS. EldarsW. ElgamalM. ElnagdyM.H. EmirogluM. ErdenizE.H. AytekinS.E. EuvrardR. EvcenR. FabioG. FaivreL. FalckA. FartoukhM. FaureM. ArqueroM.F. FloresC. FrancoisB. FumadóV. FuscoF. SolisB.G. GaussemP. Gil-HerreraJ. GilardinL. AlarconM.G. Girona-AlarcónM. GoffardJ-C. GokF. González-MontelongoR. GuerderA. GulY. GunerS.N. GutM. HadjadjJ. HaerynckF. HalwaniR. HammarströmL. HatipogluN. Hernandez-BritoE. HeijmansC. Holanda-PeñaM.S. HorcajadaJ.P. HosteL. HosteE. HraiechS. HumbertL. IglesiasA.D. Íñigo-CamposA. JammeM. ArranzM.J. JordanI. JorensP. KanatF. KapakliH. KaraI. KarbuzA. YasarK.K. KelesS. DemirkolY.K. KlocperkA. KrólZ.J. KuentzP. KwanY.W.M. LagierJ-C. LambrechtB.N. LauY-L. Le BourgeoisF. LeoY-S. LopezR.L. LeungD. LevinM. LevyM. LévyR. LiZ. LinglartA. LoeysB. Lorenzo-SalazarJ.M. LouapreC. LubetzkiC. LuytC-E. LyeD.C. MansouriD. MarjaniM. PereiraJ.M. MartinA. PueyoD.M. Martinez-PicadoJ. MarzanaI. MathianA. MatosL.R.B. MatthewsG.V. MayauxJ. MègeJ-L. MelkiI. MeritetJ-F. MetinO. MeytsI. MezidiM. MigeotteI. MillereuxM. MiraultT. MircherC. MirsaeidiM. MeliánA.M. MartinezA.M. MorangeP. MordacqC. MorelleG. MoulyS. Muñoz-BarreraA. NaesensL. NafatiC. NevesJ.F. NgL.F.P. MedinaY.N. CuadrosE.N. Ocejo-VinyalsJ.G. OrbakZ. OualhaM. ÖzçelikT. Pan-HammarströmQ. ParizotC. PascreauT. Paz-ArtalE. PellegriniS. de DiegoR.P. PhilippeA. PhilippotQ. Planas-SerraL. PloinD. PoissyJ. PonceletG. PoulettyM. QuentricP. RaoultD. RebillatA-S. ReisliI. RicartP. RichardJ-C. RivetN. RivièreJ.G. BlanchG.R. RodrigoC. Rodriguez-GallegoC. Rodríguez-PalmeroA. RomeroC.S. RothenbuhlerA. RozenbergF. Ruiz del PradoM.Y. RieraJ.S. SanchezO. Sánchez-RamónS. SchluterA. SchmidtM. SchweitzerC.E. ScolariF. SedivaA. SeijoL.M. SeneD. SenogluS. SeppänenM.R.J. IlovichA.S. ShahrooeiM. SlabbynckH. SmadjaD.M. SobhA. MorenoX.S. Solé-ViolánJ. SolerC. Soler-PalacínP. StepanovskiyY. StoclinA. TacconeF. Tandjaoui-LambiotteY. TaupinJ-L. TavernierS.J. TerrierB. ThumerelleC. TomasoniG. ToubianaJ. AlvarezJ.T. Trouillet-AssantS. TroyaJ. TucciA. UrsiniM.V. UzunhanY. VabresP. Valencia-RamosJ. Van BraeckelE. Van de VeldeS. Van Den RymA.M. Van PraetJ. VandernootI. VatansevH. Vélez-SantamariaV. VielS. VilainC. VilaireM.E. VincentA. VoiriotG. VuottoF. YosunkayaA. YoungB.E. YucelF. ZannadF. ZatzM. BelotA. Bole-FeysotC. LyonnetS. MassonC. NitschkeP. PoulietA. SchmittY. ToresF. ZarhrateM. AbelL. AndrejakC. AngoulvantF. BacheletD. BasmaciR. BehillilS. BeluzeM. BenkerrouD. BhavsarK. BompartF. BouadmaL. BouscambertM. CaralpM. Cervantes-GonzalezM. ChairA. CoelhoA. CouffignalC. Couffin-CadierguesS. D’OrtenzioE. Da SilveiraC. DebrayM-P. DeplanqueD. DescampsD. DesvalléesM. DialloA. DioufA. DorivalC. DubosF. DuvalX. EloyP. EnoufV.V.E. EsperouH. Esposito-FareseM. EtienneM. EttalhaouiN. GaultN. GaymardA. GhosnJ. GiganteT. GorenneI. GuedjJ. HoctinA. HoffmannI. JaafouraS. KafifO. KaguelidouF. KaliS. KhalilA. KhanC. LaouénanC. LaribiS. LeM. Le HingratQ. Le MestreS. Le