Skip to content
2000
image of Integrated Multi-omics Analysis of Hub Genes and miRNA Interactions in Hypertrophic Cardiomyopathy

Abstract

Background

Hypertrophic Cardiomyopathy (HCM) is a complex cardiac disorder marked by the thickening of the heart muscle.

Method

HCM and normal control cell lines were cultured in DMEM with 12.5% FBS and 1% penicillin-streptomycin at 37°C and 5% CO. Differentially expressed genes (DEGs) were identified from GSE32453, GSE53408, and GSE113439 datasets using the limma package in R. Hub genes were determined through protein-protein interaction (PPI) network and Cytoscape analysis and validated Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) and Western blot analysis. Gene enrichment, miRNA predictions, drug prediction, and molecular docking analyses were conducted for functional enrichment and to explore hub gene-associated drugs.

Results

To identify DEGs and hub genes implicated in HCM, we analyzed three Gene Expression Omnibus (GEO) datasets (GSE32453, GSE53404, and GSE1134439), extracting the top 1000 DEGs. Venn analysis revealed 21 common down-regulated genes. PPI analysis identified these six as key hub genes, including Iron Response Element Binding Protein 2 (IREB2), Protein Tyrosine Phosphatase, Non-Receptor Type 11 (PTPN11), IQ Motif Containing GTPase Activating Protein 1 (IQGAP1), Phosphoglucomutase 2 (PGM2), DIS3 RNA Exonuclease 3' to 5' (DIS3), Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1) in HCM patients. Gene enrichment analysis highlighted the involvement of these genes in cellular functions such as energy metabolism and growth factor signaling, suggesting their role in the disease's progression. Validation using an additional dataset (GSE36961) confirmed significant down-regulation of all hub genes in HCM samples, supported by Receiver Operating Characteristic (ROC) curve analysis that demonstrated their diagnostic potential. Furthermore, miRNA analysis identified six up-regulated miRNAs (miR-124, miR-29b, miR-330, miR-34a, miR-375, and miR-451) that likely contribute to the dysregulation of these hub genes. Drug prediction analysis identified various potential therapeutic compounds targeting these hub genes. Molecular docking revealed favorable binding affinities, supporting the therapeutic potential of these drugs in modulating hub gene activity.

Conclusion

Our findings suggest that IREB2, PTPN11, IQGAP1, PGM2, DIS3, and GFPT1 hub genes and their associated regulatory pathways may serve as biomarkers and therapeutic targets for HCM, potentially improving diagnosis and treatment strategies.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029363785250311084956
2025-03-26
2025-10-18
Loading full text...

Full text loading...

References

  1. Cianci V. Forzese E. Sapienza D. Cardia L. Cianci A. Germanà A. Tornese L. Ieni A. Gualniera P. Asmundo A. Mondello C. Morphological and genetic aspects for Post-mortem diagnosis of hypertrophic cardiomyopathy: A systematic review. Int. J. Mol. Sci. 2024 25 2 1275 10.3390/ijms25021275 38279275
    [Google Scholar]
  2. El Hadi H. Freund A. Desch S. Thiele H. Majunke N. Hypertrophic, dilated, and arrhythmogenic cardiomyopathy: Where are we? Biomedicines 2023 11 2 524 10.3390/biomedicines11020524 36831060
    [Google Scholar]
