Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Hypothyroidism is marked by increased Thyroid Stimulating Hormone (TSH) levels and decreased T3 (tri-iodothyronine) and T4 (tetra-iodothyronine/thyroxine) levels. Hypothyroidism-induced obesity has been linked to various metabolism-related abnormalities like slowed down basal metabolic rate (BMR). Linn. fruit has traditionally been used for reducing obesity.

Administration of Linnaeus extracts for the treatment of hypothyroidism-induced obesity in mice and study of related biochemical parameters and thyroid histology.

Hypothyroidism-induced obesity was induced by administering methimazole to the mice for 21 consecutive days and then investigating the disease reversal properties of aqueous extract, alcoholic extracts, and standard drug thyroxine following their administration to mice for 21 consecutive days. Blood sampling was done to obtain the biochemical parameters normal values, hypothyroidism-induced obesity levels, and levels after treatment with the test extracts. Various biochemical parameters like thyroid profile {TSH, T3, and T4} and lipid profile {Total cholesterol (TC), total triglycerides (TGs), high-density lipoprotein (HDL), and very low-density lipoprotein (VLDL)} and physical parameters like body weight, waist circumference, and food and water intake were measured. Liver and heart were dissected from the mice of each group for oxidative stress measurement by estimation of serum Glutathione (GSH), Malondialdehyde (MDA), and Catalase levels. The thyroid gland was dissected from the mice of each group for histopathological analysis.

Serum MDA levels had significantly increased ( < 0.001), whereas the values of GSH and catalase had decreased significantly (0.001) in hypothyroid obese mice. The standard and test groups showed attenuation of MDA levels ( < 0.0001) and elevation of GSH ( < 0.0001) and catalase levels ( < 0.0001) back toward normal measurements. After the induction of hypothyroid obesity, the thyroid profile and lipid profile both had disturbed significantly and the levels of TSH, TC, TGs, and VLDL elevated, whereas the levels of T3, T4 hormones, and HDL decreased significantly. After the treatment with the test plant extracts and standard drug, the levels of TSH, ( < 0.0001) TC ( < 0.05), TGs (0.0001), and VLDL ( < 0.0001) attenuated and the levels of T3 ( < 0.0001), T4 ( < 0.0001), and HDL ( < 0.0001) elevated back towards the normal range. Histopathological analysis and the hypothyroid obese group thyroid showed significant shrinkage of thyroid globule size wise and a significant decrease in colloid levels when compared with the control group, whereas the standard and test groups showed reversal of the thyroid globule size back towards normal.

The plant extracts can be used as a safe herbal treatment for hypothyroid obesity.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629255915230926062536
2024-04-01
2025-12-07
Loading full text...

Full text loading...

