Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Molecules of natural origin play a profound role in drug discovery and development since natural products derived from Mother Nature, particularly from plants are employed as satisfactory precursors for important medicines. The total synthesis of complex natural products endures as a dynamic field of chemical research as the demand for bioactive natural products and secondary metabolites is gradually enhancing owing to their great application in the area of synthetic organic chemistry and the biological community. It is very useful in ascertaining the hypothetical complex structure of such molecules in the laboratory since different biologically potent secondary metabolites are derived in small quantities frequently. The total synthesis of natural products using organocatalysis as the key step(s) has earned momentum recently because of high chemical efficiency, low toxicity, simple accessibility, low cost, and eco-friendly of organocatalysts due to the absence of a metal atom as well as the popularity of asymmetric catalysis research. This greener strategy is capable enough to execute the transformations at ambient temperature as per the sixth principle of green chemistry which is dedicated to the “Design for Energy Efficiency”. Cinchona alkaloids, chiral secondary and primary amines, guanidine and guanidiniums, -heterocyclic carbenes, . are important organocatalysts in the field of the total synthesis of natural products and related compounds. Thus, the present review aims to deal with the total synthesis of natural products at room temperature as crucial intermediate(s) and it also offers an overview of natural sources, structures, and biological activities of natural products for the first time modishly.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461340116241020175907
2024-10-30
2025-08-16
Loading full text...

Full text loading...

References

  1. XiangS.H. TanB. Advances in asymmetric organocatalysis over the last 10 years.Nat. Commun.2020111378610.1038/s41467‑020‑17580‑z 32728115
    [Google Scholar]
  2. AuklandM.H. ListB. Organocatalysis emerging as a technology.Pure Appl. Chem.202193121371138110.1515/pac‑2021‑0501
    [Google Scholar]
  3. AntenucciA. DugheraS. RenziP. Green chemistry meets asymmetric organocatalysis: A critical overview on catalysts synthesis.ChemSusChem202114142785285310.1002/cssc.202100573 33984187
    [Google Scholar]
  4. VeticaF. ChauhanP. DochainS. EndersD. Asymmetric organocatalytic methods for the synthesis of tetrahydropyrans and their application in total synthesis.Chem. Soc. Rev.20174661661167410.1039/C6CS00757K 28262863
    [Google Scholar]
  5. von LiebigJ. Ueber die bildung des oxamids aus cyan.Justus Liebigs Ann. Chem.1860113224624710.1002/jlac.18601130213
    [Google Scholar]
  6. LangenbeckW. On organic catalysts. III. The formation of oxamide from dicyanogen in the presence of aldehydes.Justus Liebigs Ann. Chem.19294691162510.1002/jlac.19294690103
    [Google Scholar]
  7. García MancheñoO. WaserM. Recent developments and trends in asymmetric organocatalysis.Eur. J. Org. Chem.2023261e20220095010.1002/ejoc.202200950 37065706
    [Google Scholar]
  8. SahooB.M. BanikB.K. Organocatalysis: Trends of drug synthesis in medicinal chemistry.Curr. Organocatal.2019629210510.2174/2213337206666190405144423
    [Google Scholar]
  9. ParellaR. JakkampudiS. ZhaoJ.C.G. Recent applications of asymmetric organocatalytic methods in total synthesis.ChemistrySelect2021692252228010.1002/slct.202004196
    [Google Scholar]
  10. BaranP.S. Natural product total synthesis: As exciting as ever and here to stay.J. Am. Chem. Soc.2018140144751475510.1021/jacs.8b02266 29635919
    [Google Scholar]