  3. Tudurachi B.S. Zăvoi A. Leonte A. Țăpoi L. Ureche C. Bîrgoan S.G. Chiuariu T. Anghel L. Radu R. Sascău R.A. Stătescu C. An update on MYBPC3 gene mutation in hypertrophic cardiomyopathy. Int. J. Mol. Sci. 2023 24 13 10510 10.3390/ijms241310510 37445689
    [Google Scholar]
  4. Jiang C. Xie N. Sun T. Ma W. Zhang B. Li W. Xanthohumol inhibits TGF-β1-induced cardiac fibroblasts activation via mediating PTEN/Akt/mTOR signaling pathway. Drug Des. Devel. Ther. 2020 14 5431 5439 10.2147/DDDT.S282206 33324040
    [Google Scholar]
  5. Finocchiaro G. Westaby J. Sheppard M.N. Papadakis M. Sharma S. Sudden cardiac death in young athletes: JACC State-of-the-Art review. J. Am. Coll. Cardiol. 2024 83 2 350 370 10.1016/j.jacc.2023.10.032 38199713
    [Google Scholar]
  6. Finocchiaro G. Papadakis M. Sharma S. Sheppard M. Sudden cardiac death. Eur. Heart J. 2017 38 17 1280 1282 10.1093/eurheartj/ehx194 28938708
    [Google Scholar]
  7. Li W. Liu X. Liu Z. Xing Q. Liu R. Wu Q. Hu Y. Zhang J. The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: A review. Front. Pharmacol. 2024 15 1416403 10.3389/fphar.2024.1416403 39021834
    [Google Scholar]
  8. Marian A.J. Molecular genetic basis of hypertrophic cardiomyopathy. Circ. Res. 2021 128 10 1533 1553 10.1161/CIRCRESAHA.121.318346 33983830
    [Google Scholar]
  9. Wei S. Ma W. Li X. Jiang C. Sun T. Li Y. Zhang B. Li W. Involvement of ROS/NLRP3 inflammasome signaling pathway in doxorubicin-induced cardiotoxicity. Cardiovasc. Toxicol. 2020 20 5 507 519 10.1007/s12012‑020‑09576‑4 32607760
    [Google Scholar]
  10. Sun T.L. Li W.Q. Tong X.L. Liu X.Y. Zhou W.H. Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway. Eur. J. Pharmacol. 2021 891 173690 10.1016/j.ejphar.2020.173690 33127362
    [Google Scholar]
  11. Melas M. Beltsios E.T. Adamou A. Koumarelas K. McBride K.L. Molecular diagnosis of hypertrophic cardiomyopathy (HCM): In the heart of cardiac disease. J. Clin. Med. 2022 12 1 225 10.3390/jcm12010225 36615026
    [Google Scholar]
  12. Richard P. Charron P. Carrier L. Ledeuil C. Cheav T. Pichereau C. Benaiche A. Isnard R. Dubourg O. Burban M. Gueffet J.P. Millaire A. Desnos M. Schwartz K. Hainque B. Komajda M. Hypertrophic cardiomyopathy. Circulation 2003 107 17 2227 2232 10.1161/01.CIR.0000066323.15244.54 12707239
    [Google Scholar]
  13. Fang L.T. Zhu B. Zhao Y. Chen W. Yang Z. Kerrigan L. Langenbach K. de Mars M. Lu C. Idler K. Jacob H. Zheng Y. Ren L. Yu Y. Jaeger E. Schroth G.P. Abaan O.D. Talsania K. Lack J. Shen T.W. Chen Z. Stanbouly S. Tran B. Shetty J. Kriga Y. Meerzaman D. Nguyen C. Petitjean V. Sultan M. Cam M. Mehta M. Hung T. Peters E. Kalamegham R. Sahraeian S.M.E. Mohiyuddin M. Guo Y. Yao L. Song L. Lam H.Y.K. Drabek J. Vojta P. Maestro R. Gasparotto D. Kõks S. Reimann E. Scherer A. Nordlund J. Liljedahl U. Jensen R.V. Pirooznia M. Li Z. Xiao C. Sherry S.T. Kusko R. Moos M. Donaldson E. Tezak Z. Ning B. Tong W. Li J. Duerken-Hughes P. Catalanotti C. Maheshwari S. Shuga J. Liang W.S. Keats J. Adkins J. Tassone E. Zismann V. McDaniel T. Trent J. Foox J. Butler D. Mason C.E. Hong H. Shi L. Wang C. Xiao W. Abaan O.D. Ashby M. Aygun O. Bian X. Blomquist T.M. Bushel P. Cam M. Campagne F. Chen Q. Chen T. Chen X. Chen Y-C. Chuang H-Y. de Mars M. Deng Y. Donaldson E. Drabek J. Ernest B. Foox J. Freed D. Giresi P. Gong P. Granat A. Guan M. Guo