Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background

Hydroxylated biphenyls are currently recognized as secondary pollutants that are hazardous to animals and humans. Bacterial degradation is the most effective method for the degradation of hydroxylated biphenyls. Several strains capable of degrading polychlorinated biphenyls have been described, which also degrade hydroxylated biphenyls.

Objectives

1) To study the biodegradative properties of the strain KT112-7 towards mono-hydroxylated biphenyls. 2) To analyze the genome of the strain KT112-7. 3) To identify the genetic basis for the unique biodegradative potential of the strain KT112-7.

Methods

A genome analysis of the strain KT112-7 was conducted based on whole-genome sequencing using various programs and databases (Velvet, CONTIGuator, RAST, KEGG) for annotation and identification of protein-coding sequences. The strain KT112-7 was cultivated in a K1 mineral medium supplemented with mono-hydroxy biphenyls or mono-hydroxybenzoic acids as the carbon source. For the growth test mono-hydroxybiphenyls or mono-hydroxybenzoic acids were dosed at concentrations of 0.5 g/L and 1.0 g/L correspondently, and the bacterial growth was monitored by the optical density. For the biodegradative activity test, mono-hydroxybiphenyls were dosed at a concentration of 0.1 g/L in vials, inoculated with late exponential phase bacteria previously acclimated on biphenyl. Compound analysis was performed using GC-MS, HPLC, and spectrophotometry.

Results

It was found that the genome of strain KT112-7 consists of a chromosome and 2 plasmids. Biphenyl degradation genes ( genes) were identified on plasmid PRHWK1 and the chromosome, as well as hydroxybenzoic acid degradation genes on the chromosome. The strain KT112-7 was shown to degrade mono-hydroxylated biphenyls to basal metabolic compounds of the cell, with the highest destructive activity observed towards 3- and 4-hydroxylated biphenyls (98%).

Discussion

Analysis of the translated sequences of the genes from strain KT112-7 revealed that the amino acid sequences of the operon, located on plasmid pRHWK1, exhibit high similarity to homologous enzymes of the "upper" pathway for biphenyl degradation in Rhodococcus jostii RHA1, whose genes are also plasmid-borne. The deduced amino acid sequences encoded by the bphA1A2B genes, located on the chromosome of strain KT112-7, show a high degree of similarity to enzymes from Rhodococcus strains that mediate naphthalene degradation. The genes of the "lower" biphenyl pathway in strain KT112-7 are located on the chromosome and share a high level of similarity with the genes of Acidovorax sp. KKS102. Analysis of the deduced sequences of the pcaGHBCDF, pcaIJfadA, and catABC genes, along with the metabolites identified during the cultivation of strain KT112-7 on hydroxylated biphenyls, suggests the presence of both classical and unique metabolic pathways for hydroxylated benzoic acids in strain KT112-7.

Conclusion

The strain KT112-7 is characterized by genetic systems that contribute to its high biodegradative potential towards mono-hydroxylated biphenyls and their metabolites. Thus, the strain KT112-7 is promising for use in hydroxybiphenyl degradation technologies.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029319746240812051356
2024-08-21
2025-12-09
Loading full text...

Full text loading...

