Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

A convenient and general method has been developed for the synthesis of fully and diversely functionalized pyrans one-pot three-component reactions of various aryl or heteroaryl aldehydes, malononitrile, and 1,3-dimethyl/1,3-diethyl-acetonedicarboxylates in the presence of a catalytic amount of sodium formate as an efficient organocatalyst in aqueous ethanol at room temperature. All the scaffolds were synthesized in excellent yields within 2.5 hours. Under the same reaction conditions, fully and diversely functionalized spiro-pyrans were also synthesized in excellent yields from the reaction of isatin, malononitrile, and 1,3-dimethyl/1,3-diethyl-acetonedicarboxylates. All the products were isolated pure just by simple filtration. Synthesis of fully and diversely functionalized biologically promising pyrans, excellent yields, use of organocatalyst, less toxic solvent, no column chromatographic purification, and energy efficiency are some of the major advantages of this newly developed protocol.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461339667240910052814
2024-09-18
2025-09-26
Loading full text...

Full text loading...

References

  1. AgarwalK.C. ParksR.E. Jr Forskolin: A potential antimetastatic agent.Int. J. Cancer198332680180410.1002/ijc.2910320622 6686215
    [Google Scholar]
  2. ImadH.H. LenaF.H. SabreenA.K. Analysis of bioactive chemical compounds of Aspergillus niger by using gas chromatography-mass spectrometry and fourier-transform infrared spectroscopy.J. Pharmacogn. Phytother.20157813216310.5897/JPP2015.0354
    [Google Scholar]
  3. KumarD. SharmaP. SinghH. NepaliK. GuptaG.K. JainS.K. Ntie-KangF. The value of pyrans as anticancer scaffolds in medicinal chemistry.RSC Advances2017759369773699910.1039/C7RA05441F
    [Google Scholar]
  4. GewaliM.B. TezukaY. BanskotaA.H. AliM.S. SaikiI. DongH. KadotaS. EpicalyxinF. CalyxinI. Epicalyxin F and calyxin I: two novel antiproliferative diarylheptanoids from the seeds of Alpinia blepharocalyx.Org. Lett.19991111733173610.1021/ol990260p 10836033
    [Google Scholar]
  5. DelostM.D. SmithD.T. AndersonB.J. NjardarsonJ.T. From oxiranes to oligomers: Architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles.J. Med. Chem.20186124109961102010.1021/acs.jmedchem.8b00876 30024747
    [Google Scholar]
  6. KoyamaK. TakahashiM. OitateM. NakaiN. TakakusaH. MiuraS. OkazakiO. CS-8958, a prodrug of the novel neuraminidase inhibitor R-125489, demonstrates a favorable long-retention profile in the mouse respiratory tract.Antimicrob. Agents Chemother.200953114845485110.1128/AAC.00731‑09 19687241
    [Google Scholar]
  7. YamashitaM. Laninamivir and its prodrug, CS-8958: long-acting neuraminidase inhibitors for the treatment of influenza.Antivir. Chem. Chemother.2010212718410.3851/IMP1688 21107016
    [Google Scholar]
  8. MengW. EllsworthB.A. NirschlA.A. McCannP.J. PatelM. GirotraR.N. WuG. SherP.M. MorrisonE.P. BillerS.A. ZahlerR. DeshpandeP.P. PullockaranA. HaganD.L. MorganN. TaylorJ.R. ObermeierM.T. HumphreysW.G. KhannaA. DiscenzaL. RobertsonJ.G. WangA. HanS. WetterauJ.R. JanovitzE.B. FlintO.P. WhaleyJ.M. WashburnW.N. Discovery of dapagliflozin: A potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes.J. Med. Chem.20085151145114910.1021/jm701272q 18260618
    [Google Scholar]
