Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Rank aggregation (RA) is the process of consolidating disparate rankings into a single unified ranking. It holds immense potential in the field of genomics. RA has applications in diverse research areas, such as gene expression analysis, meta-analysis, gene prioritization, and biomarker discovery. However, there are many challenges in the application of the RA approach to biological data, such as dealing with heterogeneous data sources, rankings of mixed quality, and evaluating the consolidated rankings. In this review, we present an overview of the existing RA methods with an emphasis on those that have been tailored to the complexities of genomics research. These encompass a broad range of approaches, from distributional and heuristic methods to Bayesian and stochastic optimization algorithms. By examining these techniques, we aim to equip researchers with the background knowledge needed to navigate the intricacies of RA in genomics data integration effectively. We review the practical applications to highlight the relevance and impact of RA methods in advancing genomics research. As the field continues to evolve, we identify open problems and suggest future directions to enhance the effectiveness of rank aggregation in genomics, by addressing the challenges related to data heterogeneity, single-cell omics and spatial transcriptomics data, and the development of clear and consistent evaluation methods. In summary, RA stands as a powerful tool in genomics research, which can offer deeper insights and more comprehensive data integration solutions.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029320249240830060611
2024-09-11
2025-12-08
Loading full text...

Full text loading...

References

  1. ThurstoneL.L. A law of comparative judgment.Psychol. Rev.192734427328610.1037/h0070288
    [Google Scholar]
  2. PattanaikP.K Positional rules of collective decision-making.Handbook of Social Choice and WelfareElsevier2002136139410.1016/S1574‑0110(02)80011‑X
    [Google Scholar]
  3. GleichD.F. LimL.H. Rank aggregation via nuclear norm minimization.Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining2011, pp.60-68.10.1145/2020408.2020425
    [Google Scholar]
  4. AndrieuP. BrancotteB. BulteauL. Cohen-BoulakiaS. DeniseA. PierrotA. VialetteS. Efficient, robust and effective rank aggregation for massive biological datasets.Future Gener. Comput. Syst.202112440642110.1016/j.future.2021.06.013
    [Google Scholar]
  5. DworkC. KumarR. NaorM. SivakumarD. Rank aggregation methods for the web.Proceedings of the 10th international conference on World Wide Web200110.1145/371920.372165
    [Google Scholar]
  6. LinS. Rank aggregation methods.Wiley Interdiscip. Rev. Comput. Stat.20102555557010.1002/wics.111
    [Google Scholar]
  7. ChenQ. ZhouX.J. SunF. Finding genetic overlaps among diseases based on ranked gene lists.J. Comput. Biol.201522211112310.1089/cmb.2014.0149 25684200
    [Google Scholar]
  8. BlangiardoM. RichardsonS. Statistical tools for synthesizing lists of differentially expressed features in related experiments.Genome Biol.200784R5410.1186/gb‑2007‑8‑4‑r54 17428330
    [Google Scholar]
  9. SonesonC. FontesM. A framework for list representation, enabling list stabilization through incorporation of gene exchangeabilities.Biostatistics201213112914110.1093/biostatistics/kxr023 21908866
    [Google Scholar]
  10. BoulesteixA.L. SlawskiM. Stability and aggregation of ranked gene lists.Brief. Bioinform.200910555656810.1093/bib/bbp034 19679825
    [Google Scholar]
  11. LiX. WangX. XiaoG. A comparative study of rank aggregation methods for partial and top ranked lists in genomic applications.Brief. Bioinform.201920117818910.1093/bib/bbx101 28968705
    [Google Scholar]
  12. LinS. DingJ. Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA Studies.Biometrics200965191810.1111/j.1541‑0420.2008.01044.x 18479487
    [Google Scholar]
  13. KoldeR. LaurS. AdlerP. ViloJ. Robust rank aggregation for gene list integration and meta-analysis.Bioinformatics201228457358010.1093/bioinformatics/btr709 22247279
    [Google Scholar]