References

  1. MillsS.A.III ThalD.I. BarneyJ. A summary of the 209 PCB congener nomenclature.Chemosphere20076891603161210.1016/j.chemosphere.2007.03.05217499337
    [Google Scholar]
  2. KhairutdinovV.F. KhabrievI.S. AkhmetzyanovT.R. GumerovF.M. SalikhovI.Z. AbdulagatovI.M. VLE measurements of biphenyl in supercritical binary mixture of (0.527propane/0.473n-butane).J. Mol. Liq.202134211754110.1016/j.molliq.2021.117541
    [Google Scholar]
  3. ChangQ. HeG. LiQ. ChenM. SunH. LiuY. Research on azeotropic breaking extraction technology for High-Value chemicals from wash oil.Separ. Purif. Tech.202433312564910.1016/j.seppur.2023.125649
    [Google Scholar]
  4. PieperD.H. Aerobic degradation of polychlorinated biphenyls.Appl. Microbiol. Biotechnol.200567217019110.1007/s00253‑004‑1810‑415614564
    [Google Scholar]
  5. KumariS. DasS. Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations.Environ. Sci. Pollut. Res. Int.20233033796767970510.1007/s11356‑023‑28130‑737330441
    [Google Scholar]
  6. GadS.C.P. (s): Philip Wexler, Encyclopedia of Toxicology.4th edAcademic Press202455355810.1016/B978‑0‑12‑824315‑2.00793‑4
    [Google Scholar]
  7. YoshioN. SumikoT. MooreG. MoldéusP. Cytotoxic effects of biphenyl and hydroxybiphenyls on isolated rat hepatocytes.Biochem. Pharmacol.199345101959196510.1016/0006‑2952(93)90004‑G8512581
    [Google Scholar]
  8. MuraiT. TsurutaF. TeraoT. IkedaT. IwabuchiH. Formation of a structurally novel, serial diglucuronide of 4-hydroxybiphenyl by further glucuronidation of a monoglucuronide in dog liver microsomes.Drug Metab. Pharmacokinet.200217545746610.2133/dmpk.17.45715618697
    [Google Scholar]
  9. AlvesL. PaixãoS.M. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.Bioresour. Technol.2011102199162916610.1016/j.biortech.2011.06.07021767949
    [Google Scholar]
  10. MikolaschA. DonathM. ReinhardA. HerzerC. ZayadanB. UrichT. SchauerF. Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan.Appl. Microbiol. Biotechnol.2019103177261727410.1007/s00253‑019‑10032‑931346684
    [Google Scholar]
  11. MoodyJ.D. DoergeD.R. FreemanJ.P. CernigliaC.E. Degradation of biphenyl by Mycobacterium sp. strain PYR-1.Appl. Microbiol. Biotechnol.200258336436910.1007/s00253‑001‑0878‑311935189
    [Google Scholar]
  12. YooM. KimD. ZylstraG.J. KangB.S. KimE. Biphenyl hydroxylation enhanced by an engineered o-xylene dioxygenase from Rhodococcus sp. strain DK17.Res. Microbiol.2011162772472810.1016/j.resmic.2011.04.01321575716
    [Google Scholar]
  13. Matos NetoG. MarquesE.L.S. OliveiraL.K.S. RezendeR.P. DiasJ.C.T. Searching for bacteria able to metabolize polycyclic aromatic sulfur compounds in 12-years periodically fed bioreactor.Arch. Microbiol.20232051033610.1007/s00203‑023‑03674‑x37737927
    [Google Scholar]
  14. BelloumiM. AljazeaA. AlshehryA. Study of the impact of crude oil prices on economic output and inflation in Saudi Arabia.Resour. Policy20238610417910.1016/j.resourpol.2023.104179
    [Google Scholar]
  15. AhmadA. ZamzamiM.A. AhmadV. Al-ThawadiS. AkhtarM.S. KhanM.J. Bacterial biological factories intended for the desulfurization of petroleum products in refineries.Fermentation (Basel)20239321110.3390/fermentation9030211
    [Google Scholar]
  16. AhmadA. BaothmanO.A. NadeemM.S. AhmadV. Biodesulfurizing Microbes in the Petroleum Refinery Areas of Saudi Arabia.J. Pure Appl. Microbiol.20231731737174710.22207/JPAM.17.3.39