  9. EllsworthB.A. MengW. PatelM. GirotraR.N. WuG. SherP.M. HaganD.L. ObermeierM.T. HumphreysW.G. RobertsonJ.G. WangA. HanS. WaldronT.L. MorganN.N. WhaleyJ.M. WashburnW.N. Aglycone exploration of C-arylglucoside inhibitors of renal sodium-dependent glucose transporter SGLT2.Bioorg. Med. Chem. Lett.200818174770477310.1016/j.bmcl.2008.07.109 18707880
    [Google Scholar]
  10. SmithC.W. BaileyJ.M. BillinghamM.E.J. ChandrasekharS. DellC.P. HarveyA.K. HicksC.A. KingstonA.E. WishartG.N. The anti-rheumatic potential of a series of 2,4-di-substituted-4H-naphtho[1,2-b]pyran-3-carbonitriles.Bioorg. Med. Chem. Lett.19955232783278810.1016/0960‑894X(95)00487‑E
    [Google Scholar]
  11. ErichsenM.N. HuynhT.H.V. AbrahamsenB. BastlundJ.F. BundgaardC. MonradO. Bekker-JensenA. NielsenC.W. FrydenvangK. JensenA.A. BunchL. Structure-activity relationship study of first selective inhibitor of excitatory amino acid transporter subtype 1: 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101).J. Med. Chem.201053197180719110.1021/jm1009154 20857912
    [Google Scholar]
  12. KalariaP.N. SatasiaS.P. RavalD.K. Synthesis, characterization and biological screening of novel 5-imidazopyrazole incorporated fused pyran motifs under microwave irradiation.New J. Chem.20143841512152110.1039/c3nj01327h
    [Google Scholar]
  13. KaurR. NaazF. SharmaS. MehndirattaS. GuptaM.K. BediP.M.S. NepaliK. Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: synthesis, biological evaluation and docking studies.Med. Chem. Res.20152483334334910.1007/s00044‑015‑1382‑0
    [Google Scholar]
  14. SashidharaK.V. ModukuriR.K. SinghS. Bhaskara RaoK. Aruna TejaG. GuptaS. ShuklaS. Design and synthesis of new series of coumarin–aminopyran derivatives possessing potential anti-depressant-like activity.Bioorg. Med. Chem. Lett.201525233734110.1016/j.bmcl.2014.11.036 25488839
    [Google Scholar]
  15. PadmajaP. Koteswara RaoG. IndrasenaA. Subba ReddyB.V. PatelN. ShaikA.B. ReddyN. DubeyP.K. BhadraM.P. Synthesis and biological evaluation of novel pyrano[3,2-c]carbazole derivatives as anti-tumor agents inducing apoptosis via tubulin polymerization inhibition.Org. Biomol. Chem.20151351404141410.1039/C4OB02015D 25467166
    [Google Scholar]
  16. MoharebR.M. SchatzJ. Anti-tumor and anti-leishmanial evaluations of 1,3,4-oxadiazine, pyran derivatives derived from cross-coupling reactions of β-bromo-6H-1,3,4-oxadiazine derivatives.Bioorg. Med. Chem.20111982707271310.1016/j.bmc.2011.02.051 21435889
    [Google Scholar]
  17. WardakhanW.W. SamirE.M. El-ArabE.E. Synthesis and cytotoxicity of novel thiophene, pyran and pyridine derivatives.Bull. Chem. Soc. Ethiop.201832225927010.4314/bcse.v32i2.7
    [Google Scholar]
  18. KumarD. ReddyV.B. SharadS. DubeU. KapurS. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes.Eur. J. Med. Chem.20094493805380910.1016/j.ejmech.2009.04.017 19419801
    [Google Scholar]
  19. El-SayedN.N.E. ZakiM.E.A. Al-HussainS.A. Ben BachaA. BerredjemM. MasandV.H. AlmarhoonZ.M. OmarH.S. Synthesis and evaluation of some new 4 H-pyran derivatives as antioxidant, antibacterial and anti-HCT-116 Cells of CRC, with molecular docking, antiproliferative, apoptotic and ADME investigations.Pharmaceuticals (Basel)202215789110.3390/ph15070891 35890189
    [Google Scholar]
  20. HeberD. StoyanovE.V. Synthesis of functionalized 4H-pyran and cyclohexanone derivatives via three-component reactions of dimethyl acetonedicarboxylate, aromatic aldehydes, and malononitrile.Synthesis2003202270232
    [Google Scholar]
  21. BanerjeeB. PriyaA. SharmaA. KaurG. KaurM. Sulfonated βcyclodextrins: Efficient supramolecular organocatalysts for diverse organic transformations.Phys. Sci. Rev.202274-5539565