  14. HongF. BreitlingR. McEnteeC.W. WittnerB.S. NemhauserJ.L. ChoryJ. RankProd: A bioconductor package for detecting differentially expressed genes in meta-analysis.Bioinformatics200622222825282710.1093/bioinformatics/btl476 16982708
    [Google Scholar]
  15. RichardsonS. TsengG.C. SunW. Statistical methods in integrative genomics.Annu. Rev. Stat. Appl.20163118120910.1146/annurev‑statistics‑041715‑033506 27482531
    [Google Scholar]
  16. WangB. LawA. ReganT. ParkinsonN. ColeJ. RussellC.D. DockrellD.H. GutmannM.U. BaillieJ.K. Systematic comparison of ranking aggregation methods for gene lists in experimental results.Bioinformatics202238214927493310.1093/bioinformatics/btac621 36094347
    [Google Scholar]
  17. GhandikotaS. SharmaM. EdigaH.H. MadalaS.K. JeggaA.G. Consensus gene co-expression network analysis identifies novel genes associated with severity of fibrotic lung disease.Int. J. Mol. Sci.20222310544710.3390/ijms23105447 35628257
    [Google Scholar]
  18. ChenY.W. DiamanteG. DingJ. NghiemT.X. YangJ. HaS.M. CohnP. ArnesonD. BlencoweM. GarciaJ. ZaghariN. PatelP. YangX. PharmOmics: A species- and tissue-specific drug signature database and gene-network-based drug repositioning tool.iScience202225410405210.1016/j.isci.2022.104052 35345455
    [Google Scholar]
  19. HanZ.J. XueW.W. TaoL. ZhuF. Identification of novel immune‐relevant drug target genes for Alzheimer’s disease by combining ontology inference with network analysis.CNS Neurosci. Ther.201824121253126310.1111/cns.13051 30106219
    [Google Scholar]
  20. WangX. YangL. YuC. LingX. GuoC. ChenR. LiD. LiuZ. An integrated computational strategy to predict personalized cancer drug combinations by reversing drug resistance signatures.Comput. Biol. Med.202316310723010.1016/j.compbiomed.2023.107230 37418899
    [Google Scholar]
  21. DworkC. NaorM. SivakumarD. Rank aggregation revisited.2003Available from: https://www.researchgate.net/publication/2869423_Rank_Aggregation_Revisited
  22. JonesL.W. Measurement of values.Nature195918446921010101010.1038/1841010a0
    [Google Scholar]
  23. ThurstoneL.L. Rank order as a psycho-physical method.J. Exp. Psychol.193114318720110.1037/h0070025
    [Google Scholar]
  24. StuartJ.M. SegalE. KollerD. KimS.K. A gene-coexpression network for global discovery of conserved genetic modules.Science2003302564324925510.1126/science.1087447 12934013
    [Google Scholar]
  25. AertsS. LambrechtsD. MaityS. Van LooP. CoessensB. De SmetF. TrancheventL.C. De MoorB. MarynenP. HassanB. CarmelietP. MoreauY. Gene prioritization through genomic data fusion.Nat. Biotechnol.200624553754410.1038/nbt1203 16680138
    [Google Scholar]
  26. WaldR KhoshgoftaarT.M DittmanD Mean aggregation versus robust rank aggregation for ensemble gene selection.11th International Conference on Machine Learning and ApplicationsBoca Raton, FL, USA2012, pp. 63-69.10.1109/ICMLA.2012.20
    [Google Scholar]
  27. ChenT. HuaW. XuB. ChenH. XieM. SunX. GeX. ChenT. HuaW. XuB. ChenH. XieM. SunX. GeX. Robust rank aggregation and cibersort algorithm applied to the identification of key genes in head and neck squamous cell cancer.Math. Biosci. Eng.20211844491450710.3934/mbe.2021228 34198450
    [Google Scholar]
  28. LiuY. ChenT.Y. YangZ.Y. FangW. WuQ. ZhangC. Identification of hub genes in papillary thyroid carcinoma: Robust rank aggregation and weighted gene co-expression network analysis.J. Transl. Med.202018117010.1186/s12967‑020‑02327‑7 32299435
    [Google Scholar]
  29. MaX. MoC. HuangL. CaoP. ShenL. GuiC. Robust rank aggregation and least absolute shrinkage and selection operator analysis of novel gene signatures in dilated cardiomyopathy.Front. Cardiovasc. Med.2021874780310.3389/fcvm.2021.747803 34970603
    [Google Scholar]
  30. DengK. HanS. LiK.J. LiuJ.S. Bayesian aggregation of order-based rank data.J. Am. Stat. Assoc.20141095071023103910.1080/01621459.2013.878660
    [Google Scholar]
  31. BadgeleyM.A. SealfonS.C. ChikinaM.D. Hybrid Bayesian-rank integration approach improves the predictive power of genomic dataset aggregation.Bioinformatics201531220921510.1093/bioinformatics/btu518 25266226
    [Google Scholar]
