Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Diabetes is spread all over the world and frequently causes side effects, such as neuropathy, eye disease, kidney disease, and cardiovascular disease. The patient's life span is shortened by these problems. Numerous fruits and vegetables contain the naturally active flavonoid rutin. It has several medicinal benefits, including anti-inflammatory, antioxidant, and anticancer properties. Different researches suggest that rutin may be useful in treating these problems. The purpose of this study was to investigate the connection between the administration of rutin and the complications of diabetes. According to this study, rutin has both preventive and therapeutic effects on the side effects of diabetes as it lowers oxidative stress, inflammation and apoptosis in animal models. To completely comprehend the preventive and therapeutic benefits of rutin in diabetic patients, more clinical study is necessary.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230803093458
2024-04-01
2025-12-07
Loading full text...

Full text loading...

References

  1. ReginaCC Mu’tiA FitrianyE Diabetes mellitus type 2.verdure heal sci j [internet].202231817Available From: https://www.ncbi.nlm.nih.gov/books/NBK513253/ accessed on 2023 Mar 27
    [Google Scholar]
  2. Association AD. Diagnosis and classification of diabetes mellitus diabetes care [internet].200932Suppl 1S62Available From: /pmc/articles/PMC2613584/ accessed on 2023 Mar 25
    [Google Scholar]
  3. WillnerS. WhittemoreR. KeeneD. Life or death: Experiences of insulin insecurity among adults with type 1 diabetes in the United States.SSM Popul. Health202011100624
    [Google Scholar]
  4. PradeepaR MohanV. Epidemiology of type 2 diabetes in India.Indian J Ophthalmol202169112932Available From: /pmc/articles/PMC8725109/ accessed on 2023 Jun 10
    [Google Scholar]
  5. KhanM.A.B. HashimM.J. KingJ.K. GovenderR.D. MustafaH. Al KaabiJ. Epidemiology of type 2 diabetes: Global burden of disease and forecasted trends.J. Epidemiol. Glob. Health201910110711110.2991/jegh.k.191028.00132175717
    [Google Scholar]
  6. JhaR.P. ShriN. PatelP. DhamnetiyaD. BhattacharyyaK. SinghM. Trends in the diabetes incidence and mortality in India from 1990 to 2019: a joinpoint and age-period-cohort analysis.J. Diabetes Metab. Disord.20212021725174010.1007/s40200‑021‑00834‑y34900822
    [Google Scholar]
  7. RoepB.O. ThomaidouS. van TienhovenR. ZaldumbideA. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?).Nat. Rev. Endocrinol.2020173150161Available From: https://www.nature.com/articles/s41574-020-00443-4 accessed on 2023 Jun 10
    [Google Scholar]
  8. Diabetes symptoms: When diabetes symptoms are a concern - Mayo Clinic.2020
    [Google Scholar]
  9. BuchananTA XiangAH PageKA Gestational diabetes mellitus: Risks and management during and after pregnancy.Nat Rev Endocrinol2012811639Available from: /pmc/articles/PMC4404707/ accessed on 2023 Jun 10
    [Google Scholar]
  10. TabákAG HerderC RathmannW BrunnerEJ KivimäkiM Prediabetes: A high-risk state for developing diabetes.Lancet201237998332279Available from: /pmc/articles/PMC3891203/ accessed on 2023 Jun 10
    [Google Scholar]
  11. SanzanaG.M.G. DurrutyA.P. Other specific types of diabetes.Rev. Med. Clin. Las Condes2018272160170Available From: https://www.ncbi.nlm.nih.gov/books/NBK567978/ accessed on 2023 Jun 10
    [Google Scholar]
  12. RoepBO ThomaidouS van TienhovenR ZaldumbideA Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?).Nat Rev Endocrinol2021173150Available From: /pmc/articles/PMC7722981/ accessed on 2023 Mar 27