  11. MajhiS. MandalB. Modern Sustainable Techniques in Total Synthesis of Bioactive Natural Products.SingaporeWorld Scientific202310.1142/13210
    [Google Scholar]
  12. MajhiS. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool.Ultrason. Sonochem.20217710566510.1016/j.ultsonch.2021.105665 34298310
    [Google Scholar]
  13. MajhiS. Applications of Norrish type I and II reactions in the total synthesis of natural products: A review.Photochem. Photobiol. Sci.202120101357137810.1007/s43630‑021‑00100‑3 34537894
    [Google Scholar]
  14. MajhiS. Applications of flow chemistry in total synthesis of natural products.Curr. Org. Chem.202327121072108910.2174/1385272827666230809094232
    [Google Scholar]
  15. MajhiS. The art of total synthesis of bioactive natural products via microwaves.Curr. Org. Chem.20212591047106910.2174/1385272825666210303112302
    [Google Scholar]
  16. MajhiS. Applications of Yamaguchi method to esterification and macrolactonization in total synthesis of bioactive natural products.ChemistrySelect20216174178420610.1002/slct.202100206
    [Google Scholar]
  17. MajhiS. SivakumarM. Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier2023
    [Google Scholar]
  18. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  19. SinhaK. ChowdhuryS. BanerjeeS. MandalB. MandalM. MajhiS. BrahmachariG. GhoshJ. SilP.C. Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics.Heliyon201958e0210710.1016/j.heliyon.2019.e02107 31417967
    [Google Scholar]
  20. MajhiS. DasD. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update.Tetrahedron20217813180110.1016/j.tet.2020.131801
    [Google Scholar]
  21. MajhiS. Discovery, development and design of anthocyanins-inspired anticancer agents: A comprehensive review.Anticancer. Agents Med. Chem.202222193219323810.2174/1871520621666211015142310 34779372
    [Google Scholar]
  22. MajhiS. ManickamS. Preliminary concept of semisynthesis and its importance, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier2024123
    [Google Scholar]
  23. MajhiS. Diterpenoids: Natural distribution, semisynthesis at room temperature and pharmacological aspects‐a decade update.ChemistrySelect2020540124501246410.1002/slct.202002836
    [Google Scholar]
  24. MajhiS. ManickamS. Semisynthesis of antibiotics, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier2024255410.1016/B978‑0‑443‑15269‑6.00007‑9
    [Google Scholar]
  25. MajhiS. Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules.Phys. Sci. Rev.2023892405243910.1515/psr‑2021‑0216
    [Google Scholar]
  26. MajhiS. ManickamS. Semisynthesis of alkaloids, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier20245511210.1016/B978‑0‑443‑15269‑6.00008‑0
    [Google Scholar]
  27. BrahmachariG. MajhiS. MandalB. MandalM. KumarA. SrivastavaA.K. SinghR.B. MisraN. Stigmasterol from the flowers of Peltophorum pterocarpum (DC) Backer Ex K. Heyne (Fabaceae)-isolation, spectral properties and quantum chemical studies.J. Indian Chem. Soc.20189512311244
    [Google Scholar]
  28. MajhiS. JashS.K. Recent developments of nanocatalysts for Stille coupling reaction.Synth. Commun.2023532061208710.1080/00397911.2023.2269585
    [Google Scholar]
  29. MajhiS. ManickamS. Semisynthesis of flavones, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202411317910.1016/B978‑0‑443‑15269‑6.00004‑3
    [Google Scholar]
  30. MajhiS. Semisynthesis of lignans, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier2024181208
    [Google Scholar]
  31. GoraiD. JashS.K. SinghR.K. SarkarA. MajhiS. Chemical and pharmacological aspects of Limnophila rugosa: An update.Int. J. Nat. Prod. Res.20133120124
    [Google Scholar]
  32. BrahmachariG. MandalL.C. RoyR. JashS.K. MondalA. MajhiS. GoraiD. Lupeol, a pharmaceutically potent triterpenoid, from the ripe fruits of Rauvolfia tetraphylla L. (Apocynaceae).J. Indian Chem. Soc.201188303305
