Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Introduction

DNA methylation is an important epigenetic modification associated with transcriptional repression and plays key roles in normal cell growth as well as oncogenesis. Among the three main DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), DNMT3A mediates DNA methylation. However, the general effect of DNMT3A on cell proliferation, metabolism, and downstream gene regulation is still to be unveiled.

Methods

In this study, we successfully created -deficient HEK293 cells with frameshift mutations in the catalytic domain using CRISPR/Cas9 technology. The deficient cells showed a 21.5% reduction in global DNA methylation levels, leading to impaired cell proliferation as well as a blockage of MAPK and PI3K-Akt pathways in comparison with wild-type cells.

Results and Discussion

RNA-seq analysis demonstrated that knockout resulted in the up-regulation of genes and pathways related to cell metabolism but down-regulation of those involved in ribosome function, potentially explaining the growth and signaling pathways inhibition. Furthermore, DNMT3A ablation reduced gene methylation, explaining the down-regulated profiles of genes.

Conclusion

Our findings suggest a complex epigenetic regulatory role for , and the compensatory upregulation of in response to deficiency warrants further investigation to be validated in future studies.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029351729250217113313
2025-02-24
2025-12-08
Loading full text...

Full text loading...

References

  1. YouJ.S. JonesP.A. Cancer genetics and epigenetics: Two sides of the same coin?Cancer Cell201222192010.1016/j.ccr.2012.06.00822789535
    [Google Scholar]
  2. BanaszakL.G. GiudiceV. ZhaoX. WuZ. GaoS. HosokawaK. KeyvanfarK. TownsleyD.M. Gutierrez-RodriguesF. Fernandez IbanezM.P. KajigayaS. YoungN.S. Abnormal RNA splicing and genomic instability after induction of DNMT3A mutations by CRISPR/Cas9 gene editing.Blood Cells Mol. Dis.201869102210.1016/j.bcmd.2017.12.00229324392
    [Google Scholar]
  3. ChenF. ZhangY. ShenL. CreightonC.J. The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival.Nat. Commun.2024151677510.1038/s41467‑024‑51276‑y39117669
    [Google Scholar]
  4. ZhongF. LinY. ZhaoL. YangC. YeY. ShenZ. Reshaping the tumour immune microenvironment in solid tumours via tumour cell and immune cell DNA methylation: From mechanisms to therapeutics.Br. J. Cancer20231291243710.1038/s41416‑023‑02292‑037117649
    [Google Scholar]
  5. BestorT.H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain.EMBO J.19921172611261710.1002/j.1460‑2075.1992.tb05326.x1628623
    [Google Scholar]
  6. LaranjeiraA.B.A. HollingsheadM.G. NguyenD. KindersR.J. DoroshowJ.H. YangS.X. DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors.Sci. Rep.2023131596410.1038/s41598‑023‑32509‑437045940
    [Google Scholar]
  7. OkanoM. BellD.W. HaberD.A. LiE. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Cell199999324725710.1016/S0092‑8674(00)81656‑610555141
    [Google Scholar]
  8. OkanoM. XieS. LiE. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases.Nat. Genet.199819321922010.1038/8909662389
    [Google Scholar]
  9. HuangY.H. SuJ. LeiY. BrunettiL. GundryM.C. ZhangX. JeongM. LiW. GoodellM.A. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A.Genome Biol.201718117610.1186/s13059‑017‑1306‑z28923089
    [Google Scholar]