  32. RubinsteinR.Y. KroeseD.P. The Cross-Entropy Method; Jordan, M., Kleinberg, J., Schölkopf, B., Kelly, F.P., Witten, I., Series Eds.; Information Science and StatisticsSpringerNew York, NY200410.1007/978‑1‑4757‑4321‑0
    [Google Scholar]
  33. DeCondeR.P. HawleyS. FalconS. CleggN. KnudsenB. EtzioniR. Combining results of microarray experiments: A rank aggregation approach.Stat. Appl. Genet. Mol. Biol.200651e1510.2202/1544‑6115.1204 17049026
    [Google Scholar]
  34. SenguptaD. MaulikU. BandyopadhyayS. Weighted Markov chain based aggregation of bio-molecule orderings.IEEE/ACM Trans Comput Biol Bioinform20129392493310.1109/TCBB.2012.28"
    [Google Scholar]
  35. KolmykovS.K. KondrakhinY.V. SharipovR.N. YevshiI.S. RyabovaA.S. KolpakovF.A. Meta-analysis of ChIP-seq datasets through the rank aggregation approach.Cognitive Sciences, Genomics and Bioinformatics (CSGB)202010.1109/CSGB51356.2020.9214614
    [Google Scholar]
  36. DeshpandeA. ChuL.-F. StewartR. GitterA. Network inference with Granger causality ensembles on single-cell transcriptomics.Cell Reports202238611033310.1016/j.celrep.2022.110333
    [Google Scholar]
  37. JiangL. ShiX. YuD. Genetic data classification based on improved rank aggregation.In 2016 3rd International Conference on Systems and Informatics (ICSAI)2016; pp 1040–1044.10.1109/ICSAI.2016.7811104
    [Google Scholar]
  38. KavakiotisI. TriantafyllidisA. TsoumakasG. VlahavasI. Ensemble feature selection using rank aggregation methods for population genomic data.In: Proceedings of the 9th Hellenic Conference on Artificial Intelligence; SETN ’16 Association for Computing MachineryNew York, NY, USA, 2016; pp 1–4.10.1145/2903220.2903233.
    [Google Scholar]
  39. SongZ. ChaoF. ZhuoZ. MaZ. LiW. ChenG. Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis.Aging (Albany NY)201911134736475610.18632/aging.102087 31306099
    [Google Scholar]
  40. SpoonerA. MohammadiG. SachdevP.S. BrodatyH. SowmyaA. Ensemble feature selection with data-driven thresholding for Alzheimer’s disease biomarker discovery.BMC Bioinformatics2023241910.1186/s12859‑022‑05132‑9 36624372
    [Google Scholar]
  41. SeseJ. MorishitaS. Rank aggregation method for biological databases.Genome Inform.200112506507
    [Google Scholar]
  42. PihurV. DattaS. DattaS. Weighted rank aggregation of cluster validation measures: A Monte Carlo cross-entropy approach.Bioinformatics200723131607161510.1093/bioinformatics/btm158 17483500
    [Google Scholar]
  43. LiX. ChoudharyP.K. BiswasS. WangX. A Bayesian latent variable approach to aggregation of partial and top‐ranked lists in genomic studies.Stat. Med.201837284266427810.1002/sim.7920 30094911
    [Google Scholar]
  44. GaldiP. FratelloM. TrojsiF. RussoA. TedeschiG. TagliaferriR. EspositoF. Stochastic rank aggregation for the identification of functional neuromarkers.Neuroinformatics201917447949610.1007/s12021‑018‑9412‑y 30604083
    [Google Scholar]
  45. BianJ. XieM. TopalogluU. HudsonT. EswaranH. HoganW. Social network analysis of biomedical research collaboration networks in a CTSA institution.J. Biomed. Inform.20145213014010.1016/j.jbi.2014.01.015 24560679
    [Google Scholar]
  46. TranA. OngC.S. WolfC. Combining active learning suggestions.PeerJ Comput. Sci.201847e15710.7717/peerj‑cs.157 33816810
    [Google Scholar]
  47. ZhaoY. ZhangJ. XieH. ZhangS. GuL. Minimization of annotation work: Diagnosis of mammographic masses via active learning.Phys. Med. Biol.2018631111500310.1088/1361‑6560/aac042 29697059
    [Google Scholar]
  48. HanM. YuanL. HuangY. WangG. DuC. WangQ. ZhangG. Integrated co-expression network analysis uncovers novel tissue-specific genes in major depressive disorder and bipolar disorder.Front. Psychiatry20221398031510.3389/fpsyt.2022.980315 36081461
    [Google Scholar]
  49. RayS. HossainS.M.M. KhatunL. MukhopadhyayA. A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer’s disease progression.BMC Bioinformatics201718157910.1186/s12859‑017‑1946‑8 29262769
    [Google Scholar]
  50. ZhuM. HouT. JiaL. TanQ. QiuC. DuY. Development and validation of a 13-gene signature associated with immune function for the detection of Alzheimer’s disease.Neurobiol. Aging2023125627310.1016/j.neurobiolaging.2022.12.014 36842362
    [Google Scholar]