NagardH. LescureF-X. LévyY. Levy-MarchalC. LinaB. LingasG. LucetJ.C. MalvyD. MambertM. MentréF. MercierN. MezianeA. MouquetH. MullaertJ. NeantN. NoretM. PagesJ. PapadopoulosA. PaulC. Peiffer-SmadjaN. Petrov-SanchezV. PeytavinG. PiconeO. PuéchalO. Rosa-CalatravaM. RossignolB. RossignolP. RoyC. SchneiderM. SemailleC. MohammedN.S. TaghersetL. TardivonC. TellierM-C. TéouléF. TerrierO. TimsitJ-F. TriouxT. TualC. TubianaS. van der WerfS. VanelN. VeislingerA. VisseauxB. WiedemannA. YazdanpanahY. AlavoineL. AmatK.K.A. BehillilS. BielickiJ. BruijningP. BurdetC. CaumesE. CharpentierC. CoignardB. CostaY. Couffin-CadierguesS. DamondF. DechanetA. DelmasC. DescampsD. DuvalX. EcobichonJ-L. EnoufV. EspérouH. FrezoulsW. HouhouN. Ilic-HabensusE. KafifO. KikoineJ. Le HingratQ. LebeauxD. LeclercqA. LehacautJ. LetrouS. LinaB. LucetJ-C. MalvyD. ManchonP. MandicM. MeghadechaM. MotiejunaiteJ. NouroudineM. PiquardV. PostolacheA. QuintinC. RexachJ. RoufaiL. TerzianZ. ThyM. TubianaS. van der WerfS. VignaliV. VisseauxB. YazdanpanahY. van AgtmaelM. AlgeraA.G. van BaarleF. BaxD. BeudelM. BogaardH.J. BomersM. BosL. BottaM. de BrabanderJ. de BreeG. BrouwerM.C. de BruinS. BugianiM. BulleE. ChouchaneO. ClohertyA. ElbersP. FleurenL. GeerlingsS. GeertsB. GeijtenbeekT. GirbesA. GoorhuisB. GrobuschM.P. HafkampF. HagensL. HamannJ. HarrisV. HemkeR. HermansS.M. HeunksL. HollmannM.W. HornJ. HoviusJ.W. de JongM.D. KoningR. van MourikN. NellenJ. PaulusF. PetersE. van der PollT. PreckelB. PrinsJ.M. RaasveldJ. ReijndersT. SchinkelM. SchultzM.J. SchuurmanA. SigaloffK. SmitM. StijnisC.S. StilmaW. TeunissenC. ThoralP. TsonasA. van der ValkM. VeeloD. VlaarA.P.J. de VriesH. van VugtM. WiersingaW.J. WoutersD. ZwindermanA.H.K. van de BeekD. AbelL. AiutiA. Al MuhsenS. Al-MullaF. AndersonM.S. AriasA.A. FeldmanH.B. BogunovicD. BolzeA. BondarenkoA. BousfihaA.A. BrodinP. BrycesonY. BustamanteC.D. ButteM. CasariG. ChakravortyS. ChristodoulouJ. CirulliE. Condino-NetoA. CooperM.A. DalgardC.L. DavidA. DeRisiJ.L. DesaiM. DroletB.A. EspinosaS. FellayJ. FloresC. FrancoJ.L. GregersenP.K. HaerynckF. HaginD. HalwaniR. HeathJ. HenricksonS.E. HsiehE. ImaiK. ItanY. KaramitrosT. KisandK. KuC-L. LauY-L. LingY. LucasC.L. ManiatisT. MansouriD. MarodiL. MeytsI. MilnerJ. MironskaK. MogensenT. MorioT. NgL.F.P. NotarangeloL.D. NovelliA. NovelliG. O’FarrellyC. OkadaS. OzcelikT. de DiegoR.P. PlanasA.M. PrandoC. PujolA. Quintana-MurciL. ReniaL. RenieriA. Rodríguez-GallegoC. Sancho-ShimizuV. SankaranV. BarrettK.S. ShahrooeiM. SnowA. Soler-PalacínP. SpaanA.N. TangyeS. TurveyS. UddinF. UddinM.J. van de BeekD. VazquezS.E. VinhD.C. von BernuthH. WashingtonN. ZawadzkiP. SuH.C. CasanovaJ-L. JingH. TungW. LuthersC.R. BaumanB.M. ShaferS. ZhengL. ZhangZ. KuboS. ChauvinS.D. MeguroK. ShawE. LenardoM. LackJ. KarlinsE. HupaloD.M. RosenbergerJ. SukumarG. WilkersonM.D. ZhangX. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19.Science20203706515eabd457010.1126/science.abd457032972995
    [Google Scholar]
  54. HouJ. WangP. LinL. LiuX. MaF. AnH. WangZ. CaoX. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2.J. Immunol.200918332150215810.4049/jimmunol.090070719596990
    [Google Scholar]