  10. RiggsA.D. XiongZ. Methylation and epigenetic fidelity.Proc. Natl. Acad. Sci. USA200410114510.1073/pnas.030778110014695893
    [Google Scholar]
  11. LiaoJ. KarnikR. GuH. ZillerM.J. ClementK. TsankovA.M. AkopianV. GiffordC.A. DonagheyJ. GalonskaC. PopR. ReyonD. TsaiS.Q. MallardW. JoungJ.K. RinnJ.L. GnirkeA. MeissnerA. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells.Nat. Genet.201547546947810.1038/ng.325825822089
    [Google Scholar]
  12. ChallenG.A. SunD. JeongM. LuoM. JelinekJ. BergJ.S. BockC. VasanthakumarA. GuH. XiY. LiangS. LuY. DarlingtonG.J. MeissnerA. IssaJ.P.J. GodleyL.A. LiW. GoodellM.A. Dnmt3a is essential for hematopoietic stem cell differentiation.Nat. Genet.2012441233110.1038/ng.100922138693
    [Google Scholar]
  13. GhoshalB. PicardC.L. VongB. FengS. JacobsenS.E. CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase.Proc. Natl. Acad. Sci. USA202111823e212501611810.1073/pnas.212501611834074795
    [Google Scholar]
  14. VilligerL. JoungJ. KoblanL. WeissmanJ. AbudayyehO.O. GootenbergJ.S. CRISPR technologies for genome, epigenome and transcriptome editing.Nat. Rev. Mol. Cell Biol.202425646448710.1038/s41580‑023‑00697‑638308006
    [Google Scholar]
  15. CongL. RanF.A. CoxD. LinS. BarrettoR. HabibN. HsuP.D. WuX. JiangW. MarraffiniL.A. ZhangF. Multiplex genome engineering using CRISPR/Cas systems.Science2013339612181982310.1126/science.123114323287718
    [Google Scholar]
  16. MaliP. YangL. EsveltK.M. AachJ. GuellM. DiCarloJ.E. NorvilleJ.E. ChurchG.M. RNA-guided human genome engineering via Cas9.Science2013339612182382610.1126/science.123203323287722
    [Google Scholar]
  17. ZhengQ. CaiX. TanM.H. SchaffertS. ArnoldC.P. GongX. ChenC.Z. HuangS. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells.Biotechniques201457311512410.2144/00011419625209046
    [Google Scholar]
  18. Dwi PutraS.E. NeuberC. ReichetzederC. HocherB. KleuserB. Analysis of genomic DNA methylation levels in human placenta using liquid chromatography-electrospray ionization tandem mass spectrometry.Cell. Physiol. Biochem.201433494595210.1159/00035866624713853
    [Google Scholar]
  19. TrapnellC. PachterL. SalzbergS.L. TopHat: Discovering splice junctions with RNA-Seq.Bioinformatics20092591105111110.1093/bioinformatics/btp12019289445
    [Google Scholar]
  20. TrapnellC. RobertsA. GoffL. PerteaG. KimD. KelleyD.R. PimentelH. SalzbergS.L. RinnJ.L. PachterL. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.Nat. Protoc.20127356257810.1038/nprot.2012.01622383036
    [Google Scholar]
  21. StengelA. KernW. MeggendorferM. NadarajahN. PerglerovàK. HaferlachT. HaferlachC. Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML.Leukemia201832229530210.1038/leu.2017.23928751771
    [Google Scholar]
  22. LinM. LiuY. DingX. KeQ. ShiJ. MaZ. GuH. WangH. ZhangC. YangC. FangZ. ZhouL. YeM. E2F1 transactivates IQGAP3 and promotes proliferation of hepatocellular carcinoma cells through IQGAP3-mediated PKC-alpha activation.Am. J. Cancer Res.20199228529930906629
    [Google Scholar]
  23. GaoX.N. YanF. LinJ. GaoL. LuX.L. WeiS.C. ShenN. PangJ.X. NingQ.Y. KomenoY. DengA.L. XuY.H. ShiJ.L. LiY.H. ZhangD.E. NerviC. LiuS.J. YuL. AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation.Leukemia20152981730174010.1038/leu.2015.5625727291
    [Google Scholar]
  24. YangS.M. HuangC.Y. ShiueH.S. PuY.S. HsiehY.H. ChenW.J. LinY.C. HsuehY.M. Combined effects of DNA methyltransferase 1 and 3A polymorphisms and urinary total arsenic levels on the risk for clear cell renal cell carcinoma.Toxicol. Appl. Pharmacol.201630510311010.1016/j.taap.2016.06.01127292127