    [Google Scholar]
  17. MamuadR.Y. ChoiA.E.S. Biodesulfurization Processes for the Removal of Sulfur from Diesel Oil: A Perspective Report.Energies2023166273810.3390/en16062738
    [Google Scholar]
  18. HabibaU.E. AnwerA. HussainM.U. MajeedM.I. AlwadieN. NawazH. AkhtarN. RashidN. NadeemS. NazM. ShahzadiA. ShehnazH. ImranM. Surface enhanced Raman spectroscopy for the characterization of the metabolites of the biodesulfurization of dibenzothiophene carried out by Tsukamurella paurometabola.Spectrochim. Acta A Mol. Biomol. Spectrosc.202431312412610.1016/j.saa.2024.12412638490122
    [Google Scholar]
  19. DeleganY. KocharovskayaY. FrantsuzovaE. StreletskiiR. VetrovaA. Characterization and genomic analysis of Gordonia alkanivorans 135, a promising dibenzothiophene-degrading strain.Biotechnol. Rep. (Amst.)202129e0059110.1016/j.btre.2021.e0059133532248
    [Google Scholar]
  20. DuvalE. Cravo-LaureauC. PoinelL. DuranR. Development of molecular driven screening for desulfurizing microorganisms targeting the dszB desulfinase gene.Res. Microbiol.2021172610387210.1016/j.resmic.2021.10387234375709
    [Google Scholar]
  21. JatoiA.S. AzizS. SoomroS.A. Effect of native microorganism Rhodococcus spp. SL-9 for dibenzothiophene degradation and its application towards clean coal approach.Cleaner Engineering and Technology2021310012610.1016/j.clet.2021.100126
    [Google Scholar]
  22. KashifM. SangY. MoS. RehmanS. KhanS. KhanM.R. HeS. JiangC. Deciphering the biodesulfurization pathway employing marine mangrove Bacillus aryabhattai strain NM1-A2 according to whole genome sequencing and transcriptome analyses.Genomics2023115311063510.1016/j.ygeno.2023.11063537150229
    [Google Scholar]
  23. ChenH. ZhangW.J. CaiY.B. ZhangY. LiW. Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2.Bioresour. Technol.200899156928693310.1016/j.biortech.2008.01.03318296046
    [Google Scholar]
  24. Davoodi-DehaghaniF. VosoughiM. ZiaeeA.A. Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain.Bioresour. Technol.201010131102110510.1016/j.biortech.2009.08.05819819129
    [Google Scholar]
  25. OkadaH. NomuraN. NakaharaT. MaruhashiK. Analysis of dibenzothiophene metabolic pathway in Mycobacterium strain G3.J. Biosci. Bioeng.200293549149710.1016/S1389‑1723(02)80097‑416233237
    [Google Scholar]
  26. PerruchonC. VasileiadisS. RousidouC. PapadopoulouE.S. TanouG. SamiotakiM. GaragounisC. MolassiotisA. PapadopoulouK.K. KarpouzasD.G. Author Correction: Metabolic pathway and cell adaptation mechanisms revealed through genomic, proteomic and transcription analysis of a Sphingomonas haloaromaticamans strain degrading ortho-phenylphenol.Sci. Rep.201881459910.1038/s41598‑018‑22845‑129531333
    [Google Scholar]
  27. Umar HussainM. KainatK. NawazH. Irfan MajeedM. AkhtarN. AlshammariA. AlbekairiN.A. FatimaR. AmberA. BanoA. ShabbirI. TahiraM. PallaresR.M. SERS characterization of biochemical changes associated with biodesulfurization of dibenzothiophene using Gordonia sp. HS126-4N.Spectrochim. Acta A Mol. Biomol. Spectrosc.202432012453410.1016/j.saa.2024.12453438878718
    [Google Scholar]
  28. AhmadV. AhmadA. AhmadA. BoathmanO.A. KhanM.I. AbuzinadahM.F. The metabolic landscape of the bacteria Rhodococcus erythropolis used in the biodesulfurization of petroleum products: an emphasis on 2-hydroxybiphenyl.Arch. Microbiol.2024206730010.1007/s00203‑024‑03995‑538861201