References

  1. DahiyaV. VasudevaN. SharmaS. KumarA. Administration of Momordica charantia alcoholic extract for the treatment of hypothyroidism induced obesity in mice.Neuroquantology202220965186525a
    [Google Scholar]
  2. DahiyaV. VasudevaN. SharmaS. KumarA. Reversing the weight gained by hypothyroid mice using Momordica charantia aqueous extract.Azerbaijan Med J202262950855092b
    [Google Scholar]
  3. WHO, 2018. Obesity and overweight. 2018. Available From: https://www.who.int/news-room/fact-sheets/detail/obesityand-overweight (Accessed on 9.10.22).
  4. DahiyaV. VasudevaN. SharmaS. KumarA. RowleyD. Lead anti-obesity compounds from nature.Endocr. Metab. Immune Disord. Drug Targets202020101637165310.2174/187153032066620050409201232364084
    [Google Scholar]
  5. Endocrine changes in obesity 2022. Available From: www.endotext.org (Accessed on 9.10.22).
  6. BessesenD. HillJ. WyattH. Hormones and obesity Patient information page- Hormones and you.JCEM2004
    [Google Scholar]
  7. DahiyaV. VasudevaN. SharmaS. KumarA. Role of dietary supplements in thyroid diseases.Endocr. Metab. Immune Disord. Drug Targets2022221098599610.2174/187153032266622041912513135440339
    [Google Scholar]
  8. HernandoV. AnilzaB. HernanS. Iodine deficiency disorders.Thyroid Disord Ther2015
    [Google Scholar]
  9. BiondiB. Thyroid and obesity: An intriguing relationship.J. Clin. Endocrinol. Metab.20109583614361710.1210/jc.2010‑124520685890
    [Google Scholar]
  10. RotondiM. MagriF. ChiovatoL. Thyroid and obesity: not a one-way interaction.J. Clin. Endocrinol. Metab.201196234434610.1210/jc.2010‑251521296993
    [Google Scholar]
  11. SantiniF. MarzulloP. RotondiM. Mechanisms in endocrinology: The crosstalk between thyroid gland and adipose tissue: signal integration in health and disease.Eur. J. Endocrinol.20141714R137R15210.1530/EJE‑14‑006725214234
    [Google Scholar]
  12. KarmisholtJ. AndersenS. LaurbergP. Weight loss after therapy of hypothyroidism is mainly caused by excretion of excess body water associated with myxoedema.J. Clin. Endocrinol. Metab.2011961E99E10310.1210/jc.2010‑152120926526
    [Google Scholar]
  13. O’MalleyB. HickeyJ. NevensE. Thyroid dysfunction - weight problems and the psyche: the patients’ perspective.J. Hum. Nutr. Diet.200013424324810.1046/j.1365‑277x.2000.00238.x
    [Google Scholar]
  14. PlummerW. Body weight in spontaneous myxedema; in American Association for the Study of Goiter: Transactions of the American Association for the Study of Goiter.Rochester West J Surg Obstet Gynecol194088-98
    [Google Scholar]
  15. GarberJ.R. CobinR.H. GharibH. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the american association of clinical endocrinologists and the american thyroid association.Endocr. Pract.2012186988102810.4158/EP12280.GL23246686
    [Google Scholar]
  16. Abdel-HassanI.A. Abdel-BarryJ.A. Tariq MohammedaS. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits.J. Ethnopharmacol.2000711-232533010.1016/S0378‑8741(99)00215‑910904181
    [Google Scholar]
  17. Drug Scheduling DEA. 2019. Available From: https://www.dea.gov/drug-information/drug-scheduling (Accessed 9.10.22).
  18. MohamedG.A. IbrahimS.R.M. ElkhayatE.S. El DineR.S. Natural anti-obesity agents.Bull. Fac. Pharm. Cairo Univ.201452226928410.1016/j.bfopcu.2014.05.001
    [Google Scholar]
  19. ChopraA. KaurN. Herbal drugs-A promising approach to obesity management.J Res Pharm Sci2014215
    [Google Scholar]
  20. BarteleneL. MartinoE. Drug Saf.199615536310.2165/00002018‑199615010‑000048862963
    [Google Scholar]
  21. TaylorP.N. VaidyaB. Side effects of anti-thyroid drugs and their impact on the choice of treatment for thyrotoxicosis in pregnancy.Eur. Thyroid J.20121317618510.1159/00034292024783017
    [Google Scholar]
  22. BurchH.B. CooperD.S. Antithyroid drug therapy: 70 years later.Eur. J. Endocrinol.20181795R261R27410.1530/EJE‑18‑067830320502
    [Google Scholar]
