Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Biomass, as the most abundant and renewable organic carbon source, can be upgraded into various value-added platform molecules. To implement more sustainable and economic catalytic biomass valorization, reusable heterogeneous catalysts would be one of the preferable choices. In this work, a series of phosphotungstic acid-based solid hybrids were produced by assembly of phosphotungstic acid with different pyridines using a facile solvothermal method. The obtained 3- phenylpyridine-phosphotungstate hybrid displayed superior catalytic performance in the upgrade of fructose to methyl levulinate with 71.2% yield and 83.2% fructose conversion at 140 ºC for 8 h in methanol, a bio-based and environmentally friendly solvent, which was probably due to its relatively large pore size and high hydrophobicity. This low-cost and eco-friendly catalytic process could be simply operated in a single pot without cumbersome separation steps. In addition, the 3- phenylpyridine-phosphotungstate catalyst was able to be reused for four times with little deactivation.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/2213346105666181112112330
2019-04-01
2025-10-02
Loading full text...

Full text loading...

/content/journals/cgc/10.2174/2213346105666181112112330
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test