    [Google Scholar]
  13. BurrackA.L. MartinovT. FifeB.T. T Cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes.Front. Endocrinol.20178DEC34310.3389/fendo.2017.0034329259578
    [Google Scholar]
  14. what is diabetic. 2020. Available From: https://www.cdc.gov/diabetes/basics/diabetes.html
  15. AssociationAD Diagnosis and Classification of Diabetes Mellitus.Diabetes Care2011341S62Available From: /pmc/articles/PMC3006051/ accessed on 2023 Mar 27
    [Google Scholar]
  16. DeshpandeA.D. Harris-HayesM. SchootmanM. Epidemiology of diabetes and diabetes-related complications.Phys. Ther.200888111254126410.2522/ptj.2008002018801858
    [Google Scholar]
  17. GiaccoF BrownleeM Oxidative stress and diabetic complications.Circ Res201010791058Available From: /pmc/articles/PMC2996922/ accessed on 2023 Mar 3010.1161/CIRCRESAHA.110.223545
    [Google Scholar]
  18. PaulP. KaulR. AbdellatifB. The promising role of microbiome therapy on biomarkers of inflammation and oxidative stress in type 2 diabetes: A systematic and narrative review.Front. Nutr.20229May90624310.3389/fnut.2022.90624335711547
    [Google Scholar]
  19. ParasuramanS. Anand DavidA.V. ArulmoliR. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.19404428082789
    [Google Scholar]
  20. SalehiB AtaA Sharopov, et al. Antidiabetic potential of medicinal plants and their active components.Biomolecules201991055110.3390/biom910055131575072
    [Google Scholar]
  21. BajajS. KhanA. Antioxidants and diabetes.Indian J. Endocrinol. Metab.2012168Suppl. 226710.4103/2230‑8210.10405723565396
    [Google Scholar]
  22. UnuofinJ.O. LebeloS.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review.Oxid. Med. Cell. Longev.2020
    [Google Scholar]
  23. AlqahtaniA.S. HidayathullaS. RehmanM.T. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia.Biomolecules20191016110.3390/biom1001006131905962
    [Google Scholar]
  24. GromovaL.V. FetissovS.O. GruzdkovA.A. Mechanisms of glucose absorption in the small intestine in health and metabolic diseases and their role in appetite regulation.Nutrients2021137247410.3390/nu1307247434371983
    [Google Scholar]
  25. SatohT. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes.Int. J. Mol. Sci.20141510186771869210.3390/ijms15101867725325535
    [Google Scholar]
  26. FujishiroM. GotohY. KatagiriH. Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3t3-l1 adipocytes.Mol. Endocrinol.200317348749710.1210/me.2002‑013112554784
    [Google Scholar]
  27. ShepherdP.R. WithersD.J. SiddleK. Phosphoinositide 3-kinase: The key switch mechanism in insulin signalling.Biochem. J.1998333347149010.1042/bj33304719677303
    [Google Scholar]
  28. SchreiberA.K. NonesC.F. ReisR.C. ChichorroJ.G. CunhaJ.M. Diabetic neuropathic pain: Physiopathology and treatment.World J. Diabetes20156343244410.4239/wjd.v6.i3.43225897354
    [Google Scholar]
  29. BodmanM.A. VaracalloM. Peripheral diabetic neuropathy.StatPearls2022
    [Google Scholar]
  30. Diabetes and nerve damage.2020Available from: https://www.cdc.gov/diabetes/library/features/diabetes-nerve-damage.html
  31. FeldmanE.L. CallaghanB.C. Pop-BusuiR. Diabetic neuropathy.Nat. Rev. Dis. Primers2019514110.1038/s41572‑019‑0092‑131197183
    [Google Scholar]
  32. YagihashiS. MizukamiH. SugimotoK. Mechanism of diabetic neuropathy: Where are we now and where to go?J. Diabetes Investig.201121183210.1111/j.2040‑1124.2010.00070.x24843457
    [Google Scholar]
