Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background

Phthalic acid esters (PAEs) are widely used chemical compounds in various industries. However, PAEs are also a major source of pollution in soil and aquatic ecosystems, posing a significant environmental threat. Microbial degradation is a very effective way to remove phthalic acid esters from a polluted environment.

Objectives

The aims of this study were to investigate the ability of the strain sp. SF27 (=VKM Ac-2063) to degrade PAEs (specifically, dibutyl phthalate (DBF)); to annotate the complete genome of the strain SF27 (GenBank accession number GCA_012952295); to identify genes (gene clusters) potentially involved in the degradation of DBF and its major degradation product, phthalic acid (PA).

Methods

The ability of the strain SF27 to use DBP as the only source of carbon and energy was determined by cultivating it on a mineral medium containing 0.5–4 g/L DBP. The evaluation of the bacterial decomposition of DBP was carried out by GC-MS. The genome was annotated using the JGI Microbial Genome Annotation Pipeline (MGAP) (https://jgi.doe.gov/). Functional annotation was performed using various databases: KEGG, COG, NCBI, and GO. The Mauve program was used to compare the strain SF27 genome and the genomes of the closest DBP-degrading strains.

Results

The strain sp. SF27 is capable of growing on DBP as the sole source of carbon and energy at high concentrations (up to 4 g/L). The strain was able to degrade 60% of DBP (initial concentration of 1 g/L) and 20% of DBP (initial concentration of 3 g/L) within 72 hours. The genome analysis of the strain SF27 (GenBank accession number GCA_012952295) identified genes encoding hydrolases potentially involved in the initial stages of DBP degradation, leading to the formation of PA. Additionally, a cluster of genes encoding enzymes that are responsible for the transformation of PA into protocatechuic acid (PCA) has been identified and described in the genome. Based on genome analysis and cultural experiments, a complete pathway for the degradation of PA by the strain sp. SF27 into basal metabolic compounds of the cell has been proposed.

Conclusion

Based on the conducted research, it can be stated that the strain sp. SF27 is an efficient of , promising for the development of biotechnologies aimed at the restoration of ecosystems contaminated with DBP.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029343036250210044540
2025-03-14
2025-12-09
Loading full text...

Full text loading...

