Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Alternative splicing (AS) of pre-mRNA occurs widely in human genes to produce multiple isoforms with different or even opposite functions. Aberrant AS is often associated with gene mutations and can be corrected by gene therapy. Oral diseases are important public health problems worldwide. Accumulated pieces of evidence demonstrate that AS of pathogenic genes plays key roles in some oral diseases. However, considering the extensiveness and complexity of AS, it may affect the initiation and development of oral diseases deeply and widely. This review describes the diversity of AS and resulting isoforms in genetic, infectious, and malignant oral diseases and highlights the key roles of AS in determining the function of isoforms and the occurrence and progression of these diseases. The studies of alternative splicing may provide great opportunities for the understanding and treatment of oral diseases.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232302948240718050212
2024-07-23
2025-11-06
Loading full text...

Full text loading...

References

  1. GilbertW. Why genes in pieces?Nature1978271564550110.1038/271501a0622185
    [Google Scholar]
  2. GraveleyB.R. Alternative splicing: Increasing diversity in the proteomic world.Trends Genet.200117210010710.1016/S0168‑9525(00)02176‑411173120
    [Google Scholar]
  3. JiangW. ChenL. Alternative splicing: Human disease and quantitative analysis from high-throughput sequencing.Comput. Struct. Biotechnol. J.20211918319510.1016/j.csbj.2020.12.00933425250
    [Google Scholar]
  4. ZhangS. WuX. DiaoP. WangC. WangD. LiS. WangY. ChengJ. Identification of a prognostic alternative splicing signature in oral squamous cell carcinoma.J. Cell. Physiol.202023554804481310.1002/jcp.2935731637730
    [Google Scholar]
  5. MontesM. SanfordB.L. ComiskeyD.F. ChandlerD.S. RNA splicing and disease: Animal models to therapies.Trends Genet.2019351688710.1016/j.tig.2018.10.00230466729
    [Google Scholar]
  6. SammethM. FoissacS. GuigóR. A general definition and nomenclature for alternative splicing events.PLOS Comput. Biol.200848e100014710.1371/journal.pcbi.100014718688268
    [Google Scholar]
  7. SolnickD. Trans splicing of mRNA precursors.Cell198542115716410.1016/S0092‑8674(85)80111‑23848347
    [Google Scholar]
  8. KelemenO. ConvertiniP. ZhangZ. WenY. ShenM. FalaleevaM. StammS. Function of alternative splicing.Gene2013514113010.1016/j.gene.2012.07.08322909801
    [Google Scholar]
  9. LeeY. RioD.C. Mechanisms and regulation of alternative Pre-mRNA splicing.Annu. Rev. Biochem.201584129132310.1146/annurev‑biochem‑060614‑03431625784052
    [Google Scholar]
  10. BaralleF.E. GiudiceJ. Alternative splicing as a regulator of development and tissue identity.Nat. Rev. Mol. Cell Biol.201718743745110.1038/nrm.2017.2728488700
    [Google Scholar]
  11. WangZ. BurgeC.B. Splicing regulation: From a parts list of regulatory elements to an integrated splicing code.RNA200814580281310.1261/rna.87630818369186
    [Google Scholar]
  12. ShenH. GreenM.R. RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans.Genes Dev.200620131755176510.1101/gad.142210616766678
    [Google Scholar]
  13. CrawfordP.J.M. AldredM. Bloch-ZupanA. Amelogenesis imperfecta.Orphanet J. Rare Dis.2007211710.1186/1750‑1172‑2‑1717408482
    [Google Scholar]
  14. ChoE.S. KimK.J. LeeK.E. LeeE.J. YunC.Y. LeeM.J. ShinT.J. HyunH.K. KimY.J. LeeS.H. JungH.S. LeeZ.H. KimJ.W. Alteration of conserved alternative splicing in AMELX causes enamel defects.J. Dent. Res.2014931098098710.1177/002203451454727225117480
    [Google Scholar]
  15. KimY.J. KangJ. SeymenF. KoruyucuM. ZhangH. KasimogluY. BayramM. Tuna-InceE.B. BayrakS. TulogluN. HuJ.C.C. SimmerJ.P. KimJ.W. Alteration of exon definition causes amelogenesis imperfecta.J. Dent. Res.202099441041810.1177/002203452090170831999931