  23. RainsT.M. AgarwalS. MakiK.C. Antiobesity effects of green tea catechins: A mechanistic review.J. Nutr. Biochem.20112211710.1016/j.jnutbio.2010.06.00621115335
    [Google Scholar]
  24. Abdel-WahhabK.G. MannaaF.A. El-SahraD.G. MorsyF.A. GomaaH.F. Effect of oral administration of methanolic root extract of Saussurea costus to rats after propylthiouracil-induced hypothyroid obesity.Comp. Clin. Pathol.202231337739010.1007/s00580‑022‑03337‑1
    [Google Scholar]
  25. DahiyaV. VasudevaN. SharmaS. KumarA. Pharmacognostical, phytochemical, in vitro anti-obesity studies and toxicity analysis of Momordica charantia Linnaeus fruits from Haryana.Current Functional Foods20231211210.2174/2666862901666230217091237
    [Google Scholar]
  26. GroverJ.K. YadavS.P. Pharmacological actions and potential uses of Momordica charantia: A review.J. Ethnopharmacol.200493112313210.1016/j.jep.2004.03.03515182917
    [Google Scholar]
  27. BeloinN. GbeassorM. AkpaganaK. Ethnomedicinal uses of Momordica charantia(Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity.J. Ethnopharmacol.2005961-2495510.1016/j.jep.2004.08.00915588650
    [Google Scholar]
  28. WangL. WaltenbergerB. Pferschy-WenzigE.M. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review.Biochem. Pharmacol.2014921738910.1016/j.bcp.2014.07.01825083916
    [Google Scholar]
  29. DharP. GhoshS. BhattacharyyaD.K. Dietary effects of conjugated octadecatrienoic fatty acid (9 cis, 11 trans, 13 trans) levels on blood lipids and nonenzymatic in vitro lipid peroxidation in rats.Lipids199934210911410.1007/s11745‑999‑0343‑210102236
    [Google Scholar]
  30. Gooda SahibN. SaariN. IsmailA. KhatibA. MahomoodallyF. Abdul HamidA. Plants’ metabolites as potential antiobesity agents.ScientificWorldJournal201220121810.1100/2012/43603922666121
    [Google Scholar]
  31. WallisT. Textbook of Pharmacognosy.DelhiCBS Publishers and Distributors, Bhola Nath Nagar1985
    [Google Scholar]
  32. HerwigA. CampbellG. MayerC.D. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis.Thyroid201424111575159310.1089/thy.2014.016925087834
    [Google Scholar]
  33. DahiyaV. VasudevaN. SharmaS. KumarA. Recording the body weight alterations in hypothyroid obese mice following treatment with alcoholic extract of Citrullus colocynthis.J. Pharm. Negat. Results202213924052411
    [Google Scholar]
  34. ZhouX-L. HanY. MailW.J. Different doses and routes of administration of methimazole affect thyroid status in methimazole-induced hypothyroidism in rats.West Indian Med. J.2015651939710.7727/wimj.2014.24126901601
    [Google Scholar]
  35. PandaS. KarA. Excess use of Momordica charantia extract may not be safe with respect to thyroid function and lipid peroxidation.Curr. Sci.2000792222224
    [Google Scholar]
  36. TrinderP. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen.J. Clin. Pathol.196922215816110.1136/jcp.22.2.1585776547
    [Google Scholar]
  37. FriedewaldW.T. LevyR.I. FredricksonD.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.Clin. Chem.197218649950210.1093/clinchem/18.6.4994337382
    [Google Scholar]
  38. WillsE.D. Mechanisms of lipid peroxide formation in tissues. role of metals and haematin proteins in the catalysis of the oxidation unsaturated fatty acids.Biochim. Biophys. Acta196598238251
    [Google Scholar]
  39. JollowD.J. MitchellJ.R. ZampaglioneN. GilletteJ.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite.Pharmacology197411315116910.1159/0001364854831804
    [Google Scholar]
  40. ClaiborneA. GreenwaldR. Catalase activity Handbook of methods for oxygen radical research.Boca RatonCRC Press1985
    [Google Scholar]
  41. DruryR. WallingtonE. Carleton’s Histological Technique.Endocrine changes in obesity.New YorkOxford University Press2022
    [Google Scholar]
  42. GajdaS.N. Kuryłowicz A, Żach M, Bednarczuk T, Wyleżoł M. Diagnosis and treatment of thyroid disorders in obese patients — what do we know?Endokrynol. Pol.201970327127610.5603/EP.a2018.008931290558
    [Google Scholar]