    [Google Scholar]
  33. MajhiS. SahaI. Visible Light-promoted Synthesis of Bioactive N, N-heterocycles.Curr. Green Chem.20229312714410.2174/2213346110666221223141323
    [Google Scholar]
  34. MajhiS. ManickamS. Semisynthesis of phenolic comounds, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202420924210.1016/B978‑0‑443‑15269‑6.00010‑9
    [Google Scholar]
  35. MajhiS. Semisynthesis of anthocyanins, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier2024243277
    [Google Scholar]
  36. MajhiS. ManickamS. Semisynthesis of natural products at room temperature, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202427930810.1016/B978‑0‑443‑15269‑6.00006‑7
    [Google Scholar]
  37. DeyA.K. MajhiS. Samarium(III) triflate in organic synthesis: A mild and efficient catalyst.ChemistrySelect2023818e20230015610.1002/slct.202300156
    [Google Scholar]
  38. MajhiS. Synthesis of bioactive natural products and their analogs at room temperature – An update.Phys. Sci. Rev.20238103447347310.1515/psr‑2021‑0094
    [Google Scholar]
  39. MajhiS. ManickamS. Semisynthesis of natural products under greener conditions, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202430932810.1016/B978‑0‑443‑15269‑6.00003‑1
    [Google Scholar]
  40. MajhiS. ManickamS. Semisynthesis of natural products through the insertion of oxygen atom under metal-free conditions, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202432935110.1016/B978‑0‑443‑15269‑6.00012‑2
    [Google Scholar]
  41. MajhiS. ManickamS. Adaptation of organic reactions in the industrial production of bioactive compounds, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202435338010.1016/B978‑0‑443‑15269‑6.00002‑X
    [Google Scholar]
  42. DeyA.K. MajhiS. 7 Role of samarium in organic synthesis.Rare Earth Elements: Processing, Catalytic Applications and Environmental Impact,De Gruyter: Berlin, Boston2023119140
    [Google Scholar]
  43. MajhiS. ManickamS. New derivatives as nutraceuticals: Regulatory considerations, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202438139310.1016/B978‑0‑443‑15269‑6.00001‑8
    [Google Scholar]
  44. MajhiS. ManickamS. Computational chemistry of natural product analogues, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202439543710.1016/B978‑0‑443‑15269‑6.00009‑2
    [Google Scholar]
  45. MajhiS. ManickamS. Developing semisynthesis methods for neglected tropical diseases, Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier202443945810.1016/B978‑0‑443‑15269‑6.00005‑5
    [Google Scholar]
  46. MajhiS. MondalP.K. Microwave-assisted synthesis of heterocycles and their anti-cancer activities.Curr. Microw. Chem.202310213515410.2174/0122133356264446230925173123
    [Google Scholar]
  47. MajhiS. Chapter 10 - Applications of nanoparticles in organic synthesis under ultrasonication.Nanoparticles in Green Organic Synthesis Strategy Towards SustainabilityElsevier Science: Amsterdam2023279315
    [Google Scholar]
  48. MurauerA. GanzeraM. Quantitative determination of major alkaloids in Cinchona bark by supercritical fluid chromatography.J. Chromatogr. A2018155411712210.1016/j.chroma.2018.04.038 29699870
    [Google Scholar]
  49. BoratyńskiP.J. Zielińska-BłajetM. SkarżewskiJ. Cinchona alkaloids-derivatives and applications.Alkaloids Chem. Biol.2019822914510.1016/bs.alkal.2018.11.001 30850032
    [Google Scholar]
  50. HaeuslerI.L. ChanX.H.S. GuérinP.J. WhiteN.J. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: A systematic review.BMC Med.201816120010.1186/s12916‑018‑1188‑2 30400791
    [Google Scholar]
  51. LodhiL. YadavJ.P. YamazakiT. DuongN.T. PoojaryS.L. DeyK.K. NishiyamaY. GhoshM. NMR crystallographic approach to study the variation of the dynamics of quinine and its quasienantiomer quinidine.J. Phys. Chem. C202212640172911730510.1021/acs.jpcc.2c04470