    [Google Scholar]
  16. StahlJ. NakanoY. HorstJ. ZhuL. LeM. ZhangY. LiuH. LiW. Den BestenP.K. Exon4 amelogenin transcripts in enamel biomineralization.J. Dent. Res.201594683684210.1177/002203451557741225792521
    [Google Scholar]
  17. LeM.H. WarotayanontR. StahlJ. Den BestenP.K. NakanoY. Amelogenin Exon4 forms a novel mirna that directs ameloblast and osteoblast differentiation.J. Dent. Res.201695442342910.1177/002203451562244326715056
    [Google Scholar]
  18. ShemiraniR. LeM.H. NakanoY. Mutations Causing X-linked amelogenesis imperfecta alter miRNA formation from amelogenin Exon4.J. Dent. Res.2023102111210121910.1177/0022034523118057237563801
    [Google Scholar]
  19. ShemiraniR. LinG. Abduweli UyghurturkD. LeM. NakanoY. An miRNA derived from amelogenin exon4 regulates expression of transcription factor Runx2 by directly targeting upstream activators Nfia and Prkch.J. Biol. Chem.2022298510180710.1016/j.jbc.2022.10180735271849
    [Google Scholar]
  20. ÅbergT. CavenderA. GaikwadJ.S. BronckersA.L.J.J. WangX. Waltimo-SirénJ. ThesleffI. D’SouzaR.N. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice.J. Histochem. Cytochem.200452113113910.1177/00221554040520011314688224
    [Google Scholar]
  21. ShintaniS. KobataM. KamakuraN. ToyosawaS. OoshimaT. Identification and characterization of matrix metalloproteinase-20 (MMP20; enamelysin) genes in reptile and amphibian.Gene20073921-2899710.1016/j.gene.2006.11.01417223283
    [Google Scholar]
  22. DixonM.J. MarazitaM.L. BeatyT.H. MurrayJ.C. Cleft lip and palate: Understanding genetic and environmental influences.Nat. Rev. Genet.201112316717810.1038/nrg293321331089
    [Google Scholar]
  23. FeroneG. MolloM.R. ThomasonH.A. AntoniniD. ZhouH. AmbrosioR. De RosaL. SalvatoreD. GetsiosS. van BokhovenH. DixonJ. MisseroC. p63 control of desmosome gene expression and adhesion is compromised in AEC syndrome.Hum. Mol. Genet.201322353154310.1093/hmg/dds46423108156
    [Google Scholar]
  24. HuangY.P. KimY. LiZ. FomenkovT. FomenkovA. RatovitskiE.A. AEC-associated p63 mutations lead to alternative splicing/protein stabilization of p63 and modulation of Notch signaling.Cell Cycle20054101440144710.4161/cc.4.10.208616177572
    [Google Scholar]
  25. SylvesterB. BrindopkeF. SuzukiA. GironM. AuslanderA. MaasR.L. TsaiB. GaoH. MageeW.III CoxT.C. Sanchez-LaraP.A. A synonymous exonic splice silencer variant in IRF6 as a novel and cryptic cause of non-syndromic cleft lip and palate.Genes202011890310.3390/genes1108090332784565
    [Google Scholar]
  26. BebeeT.W. ParkJ.W. SheridanK.I. WarzechaC.C. CieplyB.W. RohacekA.M. XingY. CarstensR.P. The splicing regulators Esrp1 and Esrp2 direct an epithelial splicing program essential for mammalian development.eLife20154e0895410.7554/eLife.0895426371508
    [Google Scholar]
  27. LeeS. SearsM.J. ZhangZ. LiH. SalhabI. KrebsP. XingY. NahH.D. WilliamsT. CarstensR.P. Cleft lip and cleft palate (CL/P) in Esrp1 KO mice is associated with alterations in epithelial-mesenchymal crosstalk.Development202014721dev.18736910.1242/dev.18736932253237
    [Google Scholar]
  28. DarveauR.P. PhamT.T.T. LemleyK. ReifeR.A. BainbridgeB.W. CoatsS.R. HowaldW.N. WayS.S. HajjarA.M. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4.Infect. Immun.20047295041505110.1128/IAI.72.9.5041‑5051.200415321997
    [Google Scholar]
  29. LuY.C. YehW.C. OhashiP.S. LPS/TLR4 signal transduction pathway.Cytokine200842214515110.1016/j.cyto.2008.01.00618304834
    [Google Scholar]
  30. BurnsK. JanssensS. BrissoniB. OlivosN. BeyaertR. TschoppJ. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4.J. Exp. Med.2003197226326810.1084/jem.2002179012538665
    [Google Scholar]
  31. JanssensS. BurnsK. TschoppJ. BeyaertR. Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88.Curr. Biol.200212646747110.1016/S0960‑9822(02)00712‑111909531