    [Google Scholar]
  29. KhanJ. AliM.I. JamalA. AchakzaiJ.K. ShiraziJ.H. HaleemA. Assessment of the dibenzothiophene desulfurization potential of indigenously isolated bacterial consortium IQMJ-5: a different approach to safeguard the environment.Arch. Microbiol.202320539510.1007/s00203‑023‑03429‑836807206
    [Google Scholar]
  30. KanteevM. Bregman-CohenA. DeriB. ShaharA. AdirN. FishmanA. A crystal structure of 2-hydroxybiphenyl 3-monooxygenase with bound substrate provides insights into the enzymatic mechanism.Biochim. Biophys. Acta. Proteins Proteomics20151854121906191310.1016/j.bbapap.2015.08.00226275805
    [Google Scholar]
  31. SchmidA. VereykenI. HeldM. WitholtB. Preparative regio- and chemoselective functionalization of hydrocarbons catalyzed by cell free preparations of 2-hydroxybiphenyl 3-monooxygenase.J. Mol. Catal., B Enzym.2001114-645546210.1016/S1381‑1177(00)00180‑6
    [Google Scholar]
  32. SuskeW.A. van BerkelW.J.H. KohlerH.P.E. Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1.J. Biol. Chem.199927447333553336510.1074/jbc.274.47.3335510559214
    [Google Scholar]
  33. SumanJ. SredlovaK. FraraccioS. JerabkovaM. StrejcekM. KabickovaH. CajthamlT. UhlikO. Transformation of hydroxylated polychlorinated biphenyls by bacterial 2-hydroxybiphenyl 3-monooxygenase.Chemosphere202434914090910.1016/j.chemosphere.2023.14090938070605
    [Google Scholar]
  34. AgullóL. PieperD.H. SeegerM. Genetics and Biochemistry of Biphenyl and PCB Biodegradation.Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. RojoF. ChamSpringer201959562210.1007/978‑3‑319‑50418‑6_30
    [Google Scholar]
  35. XingZ. HuT. XiangY. QiP. HuangX. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2.Curr. Microbiol.2020771152310.1007/s00284‑019‑01791‑931650227
    [Google Scholar]
  36. KhalidF. HashmiM.Z. JamilN. QadirA. AliM.I. Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review.Environ. Sci. Pollut. Res. Int.2021289104741048710.1007/s11356‑020‑11996‑233411303
    [Google Scholar]
  37. BordoloiN.K. RaiS.K. ChaudhuriM.K. MukherjeeA.K. Deep-desulfurization of dibenzothiophene and its derivatives present in diesel oil by a newly isolated bacterium Achromobacter sp. to reduce the environmental pollution from fossil fuel combustion.Fuel Process. Technol.201411923624410.1016/j.fuproc.2013.10.014
    [Google Scholar]
  38. LavandierR. ArêasJ. QuineteN. de MouraJ.F. TaniguchiS. MontoneR. SicilianoS. Hauser-DavisR.A. MoreiraI. PCB and PBDE contamination in Tursiops truncatus and Stenella frontalis, two data-deficient threatened dolphin species from the Brazilian coast.Ecotoxicol. Environ. Saf.201916748549310.1016/j.ecoenv.2018.10.04530368142
    [Google Scholar]
  39. LinY. GuptaG. BakerJ. Photodegradation of polychlorinated biphenyl congeners using simulated sunlight and diethylamine.Chemosphere19953153323334410.1016/0045‑6535(95)00177‑A
    [Google Scholar]
  40. WangM.Y. ZhangL.F. WuD. CaiY.Q. HuangD.M. TianL.L. FangC.L. ShiY.F. Simulation experiment on OH-PCB being ingested through daily diet: Accumulation, transformation and distribution of hydroxylated-2, 2′, 4, 5, 5′-pentachlorobiphenyl (OH-PCB101) in mice.Sci. Total Environ.202280214989110.1016/j.scitotenv.2021.14989134474296
    [Google Scholar]
  41. LiaoZ. ZengM. WangL. Atmospheric oxidation mechansim of polychlorinated biphenyls (PCBs) initiated by OH radicals.Chemosphere202024012475610.1016/j.chemosphere.2019.12475631563106