  43. Gómez-ZamudioJ.H. Mendoza-ZubietaV. Ferreira-HermosilloA. High thyroid-stimulating hormone levels increase proinflammatory and cardiovascular markers in patients with extreme obesity.Arch. Med. Res.201647647648210.1016/j.arcmed.2016.10.00727986128
    [Google Scholar]
  44. VirdiJ. SivakamiS. ShahaniS. SutharA.C. BanavalikarM.M. BiyaniM.K. Antihyperglycemic effects of three extracts from Momordica charantia.J. Ethnopharmacol.200388110711110.1016/S0378‑8741(03)00184‑312902059
    [Google Scholar]
  45. SurS. RayR.B. Bitter melon (Momordica charantia), a nutraceutical approach for cancer prevention and therapy.Cancers2020128206410.3390/cancers1208206432726914
    [Google Scholar]
  46. KarimiA. MajlesiM. Rafieian-KopaeiM. Herbal versus synthetic drugs; beliefs and facts.J. Nephropharmacol.201541273028197471
    [Google Scholar]
  47. Abdel-WahhabK.G. MouradH.H. MannaaF.A. MorsyF.A. HassanL.K. TaherR.F. Role of ashwagandha methanolic extract in the regulation of thyroid profile in hypothyroidism modeled rats.Mol. Biol. Rep.20194643637364910.1007/s11033‑019‑04721‑x31203475
    [Google Scholar]
  48. BaskolG. AtmacaH. Tanrıverdi F, Baskol M, Kocer D, Bayram F. Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment.Exp. Clin. Endocrinol. Diabetes2007115852252610.1055/s‑2007‑98145717853336
    [Google Scholar]
  49. GutteridgeJ.M. Lipid peroxidation and antioxidants as biomarkers of tissue damage.Clin. Chem.199541121819182810.1093/clinchem/41.12.18197497639
    [Google Scholar]
  50. LorenziM. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient.Exp. Diabetes Res.2007200711010.1155/2007/6103818224243
    [Google Scholar]
  51. FrancoR. SchoneveldO.J. PappaA. PanayiotidisM.I. The central role of glutathione in the pathophysiology of human diseases.Arch. Physiol. Biochem.20071134-523425810.1080/1381345070166119818158646
    [Google Scholar]
  52. TownsendD.M. TewK.D. The role of glutathione-S-transferase in anti-cancer drug resistance.Oncogene200322477369737510.1038/sj.onc.120694014576844
    [Google Scholar]
  53. JialalI. DevarajS. Antioxidants and atherosclerosis: don’t throw out the baby with the bath water.Circulation2003107792692810.1161/01.CIR.0000048966.26216.4C
    [Google Scholar]
  54. TorunA.N. KulaksizogluS. KulaksizogluM. PamukB.O. IsbilenE. TutuncuN.B. Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism.Clin. Endocrinol.200970346947410.1111/j.1365‑2265.2008.03348.x18727709
    [Google Scholar]
  55. García-SolísP. GarcíaO.P. Hernández-PugaG. Thyroid hormones and obesity: A known but poorly understood relationship.Endokrynol. Pol.201869329230310.5603/EP.2018.003229952420
    [Google Scholar]
  56. BétryC. Increased TSH in obesity: Evidence for a bmi-independent association with leptin, diabetes & metabolism.20154132485110.1016/j.diabet.2014.11.009
    [Google Scholar]
  57. KimB. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate.Thyroid Off J Am Thyroid Assoc20081814114410.1089/thy.2007.0266
    [Google Scholar]
  58. PucciE. ChiovatoL. PincheraA. Thyroid and lipid metabolism.Int. J. Obes.200024S2Suppl. 2S109S11210.1038/sj.ijo.080129210997623
    [Google Scholar]
  59. EshitaP. PriyaB.D. SudhakarG. PaddaiahG. Impact of adipocytokines-leptin and adiponectin on thyroid stimulating hormone among hypothyroid patients.Asian J. Med. Sci.201352677210.3126/ajms.v5i2.8789
    [Google Scholar]
  60. MullurR. LiuY.Y. BrentG.A. Thyroid hormone regulation of metabolism.Physiol. Rev.201494235538210.1152/physrev.00030.201324692351
    [Google Scholar]
  61. UmezuM. KagabuS. JiangJ. SatoE. Evaluation and characterization of congenital hypothyroidism in rdw dwarf rats.Lab. Anim. Sci.199848549650110090064
    [Google Scholar]
/content/journals/cff/10.2174/0126668629255915230926062536
Loading
/content/journals/cff/10.2174/0126668629255915230926062536
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): histopathology; Hypothyroidism; mice; Momordica charantia; obesity; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test