    [Google Scholar]
  32. LeeF.F.Y. DavidsonK. HarrisC. McClendonJ. JanssenW.J. AlperS. NF-κB mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages.J. Biol. Chem.2020295186236624810.1074/jbc.RA119.01149532179652
    [Google Scholar]
  33. FengZ. LiQ. MengR. YiB. XuQ. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells.J. Cell. Mol. Med.20182252558256810.1111/jcmm.1349129502358
    [Google Scholar]
  34. MakitaN. SuzukiM. AsamiS. TakahataR. KohzakiD. KobayashiS. HakamazukaT. HozumiN. Two of four alternatively spliced isoforms of RUNX2 control osteocalcin gene expression in human osteoblast cells.Gene20084131-281710.1016/j.gene.2007.12.02518321663
    [Google Scholar]
  35. ShenJ. SheW. ZhangF. GuoJ. JiaR. YBX1 promotes the inclusion of RUNX2 alternative exon 5 in dental pulp stem cells.Int. J. Stem Cells202215330131010.15283/ijsc2103534965997
    [Google Scholar]
  36. PihlstromB.L. MichalowiczB.S. JohnsonN.W. Periodontal diseases.Lancet200536694991809182010.1016/S0140‑6736(05)67728‑816298220
    [Google Scholar]
  37. KimY.G. KimM. KangJ.H. KimH.J. ParkJ.W. LeeJ.M. SuhJ.Y. KimJ.Y. LeeJ.H. LeeY. Transcriptome sequencing of gingival biopsies from chronic periodontitis patients reveals novel gene expression and splicing patterns.Hum. Genomics20161012810.1186/s40246‑016‑0084‑027531006
    [Google Scholar]
  38. MuroA.F. ChauhanA.K. GajovicS. IaconcigA. PorroF. StantaG. BaralleF.E. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan.J. Cell Biol.2003162114916010.1083/jcb.20021207912847088
    [Google Scholar]
  39. ParkarM.H. BakaliosP. NewmanH.N. OlsenI. Expression and splicing of the fibronectin gene in healthy and diseased periodontal tissue.Eur. J. Oral Sci.1997105326427010.1111/j.1600‑0722.1997.tb00210.x9249194
    [Google Scholar]
  40. KantarciA. OyaizuK. Van DykeT.E. Neutrophil-mediated tissue injury in periodontal disease pathogenesis: findings from localized aggressive periodontitis.J. Periodontol.2003741667510.1902/jop.2003.74.1.6612593599
    [Google Scholar]
  41. SanjuánM.A. JonesD.R. IzquierdoM. MéridaI. Role of diacylglycerol kinase alpha in the attenuation of receptor signaling.J. Cell Biol.2001153120722010.1083/jcb.153.1.20711285286
    [Google Scholar]
  42. BatistaE.L.Jr KantarciA.I. HasturkH. Van DykeT.E. Alternative splicing generates a diacylglycerol kinase α transcript that acts as a dominant-negative modulator of superoxide production in localized aggressive periodontitis.J. Periodontol.201485793494310.1902/jop.2013.13046824171497
    [Google Scholar]
  43. HiranoF. HiranoH. HinoE. TakayamaS. SaitoK. KusumotoY. ShimabukuroY. MurakamiS. OkadaH. CD44 isoform expression in periodontal tissues: cell-type specific regulation of alternative splicing.J. Periodontal Res.199732863464510.1111/j.1600‑0765.1997.tb00573.x9409458
    [Google Scholar]
  44. SpeightP.M. BarrettA.W. Salivary gland tumours.Oral Dis.20028522924010.1034/j.1601‑0825.2002.02870.x12363107
    [Google Scholar]
  45. ManabeR. Oh-eN. MaedaT. FukudaT. SekiguchiK. Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment.J. Cell Biol.1997139129530710.1083/jcb.139.1.2959314547
    [Google Scholar]
  46. WangH-C. YangY. XuS-Y. PengJ. JiangJ-H. LiC-Y. The CRISPR/Cas system inhibited the pro-oncogenic effects of alternatively spliced fibronectin extra domain A via editing the genome in salivary adenoid cystic carcinoma cells.Oral Dis.201521560861810.1111/odi.1232325684411
    [Google Scholar]
  47. YuH. LeeH. HerrmannA. BuettnerR. JoveR. Revisiting STAT3 signalling in cancer: new and unexpected biological functions.Nat. Rev. Cancer2014141173674610.1038/nrc381825342631
    [Google Scholar]
  48. ShaoH. QuinteroA.J. TweardyD.J. Identification and characterization of cis elements in the STAT3 gene regulating STAT3α and STAT3β messenger RNA splicing.Blood200198133853385610.1182/blood.V98.13.385311739197