    [Google Scholar]
  22. KaurG. SinghA. BalaK. DeviM. KumariA. DeviS. DeviR. GuptaV.K. BanerjeeB. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2- one derivatives in water at room temperature.Curr. Org. Chem.201923161778178810.2174/1385272822666190924182538
    [Google Scholar]
  23. KaurG. KumarR. SarochS. GuptaV.K. BanerjeeB. Mandelic acid: an efficient organo-catalyst for the synthesis of 3-substituted-3- hydroxyindolin-2-ones and related derivatives in aqueous ethanol at room temperature.Curr. Organocatal.20218114715910.2174/22133380MTA4jMTIf1
    [Google Scholar]
  24. KaurG. ThakurS. KaundalP. ChandelK. BanerjeeB. pDodecylbenzenesulfonic acid: An efficient brønsted acid-surfactantcombined catalyst to carry out diverse organic transformations in aqueous medium.ChemistrySelect2018345129181293610.1002/slct.201802824
    [Google Scholar]
  25. BanerjeeB. PriyaA. KaurM. SharmaA. SinghA. GuptaV.K. JaitakV. Sodium dodecyl sulphate catalyzed one-pot threecomponent synthesis of structurally diverse 2-amino-3cyano substituted tetrahydrobenzo[b]pyrans and spiropyrans in water at room temperature.Catal. Lett.2023153123547356010.1007/s10562‑022‑04256‑0
    [Google Scholar]
  26. SharmaA. SinghA. PriyaA. KaurM. GuptaV.K. JaitakV. BanerjeeB. Trisodium citrate dihydrate catalyzed one-pot pseudo four-component synthesis of fully functionalized pyridine derivatives.Synth. Commun.202252151614162710.1080/00397911.2022.2101378
    [Google Scholar]
  27. BanerjeeB. SharmaA. KaurG. SinghD. GuptaV.K. A general method for the synthesis of 11H-indeno[1,2-b]quinoxalin- 11-ones and 6Hindeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives using mandelic acid as an efficient organo-catalyst at room temperature.Curr. Organocatal.202291536110.2174/2213337208666210825112301
    [Google Scholar]
  28. BanerjeeB. KaurM. SharmaA. SinghA. PriyaA. GuptaV.K. JaitakV. Glycine catalyzed one-pot three-component synthesis of structurally diverse 2-amino substituted pyran annulated heterocycles in aqueous ethanol under refluxed conditions.Curr. Green Chem.20229316217310.2174/2213346110666221212152202
    [Google Scholar]
  29. KaurG. BalaK. DeviS. BanerjeeB. Camphorsulfonic acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities.Curr. Green Chem.20185315016710.2174/2213346105666181001113413
    [Google Scholar]
  30. BanikB.K. BanerjeeB. Organocatalysis: A Green Tool for Sustainable Developments.Berlin, BostonDe Gruyter202210.1515/9783110732542
    [Google Scholar]
  31. BrahmachariG. BanerjeeB. Functionalized 2-amino-3-cyano-4H-pyrans and pyranannulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst.ACS Sustain. Chem.& Eng.2014241142210.1021/sc400312n
    [Google Scholar]
  32. BanerjeeB. BhardwajV. KaurA. KaurG. SinghA. Catalytic applications of saccharin and its derivatives in organic synthesis.Curr. Org. Chem.202023283191320510.2174/1385272823666191121144758
    [Google Scholar]
  33. KaurG. ShamimM. BhardwajV. GuptaV.K. BanerjeeB. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature.Synth. Commun.202050101545156010.1080/00397911.2020.1745844
    [Google Scholar]
  34. SinghA. KaurG. KaurA. GuptaV.K. BanerjeeB. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature.Curr. Green Chem.20207112814010.2174/2213346107666200228125715
    [Google Scholar]
  35. KaurM. PriyaA. SharmaA. SinghA. BanerjeeB. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles.Synth. Commun.202252161635165610.1080/00397911.2022.2090262
    [Google Scholar]