    [Google Scholar]
  25. JeongM. ParkH.J. CelikH. OstranderE.L. ReyesJ.M. GuzmanA. RodriguezB. LeiY. LeeY. DingL. GuryanovaO.A. LiW. GoodellM.A. ChallenG.A. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo.Cell Rep.201823111010.1016/j.celrep.2018.03.02529617651
    [Google Scholar]
  26. HatazawaY. OnoY. HiroseY. KanaiS. FujiiN.L. MachidaS. NishinoI. ShimizuT. OkanoM. KameiY. OgawaY. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.FASEB J.20183231452146710.1096/fj.201700573R29146735
    [Google Scholar]
  27. RittD.A. Abreu-BlancoM.T. BinduL. DurrantD.E. ZhouM. SpechtS.I. StephenA.G. HolderfieldM. MorrisonD.K. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit.Mol. Cell201664587588710.1016/j.molcel.2016.10.02927889448
    [Google Scholar]
  28. HuT. ChenF. ChenD. LiangH. DNMT3a negatively regulates PTEN to activate the PI3K/AKT pathway to aggravate renal fibrosis.Cell. Signal.20229611035210.1016/j.cellsig.2022.11035235523401
    [Google Scholar]
  29. Loaeza-LoaezaJ. BeltranA.S. Hernández-SoteloD. DNMTs and impact of CpG content, transcription factors, consensus motifs, lncRNAs, and histone marks on DNA methylation.Genes (Basel)20201111133610.3390/genes1111133633198240
    [Google Scholar]
  30. DuJ. JohnsonL.M. GrothM. FengS. HaleC.J. LiS. VashishtA.A. Gallego-BartolomeJ. WohlschlegelJ.A. PatelD.J. JacobsenS.E. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE.Mol. Cell201455349550410.1016/j.molcel.2014.06.00925018018
    [Google Scholar]
  31. HarrisC.J. ScheibeM. WongpaleeS.P. LiuW. CornettE.M. VaughanR.M. LiX. ChenW. XueY. ZhongZ. YenL. BarshopW.D. RayatpishehS. Gallego-BartolomeJ. GrothM. WangZ. WohlschlegelJ.A. DuJ. RothbartS.B. ButterF. JacobsenS.E. A DNA methylation reader complex that enhances gene transcription.Science201836264191182118610.1126/science.aar785430523112
    [Google Scholar]
  32. BüttnerP. UeberhamL. ShoemakerM.B. RodenD.M. DinovB. HindricksG. BollmannA. HusserD. Identification of central regulators of calcium signaling and ECM–receptor interaction genetically associated with the progression and recurrence of atrial fibrillation.Front. Genet.2018916210.3389/fgene.2018.0016229868113
    [Google Scholar]
  33. ZhangH.J. TaoJ. ShengL. HuX. RongR.M. XuM. ZhuT.Y. Twist2 promotes kidney cancer cell proliferation and invasion by regulating ITGA6 and CD44 expression in the ECM-receptor interaction pathway.OncoTargets Ther.201691801181227099513
    [Google Scholar]
  34. MengZ. MoroishiT. GuanK.L. Mechanisms of Hippo pathway regulation.Genes Dev.201630111710.1101/gad.274027.11526728553
    [Google Scholar]
  35. CastellanoR. PerruchotM.H. TesseraudS. Métayer-CoustardS. BaezaE. MercierY. GondretF. Methionine and cysteine deficiencies altered proliferation rate and time-course differentiation of porcine preadipose cells.Amino Acids201749235536610.1007/s00726‑016‑2369‑y27888346
    [Google Scholar]
/content/journals/cg/10.2174/0113892029351729250217113313
Loading
/content/journals/cg/10.2174/0113892029351729250217113313
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Fig. : Promoter region sequences and CpG islands of representative genes for bisulfite DNA analysis.; Table : Standard curves of dG and m5dC for the determination of genomic DNA methylation using UPLC-MS.


  • Article Type:
    Research Article
Keyword(s): CRISPR/Cas9; DNA; DNMT3A; HEK293; methylation; RNA-seq
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test