    [Google Scholar]
  49. CaldenhovenE. van DijkT.B. SolariR. ArmstrongJ. RaaijmakersJ.A.M. LammersJ.W.J. KoendermanL. de GrootR.P. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription.J. Biol. Chem.199627122132211322710.1074/jbc.271.22.132218675499
    [Google Scholar]
  50. GuoJ. JiaR. Splicing factor poly(rC)-binding protein 1 is a novel and distinctive tumor suppressor.J. Cell. Physiol.20192341334110.1002/jcp.2687330132844
    [Google Scholar]
  51. WangX. GuoJ. CheX. JiaR. PCBP1 inhibits the expression of oncogenic STAT3 isoform by targeting alternative splicing of STAT3 exon 23.Int. J. Biol. Sci.20191561177118610.7150/ijbs.3310331223278
    [Google Scholar]
  52. CraigR.W. MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis.Leukemia200216444445410.1038/sj.leu.240241611960321
    [Google Scholar]
  53. ZhangT. ZhaoC. LuoL. ZhaoH. ChengJ. XuF. The expression of Mcl-1 in human cervical cancer and its clinical significance.Med. Oncol.20122931985199110.1007/s12032‑011‑0005‑y21674276
    [Google Scholar]
  54. BaeJ. LeoC.P. HsuS.Y. HsuehA.J.W. MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain.J. Biol. Chem.200027533252552526110.1074/jbc.M90982619910837489
    [Google Scholar]
  55. BingleC.D. CraigR.W. SwalesB.M. SingletonV. ZhouP. WhyteM.K.B. Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death.J. Biol. Chem.200027529221362214610.1074/jbc.M90957219910766760
    [Google Scholar]
  56. KimJ.H. SimS.H. HaH.J. KoJ.J. LeeK. BaeJ. MCL-1ES, a novel variant of MCL-1, associates with MCL-1L and induces mitochondrial cell death.FEBS Lett.2009583172758276410.1016/j.febslet.2009.08.00619683529
    [Google Scholar]
  57. PalveV. MallickS. GhaisasG. KannanS. TeniT. Overexpression of Mcl-1L splice variant is associated with poor prognosis and chemoresistance in oral cancers.PLoS One2014911e11192710.1371/journal.pone.011192725409302
    [Google Scholar]
  58. LiF. AmbrosiniG. ChuE.Y. PlesciaJ. TogninS. MarchisioP.C. AltieriD.C. Control of apoptosis and mitotic spindle checkpoint by survivin.Nature1998396671158058410.1038/251419859993
    [Google Scholar]
  59. CaldasH. HonseyL.E. AlturaR.A. Survivin 2α: A novel survivin splice variant expressed in human malignancies.Mol. Cancer2005411110.1186/1476‑4598‑4‑1115743529
    [Google Scholar]
  60. BadranA. YoshidaA. IshikawaK. GoiT. YamaguchiA. UedaT. InuzukaM. Identification of a novel splice variant of the human anti-apoptopsis gene survivin.Biochem. Biophys. Res. Commun.2004314390290710.1016/j.bbrc.2003.12.17814741722
    [Google Scholar]
  61. MahotkaC. WenzelM. SpringerE. GabbertH.E. GerharzC.D. Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties.Cancer Res.199959246097610210626797
    [Google Scholar]
  62. MishraR. PalveV. KannanS. PawarS. TeniT. High expression of survivin and its splice variants survivin ΔEx3 and survivin 2 B in oral cancers.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2015120449750710.1016/j.oooo.2015.06.02726346910
    [Google Scholar]
  63. LiuM. GuoJ. JiaR. Emerging roles of alternative RNA splicing in oral squamous cell carcinoma.Front. Oncol.202212101975010.3389/fonc.2022.101975036505770
    [Google Scholar]
  64. De MariaS. PannoneG. BufoP. SantoroA. SerpicoR. MetaforaS. RubiniC. PasqualiD. PapagerakisS.M. StaibanoS. De RosaG. FarinaE. EmanuelliM. SantarelliA. MariggiòM.A. Lo RussoL. Lo MuzioL. Survivin gene-expression and splicing isoforms in oral squamous cell carcinoma.J. Cancer Res. Clin. Oncol.2009135110711610.1007/s00432‑008‑0433‑z18642030
    [Google Scholar]
  65. ShanY. ZhengL. ZhangS. QianB. Abnormal expression of FOXM1 in carcinogenesis of renal cell carcinoma: From experimental findings to clinical applications.Biochem. Biophys. Res. Commun.202469214925110.1016/j.bbrc.2023.14925138056162