Y. Hatzis C. Hester S. Hipp J.A. Hong H. Hung T. Idler K. Jacob H. Jaeger E. Jailwala P. Jensen R.V. Jones W. Kalamegham R. Kanakamedala B. Keats J. Kerrigan L. Kõks S. Kriga Y. Kusko R. Lababidi S. Langenbach K. Lee E. Li J-L. Li Y. Li Z. Liang S. Liu X. Lu C. Maestro R. Mason C.E. McDaniel T. Mercer T. Meerzaman D. Mehra U. Miles C. Miller C. Moos M. Moshrefi A. Natarajan A. Ning B. Nordlund J. Nguyen C. Pandey J. Papas B.N. Pathak A. Peters E. Petitjean V. Pirooznia M. Polano M. Raziuddin A. Resch W. Ren L. Scherer A. Schroth G.P. Seifuddin F. Sherry S.T. Shetty J. Shi L. Shi T. Staudt L.M. Sultan M. Tezak Z. Tong W. Tran B. Trent J. Truong T. Vojta P. Vera C.J. Walton A. Wang C. Wang J. Wang J. Wang M. Willey J.C. Wu L. Xiao C. Xiao W. Xu X. Yan C. Yavas G. Yu Y. Zhang C. Zheng Y. Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing. Nat. Biotechnol. 2021 39 9 1151 1160 10.1038/s41587‑021‑00993‑6 34504347
    [Google Scholar]
  14. Schlittler M. Pramstaller P.P. Rossini A. De Bortoli M. Myocardial fibrosis in hypertrophic cardiomyopathy: A perspective from fibroblasts. Int. J. Mol. Sci. 2023 24 19 14845 10.3390/ijms241914845 37834293
    [Google Scholar]
  15. Lunde I.G. Rypdal K.B. Van Linthout S. Diez J. González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol. 2024 134 1 22 10.1016/j.matbio.2024.08.008 39214156
    [Google Scholar]
  16. Liu Y. Afzal J. Vakrou S. Greenland G.V. Talbot C.C. Jr Hebl V.B. Guan Y. Karmali R. Tardiff J.C. Leinwand L.A. Olgin J.E. Das S. Fukunaga R. Abraham M.R. Differences in microRNA-29 and pro-fibrotic gene expression in mouse and human hypertrophic cardiomyopathy. Front. Cardiovasc. Med. 2019 6 170 10.3389/fcvm.2019.00170 31921893
    [Google Scholar]
  17. Claes G.R.F. van Tienen F.H.J. Lindsey P. Krapels I.P.C. Helderman-van den Enden A.T.J.M. Hoos M.B. Barrois Y.E.G. Janssen J.W.H. Paulussen A.D.C. Sels J.W.E.M. Kuijpers S.H.H. van Tintelen J.P. van den Berg M.P. Heesen W.F. Garcia-Pavia P. Perrot A. Christiaans I. Salemink S. Marcelis C.L.M. Smeets H.J.M. Brunner H.G. Volders P.G.A. van den Wijngaard A. Hypertrophic remodelling in cardiac regulatory myosin light chain (MYL2) founder mutation carriers. Eur. Heart J. 2016 37 23 1815 1822 10.1093/eurheartj/ehv522 26497160
    [Google Scholar]
  18. Hall E.J. Pal S. Glennon M.S. Shridhar P. Satterfield S.L. Weber B. Zhang Q. Salama G. Lal H. Becker J.R. Cardiac natriuretic peptide deficiency sensitizes the heart to stress-induced ventricular arrhythmias via impaired CREB signalling. Cardiovasc. Res. 2022 118 9 2124 2138 10.1093/cvr/cvab257 34329394
    [Google Scholar]
  19. Horwich T.B. Hamilton M.A. Fonarow G.C. B-type natriuretic peptide levels in obese patients with advanced heart failure. J. Am. Coll. Cardiol. 2006 47 1 85 90 10.1016/j.jacc.2005.08.050 16386669
    [Google Scholar]
  20. Hu H. Umair M. Khan S.A. Sani A.I. Iqbal S. Khalid F. Sultan R. Abdel-Maksoud M.A. Mubarak A. Dawoud T.M. Malik A. Saleh I.A. Al Amri A.A. Algarzae N.K. Kodous A.S. Hameed Y. CDCA8, a mitosis-related gene, as a prospective pan-cancer biomarker: Implications for survival prognosis and oncogenic immunology. Am. J. Transl. Res. 2024 16 2 432 445 10.62347/WSEF7878 38463578
    [Google Scholar]
  21. Bagnall R.D. Tsoutsman T. Shephard R.E. Ritchie W. Semsarian C. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PLoS One 2012 7 9 e44744 10.1371/journal.pone.0044744