  55. ForsterS.C. TateM.D. HertzogP.J. MicroRNA as type I interferon-regulated transcripts and modulators of the innate immune response.Front. Immunol.2015633410.3389/fimmu.2015.0033426217335
    [Google Scholar]
  56. O’ConnellR.M. TaganovK.D. BoldinM.P. ChengG. BaltimoreD. MicroRNA-155 is induced during the macrophage inflammatory response.Proc. Natl. Acad. Sci. USA200710451604160910.1073/pnas.061073110417242365
    [Google Scholar]
  57. NahidM.A. PauleyK.M. SatohM. ChanE.K.L. miR-146a is critical for endotoxin-induced tolerance: Implication in innate immunity.J. Biol. Chem.200928450345903459910.1074/jbc.M109.05631719840932
    [Google Scholar]
  58. TaganovK.D. BoldinM.P. ChangK.J. BaltimoreD. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses.Proc. Natl. Acad. Sci. USA200610333124811248610.1073/pnas.060529810316885212
    [Google Scholar]
  59. DasA. GaneshK. KhannaS. SenC.K. RoyS. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation.J. Immunol.201419231120112910.4049/jimmunol.130061324391209
    [Google Scholar]
  60. SheedyF.J. Turning 21: Induction of miR-21 as a key switch in the inflammatory response.Front. Immunol.201561910.3389/fimmu.2015.0001925688245
    [Google Scholar]
  61. SabaR. SorensenD.L. BoothS.A. MicroRNA-146a: A dominant, negative regulator of the innate immune response.Front. Immunol.2014557810.3389/fimmu.2014.0057825484882
    [Google Scholar]
  62. LiuG. LuY. Thulasi RamanS.N. XuF. WuQ. LiZ. BrownlieR. LiuQ. ZhouY. Nuclear-resident RIG-I senses viral replication inducing antiviral immunity.Nat. Commun.201891319910.1038/s41467‑018‑05745‑w30097581
    [Google Scholar]
  63. SlonchakA. HussainM. TorresS. AsgariS. KhromykhA.A. Expression of mosquito microRNA Aae-miR-2940-5p is downregulated in response to west nile virus infection to restrict viral replication.J Virol.201488158457846710.1128/JVI.00317‑14
    [Google Scholar]
  64. WangP. HouJ. LinL. WangC. LiuX. LiD. MaF. WangZ. CaoX. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1.J. Immunol.2010185106226623310.4049/jimmunol.100049120937844
    [Google Scholar]
  65. ChengC.J. BahalR. BabarI.A. PincusZ. BarreraF. LiuC. SvoronosA. BraddockD.T. GlazerP.M. EngelmanD.M. SaltzmanW.M. SlackF.J. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment.Nature2015518753710711010.1038/nature1390525409146
    [Google Scholar]
  66. MaoX. XuJ. WangW. LiangC. HuaJ. LiuJ. ZhangB. MengQ. YuX. ShiS. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives.Mol. Cancer202120113110.1186/s12943‑021‑01428‑134635121
    [Google Scholar]
  67. Emami NejadA. NajafgholianS. RostamiA. SistaniA. ShojaeifarS. EsparvarinhaM. NedaeiniaR. Haghjooy JavanmardS. TaherianM. AhmadlouM. SalehiR. SadeghiB. ManianM. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment.Cancer Cell Int.20212116210.1186/s12935‑020‑01719‑533472628
    [Google Scholar]
  68. KumarM. SahuS.K. KumarR. SubuddhiA. MajiR.K. JanaK. GuptaP. RaffetsederJ. LermM. GhoshZ. van LooG. BeyaertR. GuptaU.D. KunduM. BasuJ. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway.Cell Host Microbe201517334535610.1016/j.chom.2015.01.00725683052