    [Google Scholar]
  52. JiangY. DeianaL. ZhangK. Total asymmetric synthesis of qunine, quinidine and analogues via catalytic enantioselective cascade transformations.Eur. J. Org. Chem.20192019356016602310.1002/ejoc.201901003
    [Google Scholar]
  53. ZhangJ. Morris-NatschkeS.L. MaD. ShangX.F. YangC.J. LiuY.Q. LeeK.H. Biologically active indolizidine alkaloids.Med. Res. Rev.202141292896010.1002/med.21747 33128409
    [Google Scholar]
  54. GuengerichF.P. DiMariS.J. BroquistH.P. Isolation and characterization of a l-pyrindine fungal alkaloid.J. Am. Chem. Soc.19739562055205610.1021/ja00787a080
    [Google Scholar]
  55. DorlingP.R. HuxtableC.R. ColegateS.M. Inhibition of lysosomal α-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens.Biochem. J.1980191264965110.1042/bj1910649 6786280
    [Google Scholar]
  56. TrajkovicM. BalanacV. FerjancicZ. SaicicR.N. Total synthesis of (+)-swainsonine and (+)-8-epi-swainsonine.RSC Advances2014496537225372410.1039/C4RA11978A
    [Google Scholar]
  57. KubotaT. KurimotoS.I. KobayashiJ. The manzamine alkaloids.Alkaloids Chem. Biol.202084112410.1016/bs.alkal.2020.03.001 32416951
    [Google Scholar]
  58. KobayashiJ. WatanabeD. KawasakiN. TsudaM. Nakadomarin A, a novel hexacyclic manzamine-related alkaloid from Amphimedon sponge.J. Org. Chem.199762269236923910.1021/jo9715377
    [Google Scholar]
  59. JanaS. MekonnenH.G. Recent developments on the total synthesis of Nakadomarin A.ChemistrySelect20183185198520610.1002/slct.201800183
    [Google Scholar]
  60. BoeckmanR.K.Jr WangH. RuggK.W. GenungN.E. ChenK. RyderT.R. A scalable total synthesis of.Nakadomarin A. Org. Lett.201618236136613910.1021/acs.orglett.6b03137 27934385
    [Google Scholar]
  61. Desgagné-PenixI. Biosynthesis of alkaloids in Amaryllidaceae plants: A review.Phytochem. Rev.202120240943110.1007/s11101‑020‑09678‑5
    [Google Scholar]
  62. PettitG.R. CraggG.M. SinghS.B. DukeJ.A. DoubekD.L. Antineoplastic agents, 162. Zephyranthes candida.J. Nat. Prod.199053117617810.1021/np50067a026 2348199
    [Google Scholar]
  63. PettitG.R. MelodyN. Antineoplastic agents. 527. Synthesis of 7-deoxynarcistatin, 7-deoxy-trans-dihydronarcistatin, and trans-dihydronarcistatin 1(1).J. Nat. Prod.200568220721110.1021/np0304518 15730244
    [Google Scholar]
  64. GabrielsenB. MonathT.P. HugginsJ.W. KefauverD.F. PettitG.R. GroszekG. HollingsheadM. KirsiJ.J. ShannonW.M. SchubertE.M. DaReJ. UgarkarB. UsseryM.A. PhelanM.J. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances.J. Nat. Prod.199255111569158110.1021/np50089a003 1336040
    [Google Scholar]
  65. RevuO. Zepeda-VelázquezC. NielsenA.J. McNultyJ. YolkenR.H. Jones-BrandoL. Total synthesis of the natural product (+)-trans-dihydronarciclasine via an asymmetric organocatalytic [3+3]-Cylcloaddition and discovery of its potent anti-zika virus (ZIKV) activity.ChemistrySelect20161185895589910.1002/slct.201601536
    [Google Scholar]
  66. VarróG. HegedűsL. SimonA. BaloghA. GrünA. LevelesI. VértessyB.G. KádasI. The first enantioselective total synthesis of (-)-trans-dihydronarciclasine.J. Nat. Prod.20178061909191710.1021/acs.jnatprod.7b00208 28581297
    [Google Scholar]
  67. ChenQ.B. GaoJ. ZouG.A. XinX.L. AisaH.A. Piperidine alkaloids with diverse skeletons from Anacyclus pyrethrum.J. Nat. Prod.20188161474148210.1021/acs.jnatprod.8b00239 29775308
    [Google Scholar]
  68. TangY. ZhuL. HongR. Madangamine alkaloids: Madness and tranquility.Tetrahedron Chem2022310002510.1016/j.tchem.2022.100025
    [Google Scholar]
  69. KongF. AndersenR.J. AllenT.M. Madangamine A, a novel cytotoxic alkaloid from the marine sponge Xestospongia ingens.J. Am. Chem. Soc.1994116136007600810.1021/ja00092a077