    [Google Scholar]
  22. Deng J. Liu Q. Ye L. Wang S. Song Z. Zhu M. Qiang F. Zhou Y. Guo Z. Zhang W. Chen T. The Janus face of mitophagy in myocardial ischemia/reperfusion injury and recovery. Biomed. Pharmacother. 2024 173 116337 10.1016/j.biopha.2024.116337 38422659
    [Google Scholar]
  23. Zhou Y. Li Q. Pan R. Wang Q. Zhu X. Yuan C. Cai F. Gao Y. Cui Y. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy 2022 77 2 469 482 10.1111/all.15111 34570913
    [Google Scholar]
  24. Yin D. Zhong Y. Ling S. Lu S. Wang X. Jiang Z. Wang J. Dai Y. Tian X. Huang Q. Wang X. Chen J. Li Z. Li Y. Xu Z. Jiang H. Wu Y. Shi Y. Wang Q. Xu J. Hong W. Xue H. Yang H. Zhang Y. Da L. Han Z. Tao S. Dong R. Ying T. Hong J. Cai Y. Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat. Biomed. Eng. 2024 2024 1 16 10.1038/s41551‑024‑01208‑4 38714892
    [Google Scholar]
  25. Lu Y. Wang D. Chen G. Shan Z. Li D. Exploring the molecular landscape of osteosarcoma through PTTG family genes using a detailed multi-level methodology. Front. Genet. 2024 15 1431668 10.3389/fgene.2024.1431668 39139816
    [Google Scholar]
  26. Li X. Wang C. Zhang X. Liu J. Wang Y. Li C. Guo D. Weighted gene co-expression network analysis revealed key biomarkers associated with the diagnosis of hypertrophic cardiomyopathy. Hereditas 2020 157 1 42 10.1186/s41065‑020‑00155‑9 33099311
    [Google Scholar]
  27. Kõks G. Uudelepp M.L. Limbach M. Peterson P. Reimann E. Kõks S. Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies. Am. J. Pathol. 2015 185 11 2898 2906 10.1016/j.ajpath.2015.07.006 26348578
    [Google Scholar]
  28. Dong Y. Wu X. Xu C. Hameed Y. Abdel-Maksoud M.A. Almanaa T.N. Kotob M.H. Al-Qahtani W.H. Mahmoud A.M. Cho W.C. Li C. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures. Aging (Albany NY) 2024 16 3 2591 2616 10.18632/aging.205499 38305808
    [Google Scholar]
  29. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  30. Abdel-Maksoud M.A. Ullah S. Nadeem A. Shaikh A. Zia M.K. Zakri A.M. Almanaa T.N. Alfuraydi A.A. Mubarak A. Hameed Y. Unlocking the diagnostic, prognostic roles, and immune implications of BAX gene expression in pan-cancer analysis. Am. J. Transl. Res. 2024 16 1 63 74 10.62347/TWOY1681 38322551
    [Google Scholar]
  31. Chin C.H. Chen S.H. Wu H.H. Ho C.W. Ko M.T. Lin C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014 8 S4 Suppl. 4 S11 10.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  32. Kingo K. Aunin E. Karelson M. Rätsep R. Silm H. Vasar E. Kõks S. Expressional changes in the intracellular melanogenesis pathways and their possible role the pathogenesis of vitiligo. J. Dermatol. Sci. 2008 52 1 39 46 10.1016/j.jdermsci.2008.03.013 18514490
    [Google Scholar]
  33. Hameed Y. Ahmad M. Ejaz S. Liang S. WITHDRAWN: Identification of key biomarkers for the future applications in diagnostics and targeted therapy of colorectal cancer. Curr. Mol. Med. 2022 Epub ahead of print10.2174/1566524023666220819124419
    [Google Scholar]
  34. Chang L. Zhou G. Soufan O. Xia J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020 48 W1 W244 W251 10.1093/nar/gkaa467 32484539
    [Google Scholar]
