Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background

Hypertrophic Cardiomyopathy (HCM) is a complex cardiac disorder marked by the thickening of the heart muscle.

Methods

HCM and normal control cell lines were cultured in DMEM with 12.5% FBS and 1% penicillin-streptomycin at 37°C and 5% CO. Differentially expressed genes (DEGs) were identified from GSE32453, GSE53408, and GSE113439 datasets using the limma package in R. Hub genes were determined through protein-protein interaction (PPI) network and Cytoscape analysis and validated Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) and Western blot analysis. Gene enrichment, miRNA predictions, drug prediction, and molecular docking analyses were conducted for functional enrichment and to explore hub gene-associated drugs.

Results

To identify DEGs and hub genes implicated in HCM, we analyzed three Gene Expression Omnibus (GEO) datasets (GSE32453, GSE53404, and GSE1134439), extracting the top 1000 DEGs. Venn analysis revealed 21 common down-regulated genes. PPI analysis identified these six as key hub genes, including Iron Response Element Binding Protein 2 (IREB2), Protein Tyrosine Phosphatase, Non-Receptor Type 11 (PTPN11), IQ Motif Containing GTPase Activating Protein 1 (IQGAP1), Phosphoglucomutase 2 (PGM2), DIS3 RNA Exonuclease 3' to 5' (DIS3), Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1) in HCM patients. Gene enrichment analysis highlighted the involvement of these genes in cellular functions such as energy metabolism and growth factor signaling, suggesting their role in the disease's progression. Validation using an additional dataset (GSE36961) confirmed significant down-regulation of all hub genes in HCM samples, supported by Receiver Operating Characteristic (ROC) curve analysis that demonstrated their diagnostic potential. Furthermore, miRNA analysis identified six up-regulated miRNAs (miR-124, miR-29b, miR-330, miR-34a, miR-375, and miR-451) that likely contribute to the dysregulation of these hub genes. Drug prediction analysis identified various potential therapeutic compounds targeting these hub genes. Molecular docking revealed favorable binding affinities, supporting the therapeutic potential of these drugs in modulating hub gene activity.

Discussion

These findings demonstrate that HCM progression involves coordinated downregulation of hub genes and miRNA-mediated dysregulation of metabolic and signaling pathways. The integration of bioinformatics, validation assays, and drug docking suggests a strong translational potential for biomarker discovery and targeted therapy.

Conclusion

Our findings suggest that IREB2, PTPN11, IQGAP1, PGM2, DIS3, and GFPT1 hub genes and their associated regulatory pathways may serve as biomarkers and therapeutic targets for HCM, potentially improving diagnosis and treatment strategies.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029363785250311084956
2025-03-26
2025-12-10
Loading full text...

Full text loading...

References

  1. CianciV. ForzeseE. SapienzaD. CardiaL. CianciA. GermanàA. TorneseL. IeniA. GualnieraP. AsmundoA. MondelloC. Morphological and genetic aspects for Post-mortem diagnosis of hypertrophic cardiomyopathy: A systematic review.Int. J. Mol. Sci.2024252127510.3390/ijms25021275 38279275