References

  1. NaveenK.V. SaravanakumarK. ZhangX. SathiyaseelanA. WangM.H. Impact of environmental phthalate on human health and their bioremediation strategies using fungal cell factory- A review.Environ. Res.2022214Pt 111378110.1016/j.envres.2022.113781 35780847
    [Google Scholar]
  2. LiuY. ChenZ. ShenJ. Occurrence and removal characteristics of phthalate esters from typical water sources in northeast china.J. Anal. Methods Chem.201320131810.1155/2013/419349 23577281
    [Google Scholar]
  3. StaplesC.A. ParkertonT.F. PetersonD.R. A risk assessment of selected phthalate esters in North American and Western European surface waters.Chemosphere200040888589110.1016/S0045‑6535(99)00315‑X 10718582
    [Google Scholar]
  4. BenjaminS. MasaiE. KamimuraN. TakahashiK. AndersonR.C. FaisalP.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action.J. Hazard. Mater.201734036038310.1016/j.jhazmat.2017.06.036 28800814
    [Google Scholar]
  5. YangT. RenL. JiaY. FanS. WangJ. WangJ. NahuriraR. WangH. YanY. Biodegradation of di-(2-ethylhexyl) phthalate by Rhodococcus ruber YC-YT1 in contaminated water and soil.Int. J. Environ. Res. Public Health201815596410.3390/ijerph15050964 29751654
    [Google Scholar]
  6. GadupudiC.K. RiceL. XiaoL. KantamaneniK. Endocrine disrupting compounds removal methods from wastewater in the United Kingdom: a review.Sci2021311110.3390/sci3010011
    [Google Scholar]
  7. RoccuzzoS. BeckermanA.P. TröglJ. New perspectives on the bioremediation of endocrine disrupting compounds from wastewater using algae-, bacteria- and fungi-based technologies.Int. J. Environ. Sci. Technol.20211818910610.1007/s13762‑020‑02691‑3
    [Google Scholar]
  8. LiangD.W. ZhangT. FangH.H.P. HeJ. Phthalates biodegradation in the environment.Appl. Microbiol. Biotechnol.200880218319810.1007/s00253‑008‑1548‑5 18592233
    [Google Scholar]
  9. ChengJ. LiuY. WanQ. YuanL. YuX. Degradation of dibutyl phthalate in two contrasting agricultural soils and its long-term effects on soil microbial community.Sci. Total Environ.2018640-64182182910.1016/j.scitotenv.2018.05.336 29879668
    [Google Scholar]
  10. FengN.X. FengY.X. LiangQ.F. ChenX. XiangL. ZhaoH.M. LiuB.L. CaoG. LiY.W. LiH. CaiQ.Y. MoC.H. WongM.H. Complete biodegradation of di-n-butyl phthalate (DBP) by a novel Pseudomonas sp. YJB6.Sci. Total Environ.202176176114320810.1016/j.scitotenv.2020.143208 33162130
    [Google Scholar]
  11. YastrebovaO.V. PyankovaA.A. PlotnikovaE.G. Phthalate-degrading bacteria isolated from an industrial mining area and the processing of potassium and magnesium salts.Appl. Biochem. Microbiol.201955439740410.1134/S000368381904015X
    [Google Scholar]
  12. PatilN.K. KaregoudarT.B. Parametric studies on batch degradation of a plasticizer di-n-butylphthalate by immobilized Bacillus sp.World J. Microbiol. Biotechnol.2005218-91493149810.1007/s11274‑005‑7369‑0
    [Google Scholar]
  13. FanS. LiC. GuoJ. JohansenA. LiuY. FengY. XueJ. LiZ. Biodegradation of phthalic acid esters (PAEs) by Bacillus sp. LUNF1 and characterization of a novel hydrolase capable of catalyzing PAEs.Environ. Technol. Innov.20233210326910.1016/j.eti.2023.103269
    [Google Scholar]
  14. XuY. LiuX. ZhaoJ. HuangH. WuM. LiX. LiW. SunX. SunB. An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme.Environ. Pollut.202127311646110.1016/j.envpol.2021.116461 33485001
    [Google Scholar]
  15. ShariatiS. Ebenau-JehleC. PourbabaeeA.A. AlikhaniH.A. Rodriguez-FrancoM. AgneM. JacobyM. GeigerR. ShariatiF. BollM. Degradation of dibutyl phthalate by Paenarthrobacter sp. Shss isolated from Saravan landfill, Hyrcanian Forests, Iran.Biodegradation2022331597010.1007/s10532‑021‑09966‑7 34751871
    [Google Scholar]
  16. LiC. LiuC. LiR. LiuY. XieJ. LiB. Biodegradation of dibutyl phthalate by the New Strain Acinetobacter baumannii DP-2.Toxics202210953210.3390/toxics10090532 36136497
    [Google Scholar]
  17. JinD. KongX. LiuH. WangX. DengY. JiaM. YuX. Characterization and cenomic analysis of a highly efficient dibutyl phthalate-degrading bacterium Gordonia sp. strain QH-12.Int. J. Mol. Sci.2016177101210.3390/ijms17071012 27347943
    [Google Scholar]
  18. LiuT. LiJ. QiuL. ZhangF. LinhardtR.J. ZhongW. Combined genomic and transcriptomic analysis of the dibutyl phthalate metabolic pathway in Arthrobacter sp. ZJUTW.Biotechnol. Bioeng.2020117123712372610.1002/bit.27524 32740909
    [Google Scholar]
  19. NandiM. PaulT. KanaujiyaD.K. BaskaranD. PakshirajanK. PugazhenthiG. Biodegradation of benzyl butyl phthalate and dibutyl phthalate by Arthrobacter sp. via micellar solubilization in a surfactant-aided system.Water Sci. Technol. Water Supply20212152084209810.2166/ws.2020.347