    [Google Scholar]
  70. KongF. GrazianiE.I. AndersenR.J. Madangamines B-E, pentacyclic alkaloids from the marine sponge Xestospongia ingens.J. Nat. Prod.199861226727110.1021/np970377r 9548859
    [Google Scholar]
  71. MiuraK. KawanoS. SutoT. SatoT. ChidaN. SimizuS. Identification of madangamine A as a novel lysosomotropic agent to inhibit autophagy.Bioorg. Med. Chem.20213411604110.1016/j.bmc.2021.116041 33549907
    [Google Scholar]
  72. ShiomiS. ShennanB.D.A. YamazakiK. Fuentes de ArribaÁ.L. VasuD. HamlinT.A. DixonD.J. A new organocatalytic desymmetrization reaction enables the enantioselective total synthesis of Madangamine E.J. Am. Chem. Soc.202214431407141510.1021/jacs.1c12040 35037758
    [Google Scholar]
  73. RotherA. SchwartingA.E. A new phenylquinolizidol of Heimia salicifolia.Experientia197430322210.1007/BF01934789 4824580
    [Google Scholar]
  74. FujiK. YamadaT. FujitaE. MurataH. Lythraceous alkaloids. X. Alkaloids of Lagerstroemia subcostata and L. favriei: A contribution to the chemotaxonomy.Chem. Pharm. Bull.19782682515252110.1248/cpb.26.2515
    [Google Scholar]
  75. VirkS. PansareS.V. Biomimetic organocatalytic approach to 4-arylquinolizidine alkaloids and application in the synthesis of (-)-Lasubine II and (+)-Subcosine II.Org. Lett.201921145524552810.1021/acs.orglett.9b01840 31246480
    [Google Scholar]
  76. SantosM.M.M. Recent advances in the synthesis of biologically active spirooxindoles.Tetrahedron201470529735975710.1016/j.tet.2014.08.005
    [Google Scholar]
  77. KlasK.R. KatoH. FrisvadJ.C. YuF. NewmisterS.A. FraleyA.E. ShermanD.H. TsukamotoS. WilliamsR.M. Structural and stereochemical diversity in prenylated indole alkaloids containing the bicyclo[2.2.2]diazaoctane ring system from marine and terrestrial fungi.Nat. Prod. Rep.201835653255810.1039/C7NP00042A 29632911
    [Google Scholar]
  78. AngenotL. New oxindole alkaloids from Strychnos usambarensis GILG.Plant. Med. Phytother.197812123129
    [Google Scholar]
  79. BassleerR. Depauw-GilletM.C. MassartB. MarnetteJ-M. WiliquetP. CaprasseM. AngenotL. Effects of three alkaloids isolated from Strychnos usambarensis on cancer cells in culture (author’s transl).Planta Med.198245212312610.1055/s‑2007‑971260 7111480
    [Google Scholar]
  80. YuQ. GuoP. JianJ. ChenY. XuJ. Nine-step total synthesis of (-)-strychnofoline.Chem. Commun.20185491125112810.1039/C7CC08938D 29334094
    [Google Scholar]
  81. WangY.S. LiB.T. LiuS.X. WenZ.Q. YangJ.H. ZhangH.B. HaoX.J. Anisucoumaramide, a bioactive coumarin from Clausena anisum-olens.J. Nat. Prod.201780479880410.1021/acs.jnatprod.6b00391 28368606
    [Google Scholar]
  82. MisraR. TritchH.R.III PandeyR.C. DefucogilvocarcinV. Defucogilvocarcin V, a new antibiotic from Streptomyces arenae 2064: Isolation, characterization, partial synthesis and biological activity.J. Antibiot.19853891280128310.7164/antibiotics.38.1280 3917241
    [Google Scholar]
  83. HuangX. ZhuT. HuangZ. ZhangY. JinZ. ZanoniG. ChiY.R. Carbene-catalyzed formal [5 + 5] reaction for coumarin construction and total synthesis of defucogilvocarcins.Org. Lett.201719226188619110.1021/acs.orglett.7b03102 29111757
    [Google Scholar]
  84. SrikrishnaD. GoduguC. DubeyP.K. A review on pharmacological properties of coumarins.Mini Rev. Med. Chem.2018182113141 27488585
    [Google Scholar]
  85. KamperdickC. PhuongN.M. SungT.V. SchmidtJ. AdamG. Coumarins and dihydrocinnamic acid derivatives from Micromelum falcatum.Phytochemistry19995281671167610.1016/S0031‑9422(99)00243‑5
    [Google Scholar]
  86. RahmaniM. Hin Taufiq-YapY. IsmailH.B.M. SukariA. WatermanP.G. New coumarin and dihydrocinnamic acid derivatives from two malaysian populations of Micromelum minutum.Phytochemistry199437256156410.1016/0031‑9422(94)85100‑X