    [Google Scholar]
  2. El HadiH. FreundA. DeschS. ThieleH. MajunkeN. Hypertrophic, dilated, and arrhythmogenic cardiomyopathy: Where are we?Biomedicines202311252410.3390/biomedicines11020524 36831060
    [Google Scholar]
  3. TudurachiB.S. ZăvoiA. LeonteA. ȚăpoiL. UrecheC. BîrgoanS.G. ChiuariuT. AnghelL. RaduR. SascăuR.A. StătescuC. An update on MYBPC3 gene mutation in hypertrophic cardiomyopathy.Int. J. Mol. Sci.202324131051010.3390/ijms241310510 37445689
    [Google Scholar]
  4. JiangC. XieN. SunT. MaW. ZhangB. LiW. Xanthohumol inhibits TGF-β1-induced cardiac fibroblasts activation via mediating PTEN/Akt/mTOR signaling pathway.Drug Des. Devel. Ther.2020145431543910.2147/DDDT.S282206 33324040
    [Google Scholar]
  5. FinocchiaroG. WestabyJ. SheppardM.N. PapadakisM. SharmaS. Sudden cardiac death in young athletes: JACC State-of-the-Art review.J. Am. Coll. Cardiol.202483235037010.1016/j.jacc.2023.10.032 38199713
    [Google Scholar]
  6. FinocchiaroG. PapadakisM. SharmaS. SheppardM. Sudden cardiac death.Eur. Heart J.201738171280128210.1093/eurheartj/ehx194 28938708
    [Google Scholar]
  7. LiW. LiuX. LiuZ. XingQ. LiuR. WuQ. HuY. ZhangJ. The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: A review.Front. Pharmacol.202415141640310.3389/fphar.2024.1416403 39021834
    [Google Scholar]
  8. MarianA.J. Molecular genetic basis of hypertrophic cardiomyopathy.Circ. Res.2021128101533155310.1161/CIRCRESAHA.121.318346 33983830
    [Google Scholar]
  9. WeiS. MaW. LiX. JiangC. SunT. LiY. ZhangB. LiW. Involvement of ROS/NLRP3 inflammasome signaling pathway in doxorubicin-induced cardiotoxicity.Cardiovasc. Toxicol.202020550751910.1007/s12012‑020‑09576‑4 32607760
    [Google Scholar]
  10. SunT.L. LiW.Q. TongX.L. LiuX.Y. ZhouW.H. Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway.Eur. J. Pharmacol.202189117369010.1016/j.ejphar.2020.173690 33127362
    [Google Scholar]
  11. MelasM. BeltsiosE.T. AdamouA. KoumarelasK. McBrideK.L. Molecular diagnosis of hypertrophic cardiomyopathy (HCM): In the heart of cardiac disease.J. Clin. Med.202212122510.3390/jcm12010225 36615026
    [Google Scholar]
  12. RichardP. CharronP. CarrierL. LedeuilC. CheavT. PichereauC. BenaicheA. IsnardR. DubourgO. BurbanM. GueffetJ.P. MillaireA. DesnosM. SchwartzK. HainqueB. KomajdaM. Hypertrophic cardiomyopathy.Circulation2003107172227223210.1161/01.CIR.0000066323.15244.54 12707239
    [Google Scholar]
  13. FangL.T. ZhuB. ZhaoY. ChenW. YangZ. KerriganL. LangenbachK. de MarsM. LuC. IdlerK. JacobH. ZhengY. RenL. YuY. JaegerE. SchrothG.P. AbaanO.D. TalsaniaK. LackJ. ShenT.W. ChenZ. StanboulyS. TranB. ShettyJ. KrigaY. MeerzamanD. NguyenC. PetitjeanV. SultanM. CamM. MehtaM. HungT. PetersE. KalameghamR. SahraeianS.M.E. MohiyuddinM. GuoY. YaoL. SongL. LamH.Y.K. DrabekJ. VojtaP. MaestroR. GasparottoD. KõksS. ReimannE. SchererA. NordlundJ. LiljedahlU. JensenR.V. PiroozniaM. LiZ. XiaoC. SherryS.T. KuskoR. MoosM. DonaldsonE. TezakZ. NingB. TongW. LiJ. Duerken-HughesP. CatalanottiC. MaheshwariS. ShugaJ. LiangW.S. KeatsJ. AdkinsJ. TassoneE. ZismannV. McDanielT. TrentJ. FooxJ. ButlerD. MasonC.E. HongH. ShiL. WangC. XiaoW. AbaanO.D. AshbyM. AygunO. BianX. BlomquistT.M. BushelP. CamM. CampagneF. ChenQ. ChenT. ChenX. ChenY-C. ChuangH-Y. de