  35. Kim S. Thiessen P.A. Bolton E.E. Chen J. Fu G. Gindulyte A. Han L. He J. He S. Shoemaker B.A. Wang J. Yu B. Zhang J. Bryant S.H. PubChem substance and compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  36. Birney E. Andrews T.D. Bevan P. Caccamo M. Chen Y. Clarke L. Coates G. Cuff J. Curwen V. Cutts T. Down T. Eyras E. Fernandez-Suarez X.M. Gane P. Gibbins B. Gilbert J. Hammond M. Hotz H.R. Iyer V. Jekosch K. Kahari A. Kasprzyk A. Keefe D. Keenan S. Lehvaslaiho H. McVicker G. Melsopp C. Meidl P. Mongin E. Pettett R. Potter S. Proctor G. Rae M. Searle S. Slater G. Smedley D. Smith J. Spooner W. Stabenau A. Stalker J. Storey R. Ureta-Vidal A. Woodwark K.C. Cameron G. Durbin R. Cox A. Hubbard T. Clamp M. An overview of Ensembl. Genome Res. 2004 14 5 925 928 10.1101/gr.1860604 15078858
    [Google Scholar]
  37. Waterhouse A. Bertoni M. Bienert S. Studer G. Tauriello G. Gumienny R. Heer F.T. de Beer T.A.P. Rempfer C. Bordoli L. Lepore R. Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 46 W1 W296 W303 10.1093/nar/gky427 29788355
    [Google Scholar]
  38. Murail S. de Vries S.J. Rey J. Moroy G. Tufféry P. SeamDock: An interactive and collaborative online docking resource to assist small compound molecular docking. Front. Mol. Biosci. 2021 8 716466 716466 10.3389/fmolb.2021.716466 34604303
    [Google Scholar]
  39. Hameed Y. Decoding the significant diagnostic and prognostic importance of maternal embryonic leucine zipper kinase in human cancers through deep integrative analyses. J. Cancer Res. Ther. 2023 19 7 1852 1864 10.4103/jcrt.jcrt_1902_21 38376289
    [Google Scholar]
  40. Todiere G. Quarta G. Finocchiaro G. Pedrinelli R. Hypertrophic Cardiomyopathy. Case-based Atlas of Cardiovascular Magnetic Resonance. Springer 2023 103 118 10.1007/978‑3‑031‑32593‑9_6
    [Google Scholar]
  41. Abhilash B. Abhishek G. Rithwic Mani G. Parveen P. Hypertrophic Cardiomyopathy. Int. J. Pharm. 2024 12 4 461 473
    [Google Scholar]
  42. Marian A.J. Hypertrophic cardiomyopathy: From genetics to treatment. Eur. J. Clin. Invest. 2010 40 4 360 369 10.1111/j.1365‑2362.2010.02268.x 20503496
    [Google Scholar]
  43. Teekakirikul P. Zhu W. Huang H.C. Fung E. Hypertrophic cardiomyopathy: An overview of genetics and management. Biomolecules 2019 9 12 878 10.3390/biom9120878 31888115
    [Google Scholar]
  44. Lopes L.R. Ho C.Y. Elliott P.M. Genetics of hypertrophic cardiomyopathy: Established and emerging implications for clinical practice. Eur. Heart J. 2024 45 30 2727 2734 10.1093/eurheartj/ehae421 38984491
    [Google Scholar]
  45. Menezes A.S. Junior França-e-Silva A.L.G. Oliveira H.L. Lima K.B.A. Porto I.O.P. Pedroso T.M.A. Silva D.M. Freitas A.F. Jr Genetic mutations and mitochondrial redox signaling as modulating factors in hypertrophic cardiomyopathy: A scoping review. Int. J. Mol. Sci. 2024 25 11 5855 10.3390/ijms25115855 38892064
    [Google Scholar]
  46. Keshishian H. Burgess M.W. Gillette M.A. Mertins P. Clauser K.R. Mani D.R. Kuhn E.W. Farrell L.A. Gerszten R.E. Carr S.A. Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury. Mol. Cell. Proteomics 2015 14 9 2375 2393 10.1074/mcp.M114.046813 25724909
    [Google Scholar]
  47. Bokhari Y. Discovering driver mutations in biological data. 2018
    [Google Scholar]
  48. Popescu R.G. Dinischiotu A. Marinescu G.C. Proteomic changes in the cytoplasmatic fraction of weaned piglets liver and kidney under antioxidants and mycotoxins diets. bioRxiv 2024