  51. CaiT. DuP. SuoL. JiangX. QinQ. SongR. YangX. JiangY. ZhangJ. High iodine promotes autoimmune thyroid disease by activating hexokinase 3 and inducing polarization of macrophages towards M1.Front. Immunol.202213100993210.3389/fimmu.2022.100993236325332
    [Google Scholar]
  52. RoointanA. GheisariY. HudkinsK.L. GholaminejadA. Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: Meta-analysis of profiling metabolomics studies.Nutr. Metab. Cardiovasc. Dis.20213182253227210.1016/j.numecd.2021.04.02134059383
    [Google Scholar]
  53. HeW. HuangC. ZhangX. WangD. ChenY. ZhaoY. LiX. Identification of transcriptomic signatures and crucial pathways involved in non-alcoholic steatohepatitis.Endocrine2021731526410.1007/s12020‑021‑02716‑y33837926
    [Google Scholar]
  54. GanX. LuoY. DaiG. LinJ. LiuX. ZhangX. LiA. Identification of gene signatures for diagnosis and prognosis of hepatocellular carcinomas patients at early stage.Front. Genet.20201185710.3389/fgene.2020.0085732849835
    [Google Scholar]
  55. HuX. BaoM. HuangJ. ZhouL. ZhengS. Identification and validation of novel biomarkers for diagnosis and prognosis of hepatocellular carcinoma.Front. Oncol.20201054147910.3389/fonc.2020.54147933102213
    [Google Scholar]
  56. ZhangY. LinY. LvD. WuX. LiW. WangX. JiangD. Identification and validation of a novel signature for prediction the prognosis and immunotherapy benefit in bladder cancer.PeerJ202210e1284310.7717/peerj.1284335127296
    [Google Scholar]
  57. JunA. ZhangB. ZhangZ. HuH. DongJ.T. >Novel gene signatures predictive of patient recurrence-free survival and castration resistance in prostate cancer.Cancers (Basel)202113491710.3390/cancers13040917
    [Google Scholar]
  58. KemenyJ.G. Mathematics without numbers.Daedalus1959884577591
    [Google Scholar]
  59. KendallM.G. A new measure of rank correlation.Biometrika1938301/2819310.2307/2332226
    [Google Scholar]
  60. SpearmanC. The proof and measurement of association between two things.Am. J. Psychol.19041517210110.2307/14121593322052
    [Google Scholar]
  61. LiB. ClohiseyS.M. ChiaB.S. WangB. CuiA. EisenhaureT. SchweitzerL.D. HooverP. ParkinsonN.J. NachshonA. SmithN. ReganT. FarrD. GutmannM.U. BukhariS.I. LawA. SangeslandM. Gat-ViksI. DigardP. VasudevanS. LingwoodD. DockrellD.H. DoenchJ.G. BaillieJ.K. HacohenN. Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection.Nat. Commun.202011116410.1038/s41467‑019‑13965‑x31919360
    [Google Scholar]
  62. VõsaU. KoldeR. ViloJ. MetspaluA. AnniloT. Comprehensive meta-analysis of microRNA expression using a robust rank aggregation approach.Methods Mol. Biol.2014118236137310.1007/978‑1‑4939‑1062‑5_28
    [Google Scholar]
  63. AkbariS. EscobedoA.R. Approximate condorcet partitioning: Solving large-scale rank aggregation problems.Comput. Oper. Res.202315310616410.1016/j.cor.2023.106164
    [Google Scholar]
  64. YanF. ZhaoZ. SimonL.M. EmptyN.N. EmptyNN A neural network based on positive and unlabeled learning to remove cell-free droplets and recover lost cells in scRNA-seq data.Patterns20212810031110.1016/j.patter.2021.10031134430929
    [Google Scholar]
  65. SimonL.M. WangY.Y. ZhaoZ. Integration of millions of transcriptomes using batch-aware triplet neural networks.Nat. Mach. Intell.20213870571510.1038/s42256‑021‑00361‑8
    [Google Scholar]
  66. SimonL.M. YanF. ZhaoZ. DrivAER: Identification of driving transcriptional programs in single-cell RNA sequencing data.Gigascience2020912giaa12210.1093/gigascience/giaa12233301553
    [Google Scholar]
  67. CuiH. WangC. MaanH. PangK. LuoF. DuanN. WangB. scGPT: Toward building a foundation model for single-cell multi-omics using generative AI.Nat. Methods202410.1038/s41592‑024‑02201‑0.
    [Google Scholar]
  68. NathA MwesigwaS DaiY JiangX ZhaoZ GENEVIC: GENetic data exploration and visualization via intelligent interactive console.Bioinformatics2024btae50010.1093/bioinformatics/btae50039115390
    [Google Scholar]
/content/journals/cg/10.2174/0113892029320249240830060611
Loading
/content/journals/cg/10.2174/0113892029320249240830060611
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bayesian; data integration; genomics; meta-analysis; Rank aggregation; stochastic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test