MarsM. DengY. DonaldsonE. DrabekJ. ErnestB. FooxJ. FreedD. GiresiP. GongP. GranatA. GuanM. GuoY. HatzisC. HesterS. HippJ.A. HongH. HungT. IdlerK. JacobH. JaegerE. JailwalaP. JensenR.V. JonesW. KalameghamR. KanakamedalaB. KeatsJ. KerriganL. KõksS. KrigaY. KuskoR. LababidiS. LangenbachK. LeeE. LiJ-L. LiY. LiZ. LiangS. LiuX. LuC. MaestroR. MasonC.E. McDanielT. MercerT. MeerzamanD. MehraU. MilesC. MillerC. MoosM. MoshrefiA. NatarajanA. NingB. NordlundJ. NguyenC. PandeyJ. PapasB.N. PathakA. PetersE. PetitjeanV. PiroozniaM. PolanoM. RaziuddinA. ReschW. RenL. SchererA. SchrothG.P. SeifuddinF. SherryS.T. ShettyJ. ShiL. ShiT. StaudtL.M. SultanM. TezakZ. TongW. TranB. TrentJ. TruongT. VojtaP. VeraC.J. WaltonA. WangC. WangJ. WangJ. WangM. WilleyJ.C. WuL. XiaoC. XiaoW. XuX. YanC. YavasG. YuY. ZhangC. ZhengY. Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing.Nat. Biotechnol.20213991151116010.1038/s41587‑021‑00993‑6 34504347
    [Google Scholar]
  14. SchlittlerM. PramstallerP.P. RossiniA. De BortoliM. Myocardial fibrosis in hypertrophic cardiomyopathy: A perspective from fibroblasts.Int. J. Mol. Sci.202324191484510.3390/ijms241914845 37834293
    [Google Scholar]
  15. LundeI.G. RypdalK.B. Van LinthoutS. DiezJ. GonzálezA. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact.Matrix Biol.202413412210.1016/j.matbio.2024.08.008 39214156
    [Google Scholar]
  16. LiuY. AfzalJ. VakrouS. GreenlandG.V. TalbotC.C.Jr HeblV.B. GuanY. KarmaliR. TardiffJ.C. LeinwandL.A. OlginJ.E. DasS. FukunagaR. AbrahamM.R. Differences in microRNA-29 and pro-fibrotic gene expression in mouse and human hypertrophic cardiomyopathy.Front. Cardiovasc. Med.2019617010.3389/fcvm.2019.00170 31921893
    [Google Scholar]
  17. ClaesG.R.F. van TienenF.H.J. LindseyP. KrapelsI.P.C. Helderman-van den EndenA.T.J.M. HoosM.B. BarroisY.E.G. JanssenJ.W.H. PaulussenA.D.C. SelsJ.W.E.M. KuijpersS.H.H. van TintelenJ.P. van den BergM.P. HeesenW.F. Garcia-PaviaP. PerrotA. ChristiaansI. SaleminkS. MarcelisC.L.M. SmeetsH.J.M. BrunnerH.G. VoldersP.G.A. van den WijngaardA. Hypertrophic remodelling in cardiac regulatory myosin light chain (MYL2) founder mutation carriers.Eur. Heart J.201637231815182210.1093/eurheartj/ehv522 26497160
    [Google Scholar]
  18. HallE.J. PalS. GlennonM.S. ShridharP. SatterfieldS.L. WeberB. ZhangQ. SalamaG. LalH. BeckerJ.R. Cardiac natriuretic peptide deficiency sensitizes the heart to stress-induced ventricular arrhythmias via impaired CREB signalling.Cardiovasc. Res.202211892124213810.1093/cvr/cvab257 34329394
    [Google Scholar]
  19. HorwichT.B. HamiltonM.A. FonarowG.C. B-type natriuretic peptide levels in obese patients with advanced heart failure.J. Am. Coll. Cardiol.2006471859010.1016/j.jacc.2005.08.050 16386669
    [Google Scholar]