    [Google Scholar]
  42. UwimanaE. RuizP. LiX. LehmlerH.J. Human CYP2A6, CYP2B6, and CYP2E1 atropselectively metabolize polychlorinated biphenyls to hydroxylated metabolites.Environ. Sci. Technol.20195342114212310.1021/acs.est.8b0525030576102
    [Google Scholar]
  43. TamN. KongR.Y.C. LaiK.P. Reproductive toxicity in marine medaka (Oryzias melastigma) due to embryonic exposure to PCB 28 or 4′-OH-PCB 65.Sci. Total Environ.202387416240110.1016/j.scitotenv.2023.16240136842578
    [Google Scholar]
  44. SondossiM. SylvestreM. AhmadD. MasséR. Metabolism of hydroxybiphenyl and chloro-hydroxybiphenyl by biphenyl/chlorobiphenyl degradingPseudomonas testosteroni, strain B-356.J. Ind. Microbiol.199172778810.1007/BF01576069
    [Google Scholar]
  45. FrancovaK. MackováM. MacekT. SylvestreM. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants.Environ. Pollut.20041271414810.1016/S0269‑7491(03)00257‑414553993
    [Google Scholar]
  46. EgorovaD.O. GorbunovaT.I. PervovaM.G. Kir’yanovaT.D. DemakovV.A. SaloutinV.I. ChupakhinO.N. Biodegradability of hydroxylated derivatives of commercial polychlorobiphenyls mixtures by Rhodococcus-strains.J. Hazard. Mater.202040012332810.1016/j.jhazmat.2020.12332832947723
    [Google Scholar]
  47. GorbunovaT.I. EgorovaD.O. PervovaM.G. KyrianovaT.D. DemakovV.A. SaloutinV.I. ChupakhinO.N. Biodegradation of trichlorobiphenyls and their hydroxylated derivatives by Rhodococcus-strains.J. Hazard. Mater.202140912447110.1016/j.jhazmat.2020.12447133199145
    [Google Scholar]
  48. EgorovaD.O. KorsakovaE.S. DemakovV.A. PlotnikovaE.G. Degradation of aromatic hydrocarbons by the Rhodococcus wratislaviensis KT112-7 isolated from waste products of a salt-mining plant.Appl. Biochem. Microbiol.201349324425510.1134/S0003683813030071
    [Google Scholar]
  49. EgorovaD.O. PervovaM.G. DemakovV.A. PlotnikovaE.G. Specific Features of Chlorinated Biphenyl Decomposition by Rhodococcus wratislaviensis Strain KT112-7 under High Salt Conditions.Appl. Biochem. Microbiol.201854325226110.1134/S000368381803002X
    [Google Scholar]
  50. EgorovaD.O. GorbunovaT.I. Kir’yanovaT.D. PervovaM.G. PlotnikovaE.G. Modeling of the Biphenyl Dioxygenase α-Subunit Structure of Rhodococcus Strains and Features of the Destruction of Chlorinated and Hydroxylated Biphenyls at Different Temperatures.Appl. Biochem. Microbiol.202157673274210.1134/S0003683821060028
    [Google Scholar]
  51. Mizukami-MurataS. SakakibaraF. FujitaK. FukudaM. KuramataM. TakagiK. Detoxification of hydroxylated polychlorobiphenyls by Sphingomonas sp. strain N-9 isolated from forest soil.Chemosphere201616517318210.1016/j.chemosphere.2016.08.12727649311
    [Google Scholar]
  52. ZaitsevG.M. TsoiT.V. GrishenkovV.G. PlotnikovaE.G. BoroninA.M. Genetic control of degradation of chlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum and Pseudomonas cepacia strains.FEMS Microbiol. Lett.199181217117610.1111/j.1574‑6968.1991.tb04742.x1884993
    [Google Scholar]
  53. RybkinaD.O. PlotnikovaE.G. DorofeevaL.V. MironenkoY.L. DemakovV.A. [A new aerobic gram-positive bacterium with a unique ability to degrade ortho- and para-chlorinated biphenylsMicrobiology200372667267710.1023/B:MICI.0000008367.24540.6c14768541
    [Google Scholar]
  54. SchlegelH.G. General Microbiology.7th edCambridge University Press1993655