    [Google Scholar]
  49. Ranjbarvaziri S. Kooiker K.B. Ellenberger M. Fajardo G. Zhao M. Vander Roest A.S. Woldeyes R.A. Koyano T.T. Fong R. Ma N. Tian L. Traber G.M. Chan F. Perrino J. Reddy S. Chiu W. Wu J.C. Woo J.Y. Ruppel K.M. Spudich J.A. Snyder M.P. Contrepois K. Bernstein D. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy. Circulation 2021 144 21 1714 1731 10.1161/CIRCULATIONAHA.121.053575 34672721
    [Google Scholar]
  50. Sacchetto C. Sequeira V. Bertero E. Dudek J. Maack C. Calore M. Metabolic alterations in inherited cardiomyopathies. J. Clin. Med. 2019 8 12 2195 10.3390/jcm8122195 31842377
    [Google Scholar]
  51. Zhuang L. Mao Y. Liu Z. Li C. Jin Q. Lu L. Tao R. Yan X. Chen K. FABP3 deficiency exacerbates metabolic derangement in cardiac hypertrophy and heart failure via PPARα pathway. Front. Cardiovasc. Med. 2021 8 722908 10.3389/fcvm.2021.722908 34458345
    [Google Scholar]
  52. Guo Z. Huo D. Shao Y. Yang W. Wang J. Zhang Y. Xiao H. Hao B. Liao S. Novel biallelic variants in IREB2 cause an early-onset neurodegenerative disorder in a Chinese pedigree. Orphanet J. Rare Dis. 2024 19 1 435 10.1186/s13023‑024‑03465‑7 39587636
    [Google Scholar]
  53. Cooper M.S. Stark Z. Lunke S. Zhao T. Amor D.J. IREB2-associated neurodegeneration. Brain 2019 142 8 e40 e40 10.1093/brain/awz183 31243445
    [Google Scholar]
  54. Sawicki K.T. De Jesus A. Ardehali H. Iron metabolism in cardiovascular disease: Physiology, mechanisms, and therapeutic targets. Circ. Res. 2023 132 3 379 396 10.1161/CIRCRESAHA.122.321667 36730380
    [Google Scholar]
  55. Paterek A. Mackiewicz U. Mączewski M. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities. J. Cell. Physiol. 2019 234 12 21613 21629 10.1002/jcp.28820 31106422
    [Google Scholar]
  56. Luscieti S. The Iron Regulatory Protein/Iron Responsive nlm (IRP/IRE) system: Functional studies of new target mRNAs and pathological implications for novel IRE mutations.. Thesis Universitat de Barcelona, 2016
    [Google Scholar]
  57. Celma Nos F. Iron Regulatory Protein/Iron Responsive nlm (IRP/IRE) system: Associated diseases and new target mRNAs (PPP1R1B).. Thesis Universitat Internacional de Catalunya, 2022
    [Google Scholar]
  58. Rosenblum S.L. Inflammation, dysregulated iron metabolism, and cardiovascular disease. Front. Aging 2023 4 1124178 10.3389/fragi.2023.1124178 36816471
    [Google Scholar]
  59. Chou C. Chin M.T. Pathogenic mechanisms of hypertrophic cardiomyopathy beyond sarcomere dysfunction. Int. J. Mol. Sci. 2021 22 16 8933 10.3390/ijms22168933 34445638
    [Google Scholar]
  60. Schramm C. Fine D.M. Edwards M.A. Reeb A.N. Krenz M. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am. J. Physiol. Heart Circ. Physiol. 2012 302 1 H231 H243 10.1152/ajpheart.00665.2011 22058153
    [Google Scholar]
  61. Raychawdhuri Y. Understanding the pathogenesis of hypertrophic cardiomyopathy and testing potential treatments in RASopathy variants.Thesis Icahn School of Medicine at Mount Sinai, 2023
    [Google Scholar]
  62. Lorell B.H. Carabello B.A. Left ventricular hypertrophy: Pathogenesis, detection, and prognosis. Circulation 2000 102 4 470 479 10.1161/01.CIR.102.4.470 10908222
    [Google Scholar]