    [Google Scholar]
  69. Griffiths-JonesS. SainiH.K. van DongenS. EnrightA.J. miRBase: tools for microRNA genomics.Nucleic Acids Res.200836Database issueD154D15817991681
    [Google Scholar]
  70. RehmsmeierM. SteffenP. HochsmannM. GiegerichR. Fast and effective prediction of microRNA/target duplexes.RNA NY N.2004101015071517
    [Google Scholar]
  71. HobertO. Common logic of transcription factor and microRNA action.Trends Biochem. Sci.200429946246810.1016/j.tibs.2004.07.00115337119
    [Google Scholar]
  72. KrützfeldtJ. RajewskyN. BraichR. RajeevK.G. TuschlT. ManoharanM. StoffelM. Silencing of microRNAs in vivo with ‘antagomirs’.Nature2005438706868568910.1038/nature0430316258535
    [Google Scholar]
  73. NematollahiM.H. Torkzadeh-MahanaiM. PardakhtyA. EbrahimiM.H.A. AsadikaramG. Ternary complex of plasmid DNA with NLS-Mu-Mu protein and cationic niosome for biocompatible and efficient gene delivery: a comparative study with protamine and lipofectamine.Artif. Cells Nanomed. Biotechnol.2017201711110.1080/21691401.2017.139231629081256
    [Google Scholar]
  74. AsadikaramG. PoustforooshA. PardakhtyA. Torkzadeh-MahaniM. NematollahiM.H. Niosomal virosome derived by vesicular stomatitis virus glycoprotein as a new gene carrier.Biochem. Biophys. Res. Commun.202153498098710.1016/j.bbrc.2020.10.05433131770
    [Google Scholar]
  75. Abbaszadeh-GoudarziK. NematollahiM.H. KhanbabaeiH. NaveH.H. MirzaeiH.R. PourghadamyariH. SahebkarA. Targeted delivery of CRISPR/Cas13 as a promising therapeutic approach to treat SARS-CoV-2.Curr. Pharm. Biotechnol.20212291149115510.2174/18734316MTEwtNTgrw33038909
    [Google Scholar]
  76. LundstromK. Viral vectors in gene therapy.Diseases2018624210.3390/diseases602004229883422
    [Google Scholar]
  77. TatsisN. ErtlH.C.J. Adenoviruses as vaccine vectors.Mol. Ther.200410461662910.1016/j.ymthe.2004.07.01315451446
    [Google Scholar]
  78. CawoodR. ChenH.H. CarrollF. Bazan-PeregrinoM. van RooijenN. SeymourL.W. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells.PLoS Pathog.200955e100044010.1371/journal.ppat.100044019461878
    [Google Scholar]
  79. WangD. TaiP.W.L. GaoG. Adeno-associated virus vector as a platform for gene therapy delivery.Nat. Rev. Drug Discov.201918535837810.1038/s41573‑019‑0012‑930710128
    [Google Scholar]
  80. KotaJ. ChivukulaR.R. O’DonnellK.A. WentzelE.A. MontgomeryC.L. HwangH.W. ChangT.C. VivekanandanP. TorbensonM. ClarkK.R. MendellJ.R. MendellJ.T. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model.Cell200913761005101710.1016/j.cell.2009.04.02119524505
    [Google Scholar]
  81. GentnerB. SchiraG. GiustacchiniA. AmendolaM. BrownB.D. PonzoniM. NaldiniL. Stable knockdown of microRNA in vivo by lentiviral vectors.Nat. Methods200961636610.1038/nmeth.127719043411
    [Google Scholar]
  82. ThomasC.E. EhrhardtA. KayM.A. Progress and problems with the use of viral vectors for gene therapy.Nat. Rev. Genet.20034534635810.1038/nrg106612728277