    [Google Scholar]
  55. WilsonK. Preparation of genomic DNA from bacteria.Current protocols in molecular biology.3rd ed AusubelF.M. BrentR. KingstonR.E. MooreD.D. SeidmanJ.G. SmithJ.A. StruhlK. New YorkWiley1995211
    [Google Scholar]
  56. ZerbinoD.R. McEwenG.K. MarguliesE.H. BirneyE. Pebble and rock band: heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler.PLoS One2009412e840710.1371/journal.pone.000840720027311
    [Google Scholar]
  57. GalardiniM. BiondiE.G. BazzicalupoM. MengoniA. CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes.Source Code Biol. Med.2011611110.1186/1751‑0473‑6‑1121693004
    [Google Scholar]
  58. SeemannT. Prokka: rapid prokaryotic genome annotation.Bioinformatics201430142068206910.1093/bioinformatics/btu15324642063
    [Google Scholar]
  59. MavromatisK. IvanovaN.N. ChenI.M.A. SzetoE. MarkowitzV.M. KyrpidesN.C. The DOE-JGI Standard Operating Procedure for the Annotations of Microbial Genomes.Stand. Genomic Sci.200911636710.4056/sigs.63221304638
    [Google Scholar]
  60. AzizR.K. BartelsD. BestA.A. DeJonghM. DiszT. EdwardsR.A. FormsmaK. GerdesS. GlassE.M. KubalM. MeyerF. OlsenG.J. OlsonR. OstermanA.L. OverbeekR.A. McNeilL.K. PaarmannD. PaczianT. ParrelloB. PuschG.D. ReichC. StevensR. VassievaO. VonsteinV. WilkeA. ZagnitkoO. The RAST Server: rapid annotations using subsystems technology.BMC Genomics2008917510.1186/1471‑2164‑9‑7518261238
    [Google Scholar]
  61. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  62. KayserK.J. ClevelandL. ParkH.S. KwakJ.H. KolhatkarA. KilbaneJ.J.II Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization.Appl. Microbiol. Biotechnol.200259673774610.1007/s00253‑002‑1030‑812226734
    [Google Scholar]
  63. HuangY. WangH. TangG. ZhouZ. ZhangX. LiuY. YanG. WangJ. HuG. XiaoJ. YanW. CaoY. Fabrication of pH-responsive nanoparticles for co-delivery of fungicide and salicylic acid with synergistic antifungal activity.J. Clean. Prod.202445114209310.1016/j.jclepro.2024.142093
    [Google Scholar]
  64. ShaoX. ChenY. ZhangL. ZhangY. AriyawatiA. ChenT. ChenJ. LiuL. PuY. LiY. ChenJ. Effect of 30% Supramolecular Salicylic Acid Peel on Skin Microbiota and Inflammation in Patients with Moderate-to-Severe Acne Vulgaris.Dermatol. Ther. (Heidelb.)202313115516810.1007/s13555‑022‑00844‑536350527
    [Google Scholar]
  65. SolyanikovaI.P. EmelyanovaE.V. ShumkovaE.S. EgorovaD.O. KorsakovaE.S. PlotnikovaE.G. GolovlevaL.A. Peculiarities of the degradation of benzoate and its chloro- and hydroxy-substituted analogs by actinobacteria.Int. Biodeterior. Biodegradation201510015516410.1016/j.ibiod.2015.02.028
    [Google Scholar]
  66. LiY.X. LinW. HanY.H. WangY.Q. WangT. ZhangH. ZhangY. WangS.S. Biodegradation of p-hydroxybenzoic acid in Herbaspirillum aquaticum KLS-1 isolated from tailing soil: Characterization and molecular mechanism.J. Hazard. Mater.202345613166910.1016/j.jhazmat.2023.13166937236108
    [Google Scholar]
  67. ChenS.Y. GuoL.Y. BaiJ.G. ZhangY. ZhangL. WangZ. ChenJ.X. YangH.X. WangX.J. Biodegradation of p-hydroxybenzoic acid in soil by Pseudomonas putida CSY-P1 isolated from cucumber rhizosphere soil.Plant Soil20153891-219721010.1007/s11104‑014‑2360‑x
    [Google Scholar]
  68. CiufoS. KannanS. SharmaS. BadretdinA. ClarkK. TurnerS. BroverS. SchochC.L. KimchiA. DiCuccioM. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI.Int. J. Syst. Evol. Microbiol.20186872386239210.1099/ijsem.0.00280929792589