  20. HuH. UmairM. KhanS.A. SaniA.I. IqbalS. KhalidF. SultanR. Abdel-MaksoudM.A. MubarakA. DawoudT.M. MalikA. SalehI.A. Al AmriA.A. AlgarzaeN.K. KodousA.S. HameedY. CDCA8, a mitosis-related gene, as a prospective pan-cancer biomarker: Implications for survival prognosis and oncogenic immunology.Am. J. Transl. Res.202416243244510.62347/WSEF7878 38463578
    [Google Scholar]
  21. BagnallR.D. TsoutsmanT. ShephardR.E. RitchieW. SemsarianC. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure.PLoS One201279e4474410.1371/journal.pone.0044744
    [Google Scholar]
  22. DengJ. LiuQ. YeL. WangS. SongZ. ZhuM. QiangF. ZhouY. GuoZ. ZhangW. ChenT. The Janus face of mitophagy in myocardial ischemia/reperfusion injury and recovery.Biomed. Pharmacother.202417311633710.1016/j.biopha.2024.116337 38422659
    [Google Scholar]
  23. ZhouY. LiQ. PanR. WangQ. ZhuX. YuanC. CaiF. GaoY. CuiY. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae.Allergy202277246948210.1111/all.15111 34570913
    [Google Scholar]
  24. YinD. ZhongY. LingS. LuS. WangX. JiangZ. WangJ. DaiY. TianX. HuangQ. WangX. ChenJ. LiZ. LiY. XuZ. JiangH. WuY. ShiY. WangQ. XuJ. HongW. XueH. YangH. ZhangY. DaL. HanZ. TaoS. DongR. YingT. HongJ. CaiY. Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers.Nat. Biomed. Eng.2024202411610.1038/s41551‑024‑01208‑4 38714892
    [Google Scholar]
  25. LuY. WangD. ChenG. ShanZ. LiD. Exploring the molecular landscape of osteosarcoma through PTTG family genes using a detailed multi-level methodology.Front. Genet.202415143166810.3389/fgene.2024.1431668 39139816
    [Google Scholar]
  26. LiX. WangC. ZhangX. LiuJ. WangY. LiC. GuoD. Weighted gene co-expression network analysis revealed key biomarkers associated with the diagnosis of hypertrophic cardiomyopathy.Hereditas202015714210.1186/s41065‑020‑00155‑9 33099311
    [Google Scholar]
  27. KõksG. UudeleppM.L. LimbachM. PetersonP. ReimannE. KõksS. Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies.Am. J. Pathol.2015185112898290610.1016/j.ajpath.2015.07.006 26348578
    [Google Scholar]
  28. DongY. WuX. XuC. HameedY. Abdel-MaksoudM.A. AlmanaaT.N. KotobM.H. Al-QahtaniW.H. MahmoudA.M. ChoW.C. LiC. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures.Aging (Albany NY)20241632591261610.18632/aging.205499 38305808
    [Google Scholar]
  29. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  30. Abdel-MaksoudM.A. UllahS. NadeemA. ShaikhA. ZiaM.K. ZakriA.M. AlmanaaT.N. AlfuraydiA.A. MubarakA. HameedY. Unlocking the diagnostic, prognostic roles, and immune implications of BAX gene expression in pan-cancer analysis.Am. J. Transl. Res.2024161637410.62347/TWOY1681 38322551
    [Google Scholar]
  31. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  32. KingoK. AuninE. KarelsonM. RätsepR. SilmH. VasarE. KõksS. Expressional changes in the intracellular melanogenesis pathways and their possible role the pathogenesis of vitiligo.J. Dermatol. Sci.2008521394610.1016/j.jdermsci.2008.03.013 18514490
    [Google Scholar]
  33. HameedY. AhmadM. EjazS. LiangS. WITHDRAWN: Identification of key biomarkers for the future applications in diagnostics and targeted therapy of colorectal cancer.Curr. Mol. Med.2022Epub ahead of print10.2174/1566524023666220819124419
    [Google Scholar]