    [Google Scholar]
  83. ShirleyJ.L. de JongY.P. TerhorstC. HerzogR.W. Immune responses to viral gene therapy vectors.Mol. Ther.202028370972210.1016/j.ymthe.2020.01.00131968213
    [Google Scholar]
  84. KawaiT. AkiraS. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.Nat. Immunol.201011537338410.1038/ni.186320404851
    [Google Scholar]
  85. YoneyamaM. FujitaT. RNA recognition and signal transduction by RIG-I-like receptors.Immunol. Rev.20092271546510.1111/j.1600‑065X.2008.00727.x19120475
    [Google Scholar]
  86. SchroderK. TschoppJ. The Inflammasomes.Cell2010140682183210.1016/j.cell.2010.01.04020303873
    [Google Scholar]
  87. KulkarniJ.A. CullisP.R. van der MeelR. Lipid nanoparticles enabling gene therapies: From concepts to clinical utility.Nucleic Acid Ther.201828314615710.1089/nat.2018.072129683383
    [Google Scholar]
  88. ReedS.G. OrrM.T. FoxC.B. Key roles of adjuvants in modern vaccines.Nat. Med.201319121597160810.1038/nm.340924309663
    [Google Scholar]
  89. PerrieY. MohammedA.R. KirbyD.J. McNeilS.E. BramwellV.W. Vaccine adjuvant systems: Enhancing the efficacy of sub-unit protein antigens.Int. J. Pharm.2008364227228010.1016/j.ijpharm.2008.04.03618555624
    [Google Scholar]
  90. WaringB.M. SjaastadL.E. FiegeJ.K. FayE.J. ReyesI. MoriarityB. MicroRNA-based attenuation of influenza virus across susceptible hosts.J Virol.2018922e01741
    [Google Scholar]
  91. BarnesD. KunitomiM. VignuzziM. SakselaK. AndinoR. Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines.Cell Host Microbe20084323924810.1016/j.chom.2008.08.00318779050
    [Google Scholar]
  92. YeeP.T.I. TanS.H. OngK.C. TanK.O. WongK.T. HassanS.S. PohC.L. Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice.Sci. Rep.201991480510.1038/s41598‑019‑41285‑z30886246
    [Google Scholar]
  93. BrostoffT. PesaventoP.A. BarkerC.M. KenneyJ.L. DietrichE.A. DuggalN.K. Bosco-LauthA.M. BraultA.C. MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice.Vaccine201634445366537510.1016/j.vaccine.2016.08.06327637937
    [Google Scholar]
  94. LeeT.C. LinY.L. LiaoJ.T. SuC.M. LinC.C. LinW.P. LiaoC.L. Utilizing liver-specific microRNA-122 to modulate replication of dengue virus replicon.Biochem. Biophys. Res. Commun.2010396359660110.1016/j.bbrc.2010.04.08020412785
    [Google Scholar]
  95. PerezJ.T. PhamA.M. LoriniM.H. ChuaM.A. SteelJ. tenOeverB.R. MicroRNA-mediated species-specific attenuation of influenza A virus.Nat. Biotechnol.200927657257610.1038/nbt.154219483680
    [Google Scholar]
  96. KellyE.J. HadacE.M. GreinerS. RussellS.J. Engineering microRNA responsiveness to decrease virus pathogenicity.Nat. Med.200814111278128310.1038/nm.177618953352
    [Google Scholar]
  97. KellyE.J. HadacE.M. CullenB.R. RussellS.J. MicroRNA antagonism of the picornaviral life cycle: Alternative mechanisms of interference.PLoS Pathog.201063e1000820
    [Google Scholar]
  98. RuffS.M. AyabeR.I. MalekzadehP. GoodM.L. WachM.M. GonzalesM.K. TiroshA. NilubolN. PacakK. KebebewE. PatelD. MicroRNA-210 may be a preoperative biomarker of malignant pheochromocytomas and paragangliomas.J. Surg. Res.20192431710.1016/j.jss.2019.04.08631146085