    [Google Scholar]
  69. FederhenS. Rossello-MoraR. KlenkH.P. TindallB.J. KonstantinidisK.T. WhitmanW.B. BrownD. LabedaD. UsseryD. GarrityG.M. ColwellR.R. HasanN. GrafJ. ParteA. YarzaP. GoldbergB. SichtigH. Karsch-MizrachiI. ClarkK. McVeighR. PruittK.D. TatusovaT. FalkR. TurnerS. MaddenT. KittsP. KimchiA. KlimkeW. AgarwalaR. DiCuccioM. OstellJ. Meeting report: GenBank microbial genomic taxonomy workshop (12–13 May, 2015).Stand. Genomic Sci.20161111510.1186/s40793‑016‑0134‑1
    [Google Scholar]
  70. MasaiE. SugiyamaK. IwashitaN. ShimizuS. HauschildJ.E. HattaT. KimbaraK. YanoK. FukudaM. The bphDEF meta-cleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphACB genes in Rhodococcus sp. strain RHA1.Gene1997187114114910.1016/S0378‑1119(96)00748‑29073078
    [Google Scholar]
  71. KikuchiY. YasukochiY. NagataY. FukudaM. TakagiM. Nucleotide sequence and functional analysis of the meta-cleavage pathway involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102.J. Bacteriol.1994176144269427610.1128/jb.176.14.4269‑4276.19948021212
    [Google Scholar]
  72. OhtsuboY. DelawaryM. KimbaraK. TakagiM. OhtaA. NagataY. BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp. KKS102.J. Biol. Chem.200127639361463615410.1074/jbc.M10030220011459836
    [Google Scholar]
  73. OhtsuboY. MaruyamaF. MitsuiH. NagataY. TsudaM. Complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl degrader.J. Bacteriol.2012194246970697110.1128/JB.01848‑1223209225
    [Google Scholar]
  74. NaK. KurodaA. TakiguchiN. IkedaT. OhtakeH. KatoJ. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains.J. Biosci. Bioeng.200599437838210.1263/jbb.99.37816233805
    [Google Scholar]
  75. SuenagaH. WatanabeT. SatoM. Ngadiman FurukawaK. Alteration of regiospecificity in biphenyl dioxygenase by active-site engineering.J. Bacteriol.2002184133682368810.1128/JB.184.13.3682‑3688.200212057964
    [Google Scholar]
  76. ZielinskiM. KahlS. HechtH.J. HoferB. Pinpointing biphenyl dioxygenase residues that are crucial for substrate interaction.J. Bacteriol.2003185236976698010.1128/JB.185.23.6976‑6980.200314617661
    [Google Scholar]
  77. FurusawaY. NagarajanV. TanokuraM. MasaiE. FukudaM. SendaT. Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1.J. Mol. Biol.200434231041105210.1016/j.jmb.2004.07.06215342255
    [Google Scholar]
  78. FerraroD.J. BrownE.N. YuC.L. ParalesR.E. GibsonD.T. RamaswamyS. Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1.BMC Struct. Biol.2007711010.1186/1472‑6807‑7‑1017349044
    [Google Scholar]
  79. WangY. SunC. MinJ. LiB. LiJ. ChenW. KongY. HuX. The engineered biphenyl dioxygenases enhanced the metabolism of dibenzofuran.Int. Biodeterior. Biodegradation202116110522810.1016/j.ibiod.2021.105228
    [Google Scholar]
  80. CaoY.M. XuL. JiaL.Y. Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation.N. Biotechnol.2011291909810.1016/j.nbt.2011.08.00521925295
    [Google Scholar]
  81. XuC. ZangX. HangX. LiuX. YangH. LiuX. JiangJ. Degradation of three monochlorobenzoate isomers by different bacteria isolated from a contaminated soil.Int. Biodeterior. Biodegradation201712019220210.1016/j.ibiod.2017.02.020
    [Google Scholar]
/content/journals/cg/10.2174/0113892029319746240812051356
Loading
/content/journals/cg/10.2174/0113892029319746240812051356
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test