  33. SandireddyR. YerraV.G. AretiA. KomirishettyP. KumarA. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets.Int. J. Endocrinol.2014
    [Google Scholar]
  34. OyenihiA.B. AyelesoA.O. MukwevhoE. MasolaB. Antioxidant strategies in the management of diabetic neuropathy.BioMed Res. Int.201510.1155/2015/515042
    [Google Scholar]
  35. AL-Ishaq RKAbotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels.Biomolecules20199943010.3390/biom909043031480505
    [Google Scholar]
  36. FuZ. GilbertE.R. LiuD. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes.Curr. Diabetes Rev.201391255310.2174/15733991380414322522974359
    [Google Scholar]
  37. AnsariP. ChoudhuryS.T. SeidelV. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus.Life2022128114610.3390/life1208114636013325
    [Google Scholar]
  38. KawashiriT. MineK. KobayashiD. Therapeutic agents for oxaliplatin-induced peripheral neuropathy; experimental and clinical evidence.Int. J. Mol. Sci.2021223139310.3390/ijms2203139333573316
    [Google Scholar]
  39. AzevedoMI PereiraAF NogueiraRB The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy.Mol Pain20139117448069-9-5310.1186/1744‑8069‑9‑5324152430
    [Google Scholar]
  40. GaneshpurkarA. SalujaA.K. The pharmacological potential of rutin.Saudi Pharm. J.201725214916410.1016/j.jsps.2016.04.02528344465
    [Google Scholar]
  41. BasileD.P. AndersonM.D. SuttonT.A. Pathophysiology of acute kidney injury.Compr. Physiol.2012221303135310.1002/cphy.c11004123798302
    [Google Scholar]
  42. ChangA.S. HathawayC.K. SmithiesO. KakokiM. Transforming growth factor-β1 and diabetic nephropathy.Am. J. Physiol. Renal Physiol.20163108F689F69610.1152/ajprenal.00502.201526719364
    [Google Scholar]
  43. CravediP. RemuzziG. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease.Br. J. Clin. Pharmacol.201376451652323441592
    [Google Scholar]
  44. MarshallC.B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic?Am. J. Physiol. Renal Physiol.20163115F831F84310.1152/ajprenal.00313.201627582102
    [Google Scholar]
  45. SinghVP BaliA SinghN JaggiAS Advanced glycation end products and diabetic complications.Biomed Res Int20141811Available From: /pmc/articles/PMC3951818/ accessed on 2023 Jun 1010.4196/kjpp.2014.18.1.1
    [Google Scholar]
  46. FakhruddinS. AlanaziW. JacksonK.E. Diabetes-Induced Reactive Oxygen species: Mechanism of their generation and role in renal injury.J. Diabetes Res.2017
    [Google Scholar]
  47. Cabral-PachecoGA Garza-VelozI RosaCCD The roles of matrix metalloproteinases and their inhibitors in human diseases.Int J Mol Sci20202124153Available From: /pmc/articles/PMC7767220/ accessed on 2023 Jun 1010.3390/ijms21249739
    [Google Scholar]
  48. WuT. DingL. AndohV. ZhangJ. ChenL. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: An update.Life202313253910.3390/life1302053936836895
    [Google Scholar]
  49. PrinceP.S.M. KamalakkannanN. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes.J. Biochem. Mol. Toxicol.20062029610210.1002/jbt.2011716615078
    [Google Scholar]
  50. PrinceP.S.M. KannanN.K. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats.J. Pharm. Pharmacol.201058101373138310.1211/jpp.58.10.001117034661
    [Google Scholar]
  51. WidowatiW. PrahastutiS. TjokropranotoR. Quercetin prevents chronic kidney disease on mesangial cells model by regulating inflammation, oxidative stress, and TGF-β1/SMADs pathway.PeerJ202210June1325710.7717/peerj.1325735673387
    [Google Scholar]