  34. ChangL. ZhouG. SoufanO. XiaJ. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology.Nucleic Acids Res.202048W1W244W25110.1093/nar/gkaa467 32484539
    [Google Scholar]
  35. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv951 26400175
    [Google Scholar]
  36. BirneyE. AndrewsT.D. BevanP. CaccamoM. ChenY. ClarkeL. CoatesG. CuffJ. CurwenV. CuttsT. DownT. EyrasE. Fernandez-SuarezX.M. GaneP. GibbinsB. GilbertJ. HammondM. HotzH.R. IyerV. JekoschK. KahariA. KasprzykA. KeefeD. KeenanS. LehvaslaihoH. McVickerG. MelsoppC. MeidlP. MonginE. PettettR. PotterS. ProctorG. RaeM. SearleS. SlaterG. SmedleyD. SmithJ. SpoonerW. StabenauA. StalkerJ. StoreyR. Ureta-VidalA. WoodwarkK.C. CameronG. DurbinR. CoxA. HubbardT. ClampM. An overview of Ensembl.Genome Res.200414592592810.1101/gr.1860604 15078858
    [Google Scholar]
  37. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky427 29788355
    [Google Scholar]
  38. MurailS. de VriesS.J. ReyJ. MoroyG. TufféryP. SeamDock: An interactive and collaborative online docking resource to assist small compound molecular docking.Front. Mol. Biosci.2021871646671646610.3389/fmolb.2021.716466 34604303
    [Google Scholar]
  39. HameedY. Decoding the significant diagnostic and prognostic importance of maternal embryonic leucine zipper kinase in human cancers through deep integrative analyses.J. Cancer Res. Ther.20231971852186410.4103/jcrt.jcrt_1902_21 38376289
    [Google Scholar]
  40. TodiereG. QuartaG. FinocchiaroG. PedrinelliR. Hypertrophic Cardiomyopathy.Case-based Atlas of Cardiovascular Magnetic Resonance.Springer202310311810.1007/978‑3‑031‑32593‑9_6
    [Google Scholar]
  41. AbhilashB. AbhishekG. Rithwic ManiG. ParveenP. Hypertrophic Cardiomyopathy.Int. J. Pharm.2024124461473
    [Google Scholar]
  42. MarianA.J. Hypertrophic cardiomyopathy: From genetics to treatment.Eur. J. Clin. Invest.201040436036910.1111/j.1365‑2362.2010.02268.x 20503496
    [Google Scholar]
  43. TeekakirikulP. ZhuW. HuangH.C. FungE. Hypertrophic cardiomyopathy: An overview of genetics and management.Biomolecules201991287810.3390/biom9120878 31888115
    [Google Scholar]
  44. LopesL.R. HoC.Y. ElliottP.M. Genetics of hypertrophic cardiomyopathy: Established and emerging implications for clinical practice.Eur. Heart J.202445302727273410.1093/eurheartj/ehae421 38984491
    [Google Scholar]
  45. Menezes JuniorA.S. França-e-SilvaA.L.G. OliveiraH.L. LimaK.B.A. PortoI.O.P. PedrosoT.M.A. SilvaD.M. FreitasA.F.Jr Genetic mutations and mitochondrial redox signaling as modulating factors in hypertrophic cardiomyopathy: A scoping review.Int. J. Mol. Sci.20242511585510.3390/ijms25115855 38892064
    [Google Scholar]
  46. KeshishianH. BurgessM.W. GilletteM.A. MertinsP. ClauserK.R. ManiD.R. KuhnE.W. FarrellL.A. GersztenR.E. CarrS.A. Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury.Mol. Cell. Proteomics20151492375239310.1074/mcp.M114.046813 25724909
    [Google Scholar]
  47. BokhariY Discovering driver mutations in biological data.PhD thesisVCU University Archives2018
    [Google Scholar]
  48. PopescuR.G. DinischiotuA. MarinescuG.C. Proteomic changes in the cytoplasmatic fraction of weaned piglets liver and kidney under antioxidants and mycotoxins diets.bioRxiv2024