    [Google Scholar]
  99. ZhangJ. RenJ. HaoS. MaF. XinY. JiaW. SunY. LiuZ. YuH. JiaJ. LiW. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer.Am. J. Transl. Res.201810252553429511447
    [Google Scholar]
  100. PanJ. ZhouC. ZhaoX. HeJ. TianH. ShenW. HanY. ChenJ. FangS. MengX. JinX. GongZ. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer.Sci. Rep.2018811669910.1038/s41598‑018‑35139‑330420640
    [Google Scholar]
  101. CagleP. NitureS. SrivastavaA. RamalingaM. AqeelR. Rios-ColonL. ChimehU. SuyS. CollinsS.P. DahiyaR. KumarD. MicroRNA-214 targets PTK6 to inhibit tumorigenic potential and increase drug sensitivity of prostate cancer cells.Sci. Rep.201991977610.1038/s41598‑019‑46170‑331278310
    [Google Scholar]
  102. WeiQ. LiX. YuW. ZhaoK. QinG. ChenH. GuY. DingF. ZhuZ. FuX. SunM. microRNA-messenger RNA regulatory network of esophageal squamous cell carcinoma and the identification of miR-1 as a biomarker of patient survival.J. Cell. Biochem.20191208122591227210.1002/jcb.2816631017699
    [Google Scholar]
  103. NakashimaH. YoshidaR. HirosueA. KawaharaK. SakataJ. AritaH. YamamotoT. ToyaR. MurakamiR. HirakiA. ShinoharaM. ItoT. KuwaharaY. NakayamaH. Circulating miRNA-1290 as a potential biomarker for response to chemoradiotherapy and prognosis of patients with advanced oral squamous cell carcinoma: A single-center retrospective study.Tumour Biol.201941310.1177/101042831982685330887897
    [Google Scholar]
  104. ArvidssonY. RehammarA. BergströmA. AnderssonE. AltiparmakG. SwärdC. WängbergB. KristianssonE. NilssonO. miRNA profiling of small intestinal neuroendocrine tumors defines novel molecular subtypes and identifies miR-375 as a biomarker of patient survival.Mod. Pathol.20183181302131710.1038/s41379‑018‑0010‑129487354
    [Google Scholar]
  105. FukagawaS. MiyataK. YotsumotoF. KiyoshimaC. NamS.O. AnanH. KatsudaT. MiyaharaD. MurataM. YagiH. ShirotaK. YasunagaS. KatoK. MiyamotoS. MicroRNA-135a-3p as a promising biomarker and nucleic acid therapeutic agent for ovarian cancer.Cancer Sci.2017108588689610.1111/cas.1321028231414
    [Google Scholar]
  106. BartelD.P. MicroRNAs: target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.00219167326
    [Google Scholar]
  107. LimL.P. LauN.C. Garrett-EngeleP. GrimsonA. SchelterJ.M. CastleJ. BartelD.P. LinsleyP.S. JohnsonJ.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.Nature2005433702776977310.1038/nature0331515685193
    [Google Scholar]
  108. SoodP. KrekA. ZavolanM. MacinoG. RajewskyN. Cell-type-specific signatures of microRNAs on target mRNA expression.Proc. Natl. Acad. Sci. USA200610382746275110.1073/pnas.051104510316477010
    [Google Scholar]
  109. JacksonA.L. LinsleyP.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application.Nat. Rev. Drug Discov.201091576710.1038/nrd301020043028
    [Google Scholar]
  110. ShuD. LiH. ShuY. XiongG. CarsonW.E. HaqueF. XuR. GuoP. Systemic delivery of anti-mirna for suppression of triple negative breast cancer utilizing RNA nanotechnology.ACS Nano20159109731974010.1021/acsnano.5b0247126387848