    [Google Scholar]
  66. LaoukiliJ. StahlM. MedemaR.H. FoxM1: at the crossroads of ageing and cancer.Biochim. Biophys. Acta2007177519210217014965
    [Google Scholar]
  67. JiaR. CheX. JiaJ. GuoJ. FOXM1a isoform of oncogene FOXM1 is a tumor suppressor suppressed by hnRNP C in oral squamous cell carcinoma.Biomolecules2023139133110.3390/biom1309133137759731
    [Google Scholar]
  68. HuangX. GollinS.M. RajaS. GodfreyT.E. High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells.Proc. Natl. Acad. Sci.20029917113691137410.1073/pnas.17228579912172009
    [Google Scholar]
  69. JiangL. ZengX. YangH. WangZ. ShenJ. BaiJ. ZhangY. GaoF. ZhouM. ChenQ. Oral cancer overexpressed 1 (ORAOV1): A regulator for the cell growth and tumor angiogenesis in oral squamous cell carcinoma.Int. J. Cancer200812381779178610.1002/ijc.2373418688849
    [Google Scholar]
  70. JiangL. YangH.S. WangZ. ZhouY. ZhouM. ZengX. ChenQ.M. ORAOV1-A correlates with poor differentiation in oral cancer.J. Dent. Res.200988543343810.1177/002203450933699419493886
    [Google Scholar]
  71. LuoX. JiangY. ChenF. WeiZ. QiuY. XuH. TianG. GongW. YuanY. FengH. ZhongL. JiN. XuX. SunC. LiT. LiJ. FengX. DengP. ZengX. ZhouM. ZhouY. DanH. JiangL. ChenQ. ORAOV1-B promotes OSCC metastasis via the NF-κB-TNFα Loop.J. Dent. Res.2021100885886710.1177/002203452199633933655785
    [Google Scholar]
  72. ThieryJ.P. AcloqueH. HuangR.Y.J. NietoM.A. Epithelial-mesenchymal transitions in development and disease.Cell2009139587189010.1016/j.cell.2009.11.00719945376
    [Google Scholar]
  73. ChenC. ZhaoS. KarnadA. FreemanJ.W. The biology and role of CD44 in cancer progression: therapeutic implications.J. Hematol. Oncol.20181116410.1186/s13045‑018‑0605‑529747682
    [Google Scholar]
  74. ReateguiE.P. MayoloA.A. DasP.M. AstorF.C. SingalR. HamiltonK.L. GoodwinW.J. CarrawayK.L. FranzmannE.J. Characterization of CD44v3 containing isoforms in head and neck cancer.Cancer Biol. Ther.2006591163116810.4161/cbt.5.9.306516855392
    [Google Scholar]
  75. Athanassiou-PapaefthymiouM. ShkeirO. KimD. DiviV. MatossianM. OwenJ.H. CzerwinskiM.J. PapagerakisP. McHughJ. BradfordC.R. CareyT.E. WolfG.T. PrinceM.E. PapagerakisS. Evaluation of CD44 variant expression in oral, head and neck squamous cell carcinomas using a triple approach and its clinical significance.Int. J. Immunopathol. Pharmacol.201427333734910.1177/03946320140270030425280025
    [Google Scholar]
  76. Matizonkas-AntonioL.F. LibórioT.N. Aquino XavierF.C. Silva-ValenzuelaM.G. Michaluarte-JúniorP. NunesF.D. Detection of TGIF1 homeobox gene in oral squamous cell carcinoma according to histologic grading.Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.2011111221822410.1016/j.tripleo.2010.10.00321237437
    [Google Scholar]
  77. LibórioT.N. FerreiraE.N. Aquino XavierF.C. CarraroD.M. KowalskiL.P. SoaresF.A. NunesF.D. TGIF1 splicing variant 8 is overexpressed in oral squamous cell carcinoma and is related to pathologic and clinical behavior.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2013116561462510.1016/j.oooo.2013.07.01424119525
    [Google Scholar]
  78. MenonS.S. GuruvayoorappanC. SakthivelK.M. RasmiR.R. Ki-67 protein as a tumour proliferation marker.Clin. Chim. Acta2019491394510.1016/j.cca.2019.01.01130653951
    [Google Scholar]
  79. LiuM. LinC. HuangQ. JiaJ. GuoJ. JiaR. SRSF3-Mediated Ki67 Exon 7-inclusion promotes head and neck squamous cell carcinoma progression via repressing AKR1C2.Int. J. Mol. Sci.2023244387210.3390/ijms2404387236835286
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232302948240718050212
Loading
/content/journals/cgt/10.2174/0115665232302948240718050212
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alternative splicing; isoforms; oral diseases; pathogenesis; Pre-mRNA; splicing factors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test