  36. BanerjeeB. KaurG. KaurN. p-Sulfonic acid calyx[n]arene catalyzed synthesis of bioactive heterocycles: A review.Curr. Org. Chem.202125120922210.2174/1385272824999201019162655
    [Google Scholar]
  37. BanerjeeB. PriyaA. KaurJ. KaurM. SinghA. SharmaA. Cyanuric chloride promoted various organic transformations.Synth. Commun.2023531285588210.1080/00397911.2023.2201889
    [Google Scholar]
  38. BrahmachariG. DasS. Sodium formate-catalyzed one-pot synthesis of benzopyranopyrimidines and 4-thio-substituted 4H-chromenes via multicomponent reaction at room temperature.J. Heterocycl. Chem.201552365365910.1002/jhet.2123
    [Google Scholar]
  39. LoganM.E. OinenM.E. Dechlorination of aryl chlorides with sodium formate using a homogeneous palladium catalyst.Organometallics20062541052105410.1021/om0507732
    [Google Scholar]
  40. SaundaneA.R. WalmikP. YarlakattiM. KatkarV. VermaV.A. Synthesis and biological activities of some new annulated pyrazolopyranopyrimidines and their derivatives containing indole nucleus.J. Heterocycl. Chem.201451230331410.1002/jhet.1582
    [Google Scholar]
  41. BrahmachariG. Screening for low-cost, efficient and eco-friendly catalysts in current green chemistry practice: A test case with sodium formate.Arch. Med. (Oviedo)2015112
    [Google Scholar]
  42. Food and drug administration department of health and human services.2013Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=186 (accessedon 20-8-2024)
    [Google Scholar]
  43. JohnsonW.Jr HeldrethB. BergfeldW.F. BelsitoD.V. HillR.A. KlaassenC.D. LieblerD.C. MarksJ.G.Jr ShankR.C. SlagaT.J. SnyderP.W. AndersenF.A. Safety assessment of formic acid and sodium formate as used in cosmetics.Int. J. Toxicol.2016352Suppl.41S54S10.1177/1091581816677716 27913772
    [Google Scholar]
  44. KaurG. DeviM. KumariA. DeviR. BanerjeeB. One-pot pseudo five component synthesis of biologically relevant 1,2,6-triaryl-4-arylamino-piperidine-3-ene-3-carboxylates: A decade update.ChemistrySelect20183349892991010.1002/slct.201801887
    [Google Scholar]
  45. BanerjeeB. Multicomponent synthesis of biologically relevant spiroheterocycles in water.Mater. Res. Foundations201950269319
    [Google Scholar]
  46. BanerjeeB. Recent developments on organo-bicyclo-bases catalyzed multi-component synthesis of biologically relevant heterocycles.Curr. Org. Chem.201822320823310.2174/1385272821666170703123129
    [Google Scholar]
  47. BrahmachariG. BanerjeeB. A comparison between catalyst-free and ZrOCl2.8H2O-catalyzed strecker reactions for the rapid and solvent-free one-pot synthesis of racemic α-aminonitrile derivatives.Asian J. Org. Chem.20121325125810.1002/ajoc.201200055
    [Google Scholar]
  48. KhuranaJ.M. ChaudharyA. LumbA. NandB. An expedient four-component domino protocol for the synthesis of novel benzo[a]phenazine annulated heterocycles and their photophysical studies.Green Chem.20121482321232710.1039/c2gc35644a
    [Google Scholar]
  49. SrinivasV. KoketsuM. Synthesis of indole-2-, 3-, or 5-substituted propargylamines via gold(III)-catalyzed three component reaction of aldehyde, alkyne, and amine in aqueous medium.Tetrahedron201369378025803310.1016/j.tet.2013.06.098
    [Google Scholar]
  50. VermaA.K. KotlaS.K.R. ChoudharyD. PatelM. TiwariR.K. Silver-catalyzed tandem synthesis of naphthyridines and thienopyridines via three-component reaction.J. Org. Chem.20137894386440110.1021/jo400400c 23565804
    [Google Scholar]