  52. AluwongT. AyoJ. KpukpleA. OladipoO. Amelioration of hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic wistar rats treated with probiotic and vitamin C.Nutrients20168515110.3390/nu805015127164129
    [Google Scholar]
  53. Martín-TimónI Sevillano-CollantesC Segura-GalindoA Cañizo-GómezFJ. del. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?.World J Diabetes20145444.2014Available From: /pmc/articles/PMC4127581/ accessed on 2021 Sep 14
    [Google Scholar]
  54. MikiT. YudaS. KouzuH. MiuraT. Diabetic cardiomyopathy: Pathophysiology and clinical features.Heart Fail. Rev.201318214916610.1007/s10741‑012‑9313‑322453289
    [Google Scholar]
  55. TanY. ZhangZ. ZhengC. WintergerstK.A. KellerB.B. CaiL. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence.Nat. Rev. Cardiol.202017958560710.1038/s41569‑020‑0339‑232080423
    [Google Scholar]
  56. LiuQ. WangS. CaiL. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage.J. Diabetes Investig.20145662363410.1111/jdi.1225025422760
    [Google Scholar]
  57. KehrerJ.P. The haber–weiss reaction and mechanisms of toxicity.Toxicology20001491435010.1016/S0300‑483X(00)00231‑610963860
    [Google Scholar]
  58. LiB. YinJ. ChangJ. Apelin/APJ relieve diabetic cardiomyopathy by reducing microvascular dysfunction.J. Endocrinol.2021249111810.1530/JOE‑20‑039833504680
    [Google Scholar]
  59. WuW. LiuX. HanL. Apoptosis of cardiomyocytes in diabetic cardiomyopathy involves overexpression of glycogen synthase kinase-3β.Biosci. Rep.2019391BSR2017130710.1042/BSR20171307
    [Google Scholar]
  60. CaiL. LiW. WangG. GuoL. JiangY. KangY.J. Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome C-mediated caspase-3 activation pathway.Diabetes20025161938194810.2337/diabetes.51.6.193812031984
    [Google Scholar]
  61. ByrneN.J. RajasekaranN.S. AbelE.D. BuggerH. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy.Free Radic. Biol. Med.202116931734210.1016/j.freeradbiomed.2021.03.04633910093
    [Google Scholar]
  62. NairA. NairB. Comparative analysis of the oxidative stress and antioxidant status in type II diabetics and nondiabetics: A biochemical study.J. Oral Maxillofac. Pathol.201721339440110.4103/jomfp.JOMFP_56_1629391714
    [Google Scholar]
  63. MatoughF.A. BudinS.B. HamidZ.A. AlwahaibiN. MohamedJ. The role of oxidative stress and antioxidants in diabetic complications = مرض مضاع فات ف ي ل لأك سدة ال م ضادة ال مواد و ال تأك سدي الإجهاد دور ال س كري .Sultan Qaboos Univ. Med. J.201212151810.12816/000308222375253
    [Google Scholar]
  64. DalS. SigristS. The protective effect of antioxidants consumption on diabetes and vascular complications.Diseases2016442410.3390/diseases403002428933404
    [Google Scholar]
  65. SimcoxJ.A. McClainD.A. Iron and diabetes risk.Cell Metab.201317332934110.1016/j.cmet.2013.02.00723473030
    [Google Scholar]
  66. SayinN. KaraN. PekelG. Ocular complications of diabetes mellitus.World J. Diabetes2015619210810.4239/wjd.v6.i1.9225685281
    [Google Scholar]
  67. WangW. LoA. Diabetic retinopathy: Pathophysiology and treatments.Int. J. Mol. Sci.2018196181610.3390/ijms1906181629925789
    [Google Scholar]
  68. ShuklaU.V. KaufmanE.J. Intraocular hemorrhage.Decis Mak Ophthalmol An Algorithmic Approach2023Dec438833620856
    [Google Scholar]
  69. Galicia-GarciaU. Benito-VicenteA. JebariS. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  70. SelimK. SahanD. MuhittinT. OsmanC. MustafaO. Increased levels of vascular endothelial growth factor in the aqueous humor of patients with diabetic retinopathy.Indian J. Ophthalmol.201058537537910.4103/0301‑4738.6704220689190
    [Google Scholar]