    [Google Scholar]
  49. RanjbarvaziriS. KooikerK.B. EllenbergerM. FajardoG. ZhaoM. Vander RoestA.S. WoldeyesR.A. KoyanoT.T. FongR. MaN. TianL. TraberG.M. ChanF. PerrinoJ. ReddyS. ChiuW. WuJ.C. WooJ.Y. RuppelK.M. SpudichJ.A. SnyderM.P. ContrepoisK. BernsteinD. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy.Circulation2021144211714173110.1161/CIRCULATIONAHA.121.053575 34672721
    [Google Scholar]
  50. SacchettoC. SequeiraV. BerteroE. DudekJ. MaackC. CaloreM. Metabolic alterations in inherited cardiomyopathies.J. Clin. Med.2019812219510.3390/jcm8122195 31842377
    [Google Scholar]
  51. ZhuangL. MaoY. LiuZ. LiC. JinQ. LuL. TaoR. YanX. ChenK. FABP3 deficiency exacerbates metabolic derangement in cardiac hypertrophy and heart failure via PPARα pathway.Front. Cardiovasc. Med.2021872290810.3389/fcvm.2021.722908 34458345
    [Google Scholar]
  52. GuoZ. HuoD. ShaoY. YangW. WangJ. ZhangY. XiaoH. HaoB. LiaoS. Novel biallelic variants in IREB2 cause an early-onset neurodegenerative disorder in a Chinese pedigree.Orphanet J. Rare Dis.202419143510.1186/s13023‑024‑03465‑7 39587636
    [Google Scholar]
  53. CooperM.S. StarkZ. LunkeS. ZhaoT. AmorD.J. IREB2-associated neurodegeneration.Brain20191428e40e4010.1093/brain/awz183 31243445
    [Google Scholar]
  54. SawickiK.T. De JesusA. ArdehaliH. Iron metabolism in cardiovascular disease: Physiology, mechanisms, and therapeutic targets.Circ. Res.2023132337939610.1161/CIRCRESAHA.122.321667 36730380
    [Google Scholar]
  55. PaterekA. MackiewiczU. MączewskiM. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities.J. Cell. Physiol.201923412216132162910.1002/jcp.28820 31106422
    [Google Scholar]
  56. LuscietiS. The Iron Regulatory Protein/Iron Responsive nlm(IRP/IRE) system: Functional studies of new target mRNAs and pathological implications for novel IRE mutations.Thesis Universitat de Barcelona2016
    [Google Scholar]
  57. Celma NosF Iron Regulatory Protein/Iron Responsive nim (IRP/IRE) system: Associated diseases and new target mRNAs (PPP1R1B).Thesis Universitat Internacional de Catalunya2022
    [Google Scholar]
  58. RosenblumS.L. Inflammation, dysregulated iron metabolism, and cardiovascular disease.Front. Aging20234112417810.3389/fragi.2023.1124178 36816471
    [Google Scholar]
  59. ChouC. ChinM.T. Pathogenic mechanisms of hypertrophic cardiomyopathy beyond sarcomere dysfunction.Int. J. Mol. Sci.20212216893310.3390/ijms22168933 34445638
    [Google Scholar]
  60. SchrammC. FineD.M. EdwardsM.A. ReebA.N. KrenzM. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling.Am. J. Physiol. Heart Circ. Physiol.20123021H231H24310.1152/ajpheart.00665.2011 22058153
    [Google Scholar]
  61. RaychawdhuriY. Understanding the pathogenesis of hypertrophic cardiomyopathy and testing potential treatments in RASopathy variants.Thesis Icahn School of Medicine at Mount Sinai,2023
    [Google Scholar]
  62. LorellB.H. CarabelloB.A. Left ventricular hypertrophy: Pathogenesis, detection, and prognosis.Circulation2000102447047910.1161/01.CIR.102.4.470 10908222
    [Google Scholar]
  63. KadyanP. SinghL. Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine.Pharmacol. Rep.202476466567810.1007/s43440‑024‑00602‑8 38758470