  63. Kadyan P. Singh L. Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine. Pharmacol. Rep. 2024 76 4 665 678 10.1007/s43440‑024‑00602‑8 38758470
    [Google Scholar]
  64. Zheng Z.H. Lin X.C. Lu Y. Cao S.R. Liu X.K. Lin D. Yang F.H. Zhang Y.B. Tu J.L. Pan B.X. Hu P. Zhang W.H. Harmine exerts anxiolytic effects by regulating neuroinflammation and neuronal plasticity in the basolateral amygdala. Int. Immunopharmacol. 2023 119 110208 10.1016/j.intimp.2023.110208 37150016
    [Google Scholar]
  65. Berecek K. King S. Wu J. Angiotensin-converting enzyme and converting enzyme inhibitors. Cellular and Molecular Biology of the Renin-Angiotensin System. CRC Press 2018 183 220 10.1201/9781351070492‑8
    [Google Scholar]
  66. Cicoira M. Zanolla L. Rossi A. Golia G. Franceschini L. Cabrini G. Bonizzato A. Graziani M. Anker S.D. Coats A.J.S. Zardini P. Failure of aldosterone suppression despite angiotensin-converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype. J. Am. Coll. Cardiol. 2001 37 7 1808 1812 10.1016/S0735‑1097(01)01237‑2 11401115
    [Google Scholar]
  67. Niu T. Chen X. Xu X. Angiotensin converting enzyme gene insertion/deletion polymorphism and cardiovascular disease: therapeutic implications. Drugs 2002 62 7 977 993 10.2165/00003495‑200262070‑00001 11985486
    [Google Scholar]
  68. Kawana M. Spudich J.A. Ruppel K.M. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front. Physiol. 2022 13 975076 10.3389/fphys.2022.975076 36225299
    [Google Scholar]
  69. Barefield D.Y. Alvarez-Arce A. Araujo K.N. Mechanisms of sarcomere protein mutation-induced cardiomyopathies. Curr. Cardiol. Rep. 2023 25 6 473 484 10.1007/s11886‑023‑01876‑9 37060436
    [Google Scholar]
  70. Robinson P. Liu X. Sparrow A. Patel S. Zhang Y.H. Casadei B. Watkins H. Redwood C. Hypertrophic cardiomyopathy mutations increase myofilament Ca2+ buffering, alter intracellular Ca2+ handling, and stimulate Ca2+-dependent signaling. J. Biol. Chem. 2018 293 27 10487 10499 10.1074/jbc.RA118.002081 29760186
    [Google Scholar]
  71. Glavaški M. Velicki L. Vučinić N. Hypertrophic cardiomyopathy: Genetic foundations, outcomes, interconnections, and their modifiers. Medicina (Kaunas) 2023 59 8 1424 10.3390/medicina59081424 37629714
    [Google Scholar]
  72. Tham Y.K. Bernardo B.C. Ooi J.Y.Y. Weeks K.L. McMullen J.R. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch. Toxicol. 2015 89 9 1401 1438 10.1007/s00204‑015‑1477‑x 25708889
    [Google Scholar]
  73. Witteles R.M. Fowler M.B. Insulin-resistant cardiomyopathy. J. Am. Coll. Cardiol. 2008 51 2 93 102 10.1016/j.jacc.2007.10.021 18191731
    [Google Scholar]
  74. Zhai Y. Fu H. Li Y. Li S. Zhang W. Yue J. Wang Z. Relationship between four insulin resistance surrogates and left ventricular hypertrophy among hypertensive adults: A case–control study. Endocr. Connect. 2024 13 4 e230476 10.1530/EC‑23‑0476 38300820
    [Google Scholar]
  75. Lopes L.R. Elliott P.M. A straightforward guide to the sarcomeric basis of cardiomyopathies. Heart 2014 100 24 1916 1923 10.1136/heartjnl‑2014‑305645 25271316
    [Google Scholar]
/content/journals/cg/10.2174/0113892029363785250311084956
Loading
/content/journals/cg/10.2174/0113892029363785250311084956
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: miRNAs ; treatment ; HCM ; hub genes ; diagnosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test