    [Google Scholar]
  87. HuangW.L. RajaA. HongB.C. LeeG.H. Organocatalytic enantioselective michael-acetalization-reduction-nef reaction for a one-pot entry to the functionalized aflatoxin system. Total synthesis of (-)- dihydroaflatoxin D2 and (-)- and (+)-microminutinin.Org. Lett.201719133494349710.1021/acs.orglett.7b01473 28608693
    [Google Scholar]
  88. HoffmannD. Medical Herbalism: The Science Principles and Practices of Herbal Medicine.Rochester, VermontHealing Arts Press2003
    [Google Scholar]
  89. LemmichJ. HavelundS. ThastrupO. Dihydrofurocoumarin glucosides from Angelica archangelica and Angelica silvestris.Phytochemistry198322255355510.1016/0031‑9422(83)83044‑1
    [Google Scholar]
  90. MossG.P. SmithP.A.S. TavernierD. Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995).Pure Appl. Chem.1995678-91307137510.1351/pac199567081307
    [Google Scholar]
  91. NgameniB. KueteV. SimoI.K. MbavengA.T. AwoussongP.K. PatnamR. RoyR. NgadjuiB.T. Antibacterial and antifungal activities of the crude extract and compounds from Dorstenia turbinata (Moraceae).S. Afr. J. Bot.200975225626110.1016/j.sajb.2008.11.006
    [Google Scholar]
  92. EndersD. FronertJ. BisschopsT. BoeckF. Asymmetric total synthesis of smyrindiol employing an organocatalytic aldol key step.Beilstein J. Org. Chem.201281112111710.3762/bjoc.8.123 23019438
    [Google Scholar]
  93. YueZ. HeS. WangJ. JiangQ. WangH. WuJ. LiC. WangZ. HeX. JiaN. Glyceollins from soybean: Their pharmacological effects and biosynthetic pathways.Heliyon2023911e2187410.1016/j.heliyon.2023.e21874 38034638
    [Google Scholar]
  94. JahanM.A. KovinichN. Acidity stress for the systemic elicitation of glyceollin phytoalexins in soybean plants.Plant Signal. Behav.2019147160401810.1080/15592324.2019.1604018 30985226
    [Google Scholar]
  95. GoelA. KumarA. RaghuvanshiA. Synthesis, stereochemistry, structural classification, and chemical reactivity of natural pterocarpans.Chem. Rev.201311331614164010.1021/cr300219y 23214501
    [Google Scholar]
  96. BouéS.M. IsakovaI.A. BurowM.E. CaoH. BhatnagarD. SarverJ.G. ShindeK.V. ErhardtP.W. HeimanM.L. Glyceollins, soy isoflavone phytoalexins, improve oral glucose disposal by stimulating glucose uptake.J. Agric. Food Chem.201260256376638210.1021/jf301057d 22655912
    [Google Scholar]
  97. KhupseR.S. SarverJ.G. TrendelJ.A. BearssN.R. ReeseM.D. WieseT.E. BouéS.M. BurowM.E. ClevelandT.E. BhatnagarD. ErhardtP.W. Biomimetic syntheses and antiproliferative activities of racemic, natural (-), and unnnatural (+) glyceollin I.J. Med. Chem.201154103506352310.1021/jm101619e 21513275
    [Google Scholar]
  98. MalikN. ZhangZ. ErhardtP. Total synthesis of (±)-Glyceollin II and a dihydro derivative.J. Nat. Prod.201578122940294710.1021/acs.jnatprod.5b00607 26654660
    [Google Scholar]
  99. AyresD.C. LoikeJ.D. Lignans: Chemical, Biological and Clinical Properties.Cambridge University Press199010.1017/CBO9780511983665
    [Google Scholar]
  100. HughesG.K. RitchieE. The chemical constituents of Himantandra species. I. The Lignins of Himantandra baccata Bail. and H. belgraveana F.Muell. Aust. J. Chem.19547110410.1071/CH9540104
    [Google Scholar]
  101. HongB.C. HsuC.S. LeeG.H. Enantioselective total synthesis of (+)-galbulin via organocatalytic domino Michael-Michael-aldol condensation.Chem. Commun.201248182385238710.1039/C2CC16682H 22179766
    [Google Scholar]
  102. EkwomaduT.I. AkinolaS.A. MwanzaM. Fusarium mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts.Int. J. Environ. Res. Public Health202118221174110.3390/ijerph182211741 34831498
    [Google Scholar]
  103. GerberN.N. Volatile lactones from Streptomyces.Tetrahedron Lett.1973141077177410.1016/S0040‑4039(01)95708‑9
    [Google Scholar]