  51. PrasadD. NathM. Three-component domino reaction in PPG: An easy access to 4- thiazolidinone derivatives.J. Heterocycl. Chem.201249362863310.1002/jhet.838
    [Google Scholar]
  52. BanerjeeB. BrahmachariG. Ammonium chloride catalysed one-pot multicomponent synthesis of 1,8-dioxo-octahydroxanthenes and N-aryl-1,8-dioxodecahydroacridines under solvent free conditions.J. Chem. Res.2014381274575010.3184/174751914X14177132210020
    [Google Scholar]
  53. KaurG. DeviP. ThakurS. KumarA. ChandelR. BanerjeeB. Magnetically separable transition metal ferrites: Versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles.ChemistrySelect2019472181219910.1002/slct.201803600
    [Google Scholar]
  54. BrahmachariG. LaskarS. BanerjeeB. Eco-friendly, one-pot multicomponent synthesis of pyran annulated heterocyclic scaffolds at room temperature using ammonium or sodium formate as non-toxic catalyst.J. Heterocycl. Chem.201451S1E303E30810.1002/jhet.1974
    [Google Scholar]
  55. BanerjeeB. KaurM. SharmaV. GuptaV.K. KaurJ. SharmaA. PriyaA. SinghA. Camphor sulfonic acid catalyzed one-pot pseudo three-component synthesis of a series of 1,8-dioxo-octahydroxanthenes and comparative crystal structures investigations and Hirshfeld surface analysis of five such derivatives.Res. Chem. Intermed.202349114639467010.1007/s11164‑023‑05064‑w
    [Google Scholar]
  56. BanerjeeB. KaurM. PriyaA. SinghA. SharmaA. KaurG. Multicomponent synthesis of biologically promising pyrans and pyran annulated heterocycles using magnetically recoverable nanocatalysts. Synthetic Applications.De Gruyter202241110.1515/9783110730357‑011
    [Google Scholar]
  57. BanerjeeB. KaurM. PriyaA. SharmaA. SinghA. Ionic liquid-promoted the synthesis of structurally diverse pyrans, pyran-annulated heterocycles, and spiropyrans.Curr. Org. Chem.202428752654410.2174/0113852728300880240223063813
    [Google Scholar]
  58. BanerjeeB. SinghA. SharmaA. PriyaA. KaurM. KaurG. GuptaV.K. JaitakV. Mandelic acid catalyzed one-pot pseudo three-component synthesis of various trisubstituted methane derivatives at room temperature.ARKIVOC20222022910011810.24820/ark.5550190.p011.895
    [Google Scholar]
  59. BanerjeeB. SharmaA. KaurM. SinghA. PriyaA. 5 One-pot five/four-component synthesis of structurally diverse bioactive quinoxaline-annulated spiroheterocycles through the in situ formation of 11H-indeno[1,2-b]quinoxalin-11-ones Multicomponent Synthesis: Bioactive Heterocycles.De Gruyter, Germany20235181
    [Google Scholar]
  60. BanerjeeB. SharmaA. ChawlaP.A. JhaK.T. BiswasK. DebM. KaurM. PriyaA. SinghA. Trisodium citrate dihydrate catalyzed one-pot four component synthesis of spiropyrano-indenoquinoxaline derivatives and their molecular docking analysis on the anti-cancer efficacies.ARKIVOC20242024820241220310.24820/ark.5550190.p012.203
    [Google Scholar]
  61. BanerjeeB. PriyaA. SharmaA. SinghA. KaurM. Sodium dodecyl sulfate catalyzed one-pot three-component synthesis of structurally diverse 2-amino-3-cyano-4-substitued-4H-chromenes in aqueous medium at room temperature.ARKIVOC20232023711410.24820/ark.5550190.p012.116
    [Google Scholar]
  62. BrahmachariG. BanerjeeB. Facile and chemically sustainable one-pot synthesis of a wide array of fused O-and N-heterocycles catalyzed by trisodium citrate dihydrate under ambient conditions.Asian J. Org. Chem.20165227128610.1002/ajoc.201500465
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461339667240910052814
Loading
/content/journals/cgc/10.2174/0122133461339667240910052814
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test