    [Google Scholar]
  20. WangY. MiaoB. HouD. WuX. PengB. Biodegradation of di-n-butyl phthalate and expression of the 3,4-phthalate dioxygenase gene in Arthrobacter sp. ZH2 strain.Process Biochem.201247693694010.1016/j.procbio.2012.02.027
    [Google Scholar]
  21. WenZ.D. GaoD.W. WuW.M. Biodegradation and kinetic analysis of phthalates by an Arthrobacter strain isolated from constructed wetland soil.Appl. Microbiol. Biotechnol.201498104683469010.1007/s00253‑014‑5568‑z 24522730
    [Google Scholar]
  22. HuT. YangC. HouZ. LiuT. MeiX. ZhengL. ZhongW. Phthalate esters metabolic strain Gordonia sp. GZ-YC7, a potential soil degrader for high concentration di-(2-ethylhexyl) phthalate.Microorganisms202210364110.3390/microorganisms10030641 35336217
    [Google Scholar]
  23. RenL. LinZ. LiuH. HuH. Bacteria-mediated phthalic acid esters degradation and related molecular mechanisms.Appl. Microbiol. Biotechnol.201810231085109610.1007/s00253‑017‑8687‑5 29238874
    [Google Scholar]
  24. EatonR.W. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B.J. Bacteriol.2001183123689370310.1128/JB.183.12.3689‑3703.2001 11371533
    [Google Scholar]
  25. StanislauskienėR. RudenkovM. KarvelisL. GasparavičiūtėR. MeškienėR. ČasaitėV. MeškysR. Analysis of phthalate degradation operon from Arthrobacter sp. 68b.Biologija (Vilnius)2011572455410.6001/biologija.v57i2.1828
    [Google Scholar]
  26. PlotnikovaE.G. AltyntsevaO.V. KoshelevaI.A. PuntusI.F. FilonovA.E. GavrishE.Y. DemakovV.A. BoroninA.M. Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas.Microbiology2001701515810.1023/A:1004892804670 11338837
    [Google Scholar]
  27. PlotnikovaE.G. YastrebovaO.V. Anan’inaL.N. DorofeevaL.V. LysanskayaV.Y. DemakovV.A. Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons.Russ. J. Ecol.201142650250910.1134/S1067413611060130
    [Google Scholar]
  28. YastrebovaO.V. KorsakovaE.S. PlotnikovaE.G. Characteristics of bacteria of Micrococcaceae family, isolated from different biotopes of salt mining area (Perm region).Izvestia of RAS SamSC(Russia)2018205300306
    [Google Scholar]
  29. RaymondR.L. Microbial oxidation of n-paraffinic hydrocarbons.Dev. Ind. Microbiol.196122332
    [Google Scholar]
  30. YastrebovaO.V. MalyshevaA.A. PlotnikovaE.G. Halotolerant terephthalic acid-degrading bacteria of the genus Glutamicibacter.Appl. Biochem. Microbiol.202258559059710.1134/S0003683822050167
    [Google Scholar]
  31. GerhardtP. MurrayR.G.E. CostilowR.N. NesterE.W. WoodW.A. KriegN.R. PhillipsG Manual of methods for general bacteriology.Amer. Soci. microbiol.198112133Chapter 2, 410.1136/jcp.34.9.1069‑c
    [Google Scholar]
  32. WilsonK. Preparation of genomic DNA from bacteria.Chapter 2, 4Curr. Protoc. Mol. Biol2001 18265184
    [Google Scholar]
  33. AndrewsS. FastQC: A quality control tool for high throughput sequence data.Available from2010Available from: https://www.bioinformatics. babraham.ac.uk/projects/fastqc/
  34. BolgerA.M. LohseM. UsadelB. Trimmomatic: A flexible trimmer for Illumina sequence data.Bioinformatics201430152114212010.1093/bioinformatics/btu170 24695404
    [Google Scholar]
  35. BankevichA. NurkS. AntipovD. GurevichA.A. DvorkinM. KulikovA.S. LesinV.M. NikolenkoS.I. PhamS. PrjibelskiA.D. PyshkinA.V. SirotkinA.V. VyahhiN. TeslerG. AlekseyevM.A. PevznerP.A. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing.J. Comput. Biol.201219545547710.1089/cmb.2012.0021 22506599
    [Google Scholar]
  36. MavromatisK. IvanovaN.N. ChenI.M.A. SzetoE. MarkowitzV.M. KyrpidesN.C. The DOE-JGI standard operating procedure for the annotations of microbial genomes.Stand. Genomic Sci.200911636710.4056/sigs.632 21304638
    [Google Scholar]
  37. ChenF. ChenY. ChenC. FengL. DongY. ChenJ. LanJ. HouH. High-efficiency degradation of phthalic acid esters (PAEs) by Pseudarthrobacter defluvii E5: Performance, degradative pathway, and key genes.Sci. Total Environ.202179414871910.1016/j.scitotenv.2021.148719 34214821
    [Google Scholar]
  38. KumarV. SharmaN. MaitraS.S. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F.Biotechnol. Rep.20171511010.1016/j.btre.2017.04.002 28580302
    [Google Scholar]
  39. VanderaE. SamiotakiM. ParapouliM. PanayotouG. KoukkouA.I. Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose.J. Proteomics2015113738910.1016/j.jprot.2014.08.018
    [Google Scholar]
/content/journals/cg/10.2174/0113892029343036250210044540
Loading
/content/journals/cg/10.2174/0113892029343036250210044540
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test