  104. RodríguezA.D. RamírezC. Further butenolides from the Caribbean octocoral Pterogorgia citrina.J. Nat. Prod.199457333934710.1021/np50105a002 7911157
    [Google Scholar]
  105. Degli EspostiM. GhelliA. RattaM. CortesD. EstornellE. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I).Biochem. J.1994301Pt 116116710.1042/bj3010161 8037664
    [Google Scholar]
  106. SchmitzF.J. LoranceE.D. CiereszkoL.S. Chemistry of coelenterates. XII. Hydroxyancepsenolide, a dilactone from the octocoral, Pterogorgia anceps.J. Org. Chem.19693461989199010.1021/jo01258a110
    [Google Scholar]
  107. DuránA.G. GutiérrezM.T. MejíasF.J.R. MolinilloJ.M.G. MacíasF.A. An overview of the chemical characteristics, bioactivity and achievements regarding the therapeutic usage of acetogenins from Annona cherimola Mill.Molecules20212610292610.3390/molecules26102926 34069113
    [Google Scholar]
  108. MadhavacharyR. MallikR. RamacharyD.B. Organocatalytic enantiospecific total synthesis of butenolides.Molecules20212614432010.3390/molecules26144320 34299595
    [Google Scholar]
  109. IvanovaO.M. AnufrievaK.S. KazakovaA.N. MalyantsI.K. ShnaiderP.V. LukinaM.M. ShenderV.O. Non-canonical functions of spliceosome components in cancer progression.Cell Death Dis.20231427710.1038/s41419‑022‑05470‑9 36732501
    [Google Scholar]
  110. KakeyaH. KaidaD. SekiyaH. NagaiK. YoshidaM. OsadaH. RQN-18690A (18-deoxyherboxidiene) targets SF3b, a spliceosome component, and inhibits angiogenesis.J. Antibiot.201669212112310.1038/ja.2015.94 26350783
    [Google Scholar]
  111. MatsumotoY. HibinoK. YonagaM. KakeyaH. HayashiY. Enantioselective total synthesis of RQN-18690A (18-Deoxyherboxidiene).Org. Lett.201618143382338510.1021/acs.orglett.6b01524 27377811
    [Google Scholar]
  112. ZhaoH. SunL. KongC. MeiW. DaiH. XuF. HuangS. Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012-2021).J. Ethnopharmacol.202229811557410.1016/j.jep.2022.115574 35944737
    [Google Scholar]
  113. ChengH. ZengF.H. YangX. MengY.J. XuL. WangF.P. Collective total syntheses of atisane-type diterpenes and atisinetype diterpenoid alkaloids: (±)-spiramilactone B, (±)-spiraminol, (±)-dihydroajaconine, and (±)-spiramines C and D.Angew. Chem. Int. Ed. Engl.201655139239610.1002/anie.201508996 26545636
    [Google Scholar]
  114. TangP. ChenQ.H. WangF.P. Atropurpuran, a novel diterpene with an unprecedented pentacyclic cage skeleton, from Aconitum hemsleyanum var. atropurpureum.Tetrahedron Lett.200950446046210.1016/j.tetlet.2008.11.028
    [Google Scholar]
  115. GongJ. ChenH. LiuX.Y. WangZ.X. NieW. QinY. Total synthesis of Atropurpuran.Nat. Commun.2016711218310.1038/ncomms12183 27387707
    [Google Scholar]
  116. FathallahN. TamerA. IbrahimR. kamal, M.; Kes, M.E. The marine sponge genus Dysidea sp: The biological and chemical aspects—a review.Future J. Pharm. Sci.2023919810.1186/s43094‑023‑00550‑9
    [Google Scholar]
  117. PatilA.D. FreyerA.J. KillmerL. OffenP. CarteB. JurewiczA.J. JohnsonR.K. Frondosins, five new sesquiterpene hydroquinone derivatives with novel skeletons from the sponge Dysidea frondosa: Inhibitors of interleukin-8 receptors.Tetrahedron199753145047506010.1016/S0040‑4020(97)00205‑6
    [Google Scholar]
  118. HallockY.F. CardellinaJ.H.II BoydM.R. (-)-Frondosins A and D, HIV-inhibitory sesquiterpene hydroquinone derivatives from Euryspongia sp.Nat. Prod. Lett.199811215316010.1080/10575639808041212
    [Google Scholar]
  119. ReiterM. TorssellS. LeeS. MacmillanD.W.C. The organocatalytic three-step total synthesis of (+)-frondosin B.Chem. Sci.201011374210.1039/c0sc00204f 22299067
    [Google Scholar]
  120. CornforthJ.W. Terpenoid biosynthesis.Chem. Br.196843102106 5640876
    [Google Scholar]