    [Google Scholar]
  111. LamJ.K.W. ChowM.Y.T. ZhangY. LeungS.W.S. siRNA versus miRNA as therapeutics for gene silencing.Mol. Ther. Nucleic Acids201549e25210.1038/mtna.2015.2326372022
    [Google Scholar]
  112. BakR.O. MikkelsenJ.G. miRNA sponges: soaking up miRNAs for regulation of gene expression.Wiley Interdiscip. Rev. RNA20145331733310.1002/wrna.121324375960
    [Google Scholar]
  113. BaderA.G. BrownD. WinklerM. The promise of microRNA replacement therapy.Cancer Res.201070187027703010.1158/0008‑5472.CAN‑10‑201020807816
    [Google Scholar]
  114. ChenY. GaoD.Y. HuangL. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies.Adv. Drug Deliv. Rev.20158112814110.1016/j.addr.2014.05.00924859533
    [Google Scholar]
  115. PappalardoF. BrusicV. CastiglioneF. SchönbachC. Computational and bioinformatics techniques for immunology.BioMed Res. Int.201420141210.1155/2014/26318925610859
    [Google Scholar]
  116. OrtuñoF.M. ValenzuelaO. GlösekötterP. RojasI. Main findings and advances in biomedical engineering and bioinformatics from IWBBIO 2015.Biomed. Eng. Online201615S1Suppl. 17910.1186/s12938‑016‑0187‑927454414
    [Google Scholar]
  117. Ben OrG. Veksler-LublinskyI. Comprehensive machine-learning-based analysis of microRNA–target interactions reveals variable transferability of interaction rules across species.BMC Bioinformatics202122126410.1186/s12859‑021‑04164‑x34030625
    [Google Scholar]
  118. FanY. SiklenkaK. AroraS.K. RibeiroP. KimminsS. XiaJ. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis.Nucleic Acids Res.201644W1W135W14110.1093/nar/gkw28827105848
    [Google Scholar]
  119. PioG. CeciM. MalerbaD. D’EliaD. ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks.BMC Bioinformatics201516S9Suppl. 9S710.1186/1471‑2105‑16‑S9‑S726051695
    [Google Scholar]
  120. KarimM.R. IslamT. LangeC. Rebholz-SchuhmannD. DeckerS. Adversary-aware multimodal neural networks for cancer susceptibility prediction from multiomics data.IEEE Access202210543865440910.1109/ACCESS.2022.3175816
    [Google Scholar]
  121. FröhlichH. BallingR. BeerenwinkelN. KohlbacherO. KumarS. LengauerT. MaathuisM.H. MoreauY. MurphyS.A. PrzytyckaT.M. RebhanM. RöstH. SchuppertA. SchwabM. SpangR. StekhovenD. SunJ. WeberA. ZiemekD. ZupanB. From hype to reality: data science enabling personalized medicine.BMC Med.201816115010.1186/s12916‑018‑1122‑730145981
    [Google Scholar]
  122. PolandG.A. OvsyannikovaI.G. JacobsonR.M. Personalized vaccines: the emerging field of vaccinomics.Expert Opin. Biol. Ther.20088111659166710.1517/14712598.8.11.165918847302
    [Google Scholar]
  123. PolandG.A. OvsyannikovaI.G. JacobsonR.M. Application of pharmacogenomics to vaccines.Pharmacogenomics200910583785210.2217/pgs.09.2519450131
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232305431240726113347
Loading
/content/journals/cgt/10.2174/0115665232305431240726113347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test