  71. Ruszkowska-CiastekB. SokupA. SochaM.W. A preliminary evaluation of VEGF-A, VEGFR1 and VEGFR2 in patients with well-controlled type 2 diabetes mellitus.J. Zhejiang Univ. Sci. B201415657558110.1631/jzus.B140002424903995
    [Google Scholar]
  72. LimbG.A. SoomroH. JanikounS. HollifieldR.D. ShillingJ. Evidence for control of tumour necrosis factor-alpha (TNF-α) activity by TNF receptors in patients with proliferative diabetic retinopathy.Clin. Exp. Immunol.2001115340941410.1046/j.1365‑2249.1999.00839.x10193411
    [Google Scholar]
  73. GuptaS.K. SharmaH.P. DasU. VelpandianT. SaklaniR. Effect of rutin on retinal VEGF, TNF-α aldose reductase, and total antioxidant capacity in diabetic rats: molecular mechanism and ocular pharmacokinetics.Int. Ophthalmol.202040115916810.1007/s10792‑019‑01165‑x31456155
    [Google Scholar]
  74. MaradeshaT. PatilS.M. PhanindraB. Multiprotein inhibitory effect of dietary polyphenol rutin from whole green jackfruit flour targeting different stages of diabetes mellitus: Defining a bio-computational stratagem.Separations20229926210.3390/separations9090262
    [Google Scholar]
  75. JannapureddyS. SharmaM. YepuriG. SchmidtA.M. RamasamyR. Aldose reductase: An emerging target for development of interventions for diabetic cardiovascular complications.Front. Endocrinol.202112Mar63626710.3389/fendo.2021.63626733776930
    [Google Scholar]
  76. ShafiW. MansoorS. JanS. Variability in catechin and rutin contents and their antioxidant potential in diverse apple genotypes.Molecules201924594310.3390/molecules2405094330866542
    [Google Scholar]
  77. TothC. Pregabalin: latest safety evidence and clinical implications for the management of neuropathic pain.Ther. Adv. Drug Saf.201451385610.1177/204209861350561425083261
    [Google Scholar]
  78. RaoK.V. FasoA. Chemotherapy-induced nausea and vomiting: Optimizing prevention and management.Am. Health Drug Benefits20125423224024991322
    [Google Scholar]
  79. ChoiS.J. LeeS.N. KimK. Biological effects of rutin on skin aging.Int. J. Mol. Med.201638135736310.3892/ijmm.2016.260427220601
    [Google Scholar]
  80. DhatariyaK. CorsinoL. UmpierrezG.E. Management of diabetes and hyperglycemia in hospitalized patients.Endotext2020
    [Google Scholar]
  81. SudhakaranS. SuraniS.R. Guidelines for perioperative management of the diabetic patient.Surg. Res. Pract.201510.1155/2015/284063
    [Google Scholar]
  82. WolpertH.A. Use of continuous glucose monitoring in the detection and prevention of hypoglycemia.J. Diabetes Sci. Technol.20071114615010.1177/19322968070010012619888397
    [Google Scholar]
  83. NathanDM BuseJB DavidsonMB FerranniniE HolmanRR SherwinR Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the american diabetes association and the european association for the study of diabetes.Diabetes Care20093211932009Available From: /pmc/articles/PMC2606813/ accessed on 2023 May 11
    [Google Scholar]
  84. CraderM.F. JohnsT. ArnoldJ.K. Warfarin drug interactions.StatPearls2022
    [Google Scholar]
  85. PatelD.K. PrasadS.K. KumarR. HemalathaS. An overview on antidiabetic medicinal plants having insulin mimetic property.Asian Pac. J. Trop. Biomed.20122432033010.1016/S2221‑1691(12)60032‑X23569923
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230803093458
Loading
/content/journals/cff/10.2174/2666862901666230803093458
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetic complications; diabetic patients; medications; neuropathy; pregnancy; Rutin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test