  121. KikuchiH. KawaiK. NakashiroY. YonezawaT. KawajiK. KodamaE.N. OshimaY. Construction of a meroterpenoid-like compounds library based on diversity-enhanced extracts.Chemistry20192541106111210.1002/chem.201805417 30379362
    [Google Scholar]
  122. GarridoL. ZubíaE. OrtegaM.J. SalváJ. New meroterpenoids from the ascidian Aplidium conicum.J. Nat. Prod.20026591328133110.1021/np020176+ 12350158
    [Google Scholar]
  123. Simon-LevertA. ArraultA. Bontemps-SubielosN. CanalC. BanaigsB. Meroterpenes from the ascidian Aplidium aff. densum.J. Nat. Prod.20056891412141510.1021/np050110p 16180826
    [Google Scholar]
  124. CarrollA.R. BowdenB.F. CollJ.C. Studies of Australian Ascidians. III. A new tetrahydrocannabinol derivative from the ascidian Synoicum castellatum.Aust. J. Chem.19934671079108310.1071/CH9931079
    [Google Scholar]
  125. HongB.C. KotameP. TsaiC.W. LiaoJ.H. Enantioselective total synthesis of (+)-conicol via cascade three-component organocatalysis.Org. Lett.201012477677910.1021/ol902840x 20078081
    [Google Scholar]
  126. MohsinN.U.A. Current strategies in development of new chromone derivatives with diversified pharmacological activities.Pharm. Chem. J.20205424125710.1007/s11094‑020‑02187‑x 32836513
    [Google Scholar]
  127. SoaresJ.X. LoureiroD.R.P. DiasA.L. ReisS. PintoM.M.M. AfonsoC.M.M. Bioactive marine Xanthones: A review.Mar. Drugs20222015810.3390/md20010058 35049913
    [Google Scholar]
  128. AhmadI. Recent insight into the biological activities of synthetic Xanthone derivatives.Eur. J. Med. Chem.201611626728010.1016/j.ejmech.2016.03.058 27111599
    [Google Scholar]
  129. ItoS. KitamuraT. ArulmozhirajaS. ManabeK. TokiwaH. SuzukiY. Total synthesis of termicalcicolanone a via organocatalysis and regioselective claisen rearrangement.Org. Lett.20192182777278110.1021/acs.orglett.9b00731 30958681
    [Google Scholar]
  130. CaoS. BrodieP.J. MillerJ.S. RandrianaivoR. RatovosonF. BirkinshawC. AndriantsiferanaR. RasamisonV.E. KingstonD.G.I. Antiproliferative xanthones of Terminalia calcicola from the Madagascar rain forest.J. Nat. Prod.200770467968110.1021/np060627g 17323994
    [Google Scholar]
  131. Velázquez-JiménezR. Torres-ValenciaJ.M. Cerda-García-RojasC.M. Hernández-HernándezJ.D. Román-MarínL.U. Manríquez-TorresJ.J. Gómez-HurtadoM.A. Valdez-CalderónA. MotilvaV. García-MauriñoS. TaleroE. ÁvilaJ. Joseph-NathanP. Joseph-NathanP. Absolute configuration of podophyllotoxin related lignans from Bursera fagaroides using vibrational circular dichroism.Phytochemistry201172172237224310.1016/j.phytochem.2011.07.017 21840559
    [Google Scholar]
  132. Rojas-SepúlvedaA.M. Mendieta-SerranoM. MojicaM.Y.A. Salas-VidalE. MarquinaS. VillarrealM.L. PueblaA.M. DelgadoJ.I. AlvarezL. Cytotoxic podophyllotoxin type-lignans from the steam bark of Bursera fagaroides var. fagaroides.Molecules20121789506951910.3390/molecules17089506 22878225
    [Google Scholar]
  133. RattanabureeT. ThongpanchangT. WongmaK. TedasenA. SukpondmaY. GraidistP. Anticancer activity of synthetic (±)-kusunokinin and its derivative (±)-bursehernin on human cancer cell lines.Biomed. Pharmacother.201911710911510.1016/j.biopha.2019.109115 31220743
    [Google Scholar]
  134. PitreS.P. OvermanL.E. Strategic use of visible-light photoredox catalysis in natural product synthesis.Chem. Rev.202212221717175110.1021/acs.chemrev.1c00247 34232019
    [Google Scholar]
  135. WelinE.R. WarkentinA.A. ConradJ.C. MacMillanD.W.C. Enantioselective α-alkylation of aldehydes by photoredox organocatalysis: Rapid access to pharmacophore fragments from β-cyanoaldehydes.Angew. Chem. Int. Ed. Engl.201554339668967210.1002/anie.201503789 26130043
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461340116241020175907
Loading
/content/journals/cgc/10.2174/0122133461340116241020175907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test