    [Google Scholar]
  64. ZhengZ.H. LinX.C. LuY. CaoS.R. LiuX.K. LinD. YangF.H. ZhangY.B. TuJ.L. PanB.X. HuP. ZhangW.H. Harmine exerts anxiolytic effects by regulating neuroinflammation and neuronal plasticity in the basolateral amygdala.Int. Immunopharmacol.202311911020810.1016/j.intimp.2023.110208 37150016
    [Google Scholar]
  65. BerecekK. KingS. WuJ. Angiotensin-converting enzyme and converting enzyme inhibitors.Cellular and Molecular Biology of the Renin-Angiotensin System.CRC Press201818322010.1201/9781351070492‑8
    [Google Scholar]
  66. CicoiraM. ZanollaL. RossiA. GoliaG. FranceschiniL. CabriniG. BonizzatoA. GrazianiM. AnkerS.D. CoatsA.J.S. ZardiniP. Failure of aldosterone suppression despite angiotensin-converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype.J. Am. Coll. Cardiol.20013771808181210.1016/S0735‑1097(01)01237‑2 11401115
    [Google Scholar]
  67. NiuT. ChenX. XuX. Angiotensin converting enzyme gene insertion/deletion polymorphism and cardiovascular disease: therapeutic implications.Drugs200262797799310.2165/00003495‑200262070‑00001 11985486
    [Google Scholar]
  68. KawanaM. SpudichJ.A. RuppelK.M. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies.Front. Physiol.20221397507610.3389/fphys.2022.975076 36225299
    [Google Scholar]
  69. BarefieldD.Y. Alvarez-ArceA. AraujoK.N. Mechanisms of sarcomere protein mutation-induced cardiomyopathies.Curr. Cardiol. Rep.202325647348410.1007/s11886‑023‑01876‑9 37060436
    [Google Scholar]
  70. RobinsonP. LiuX. SparrowA. PatelS. ZhangY.H. CasadeiB. WatkinsH. RedwoodC. Hypertrophic cardiomyopathy mutations increase myofilament Ca2+ buffering, alter intracellular Ca2+ handling, and stimulate Ca2+-dependent signaling.J. Biol. Chem.201829327104871049910.1074/jbc.RA118.002081 29760186
    [Google Scholar]
  71. GlavaškiM. VelickiL. VučinićN. Hypertrophic cardiomyopathy: Genetic foundations, outcomes, interconnections, and their modifiers.Medicina (Kaunas)2023598142410.3390/medicina59081424 37629714
    [Google Scholar]
  72. ThamY.K. BernardoB.C. OoiJ.Y.Y. WeeksK.L. McMullenJ.R. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets.Arch. Toxicol.20158991401143810.1007/s00204‑015‑1477‑x 25708889
    [Google Scholar]
  73. WittelesR.M. FowlerM.B. Insulin-resistant cardiomyopathy.J. Am. Coll. Cardiol.20085129310210.1016/j.jacc.2007.10.021 18191731
    [Google Scholar]
  74. ZhaiY. FuH. LiY. LiS. ZhangW. YueJ. WangZ. Relationship between four insulin resistance surrogates and left ventricular hypertrophy among hypertensive adults: A case–control study.Endocr. Connect.2024134e23047610.1530/EC‑23‑0476 38300820
    [Google Scholar]
  75. LopesL.R. ElliottP.M. A straightforward guide to the sarcomeric basis of cardiomyopathies.Heart2014100241916192310.1136/heartjnl‑2014‑305645 25271316
    [Google Scholar]
/content/journals/cg/10.2174/0113892029363785250311084956
Loading
/content/journals/cg/10.2174/0113892029363785250311084956
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): diagnosis; HCM; hub genes; miRNAs; pathways; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test