Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

The medicinal plants discussed at this moment and their active isolated components seem promising for the treatment of neurodegenerative diseases . Disease (HD) in Huntington, Alzheimer's disease (AD), and Parkinson's disease (PD). These compounds can lay the groundwork for a new pharmacological approach to treatment, as patients tolerate herbal compounds more easily because they are relatively more protective than synthetic drugs. Meanwhile, there are anti-inflammatory, antioxidant, altered tau phosphorylation, anti-amyloidogenic, decreased aggregation of neurofibrillary tangles, and anticholinesterase processes in natural compound structures, including flavonoids, polyphenols, triterpenes, tannins, alkaloids and so on. We have summarized the pathogenesis and mechanism of different natural/bioactive components for treating HD, AD, and PD. An herbal source with well-established antioxidant and neuroprotective activity showed favourable impacts in both and studies against the symptoms of neurodegenerative diseases. The future outlook of herbal medicine can allow us to research their synergistic interactions, the action of multiple targets, and the elucidation of complex mechanisms of neuroprotective properties. However, in future scientific research on bioactive compounds, the efficacy of their active ingredients should be investigated to discover their neuroprotective therapeutic potential. Also, the mechanisms of action of herbal extracts and active ingredients remain to be clarified appropriately.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230627124045
2024-04-01
2025-12-07
Loading full text...

Full text loading...

References

  1. GaoH.M. HongJ.S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression.Trends Immunol.200829835736510.1016/j.it.2008.05.00218599350
    [Google Scholar]
  2. AnsariJ.A. SirajA. InamdarN.N. Pharmacotherapeutic approaches of Parkinson’s disease.Int. J. Pharmacol.20106558459010.3923/ijp.2010.584.590
    [Google Scholar]
  3. KumarS. MadaanR. BansalG. JamwalA. SharmaA. Plants and plant products with potential anticonvulsant activity–A review.Pharmacogn. Commun.20122139910.5530/pc.2012.suppl1.2
    [Google Scholar]
  4. BergerM. Can oxidative damage be treated nutritionally?Clin. Nutr.200524217218310.1016/j.clnu.2004.10.00315784476
    [Google Scholar]
  5. KrobitschS. KazantsevA.G. Huntington’s disease: From molecular basis to therapeutic advances.Int. J. Biochem. Cell Biol.2011431202410.1016/j.biocel.2010.10.01421056115
    [Google Scholar]
  6. KumarP. KaloniaH. KumarA. Huntington’s disease: Pathogenesis to animal models.Pharmacol. Rep.201062111410.1016/S1734‑1140(10)70238‑320360611
    [Google Scholar]
  7. SawaA. TomodaT. BaeB.I. Mechanisms of neuronal cell death in Huntington’s disease.Cytogenet. Genome Res.20031001-428729510.1159/00007286414526190
    [Google Scholar]
  8. ZádoriD. GeiszA. VámosE. VécseiL. KlivényiP. Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington’s disease.Pharmacol. Biochem. Behav.200994114815310.1016/j.pbb.2009.08.00119698736
    [Google Scholar]
  9. EllerbyL.M. Hunting for Excitement.Neuron200233684184210.1016/S0896‑6273(02)00631‑111906690
    [Google Scholar]
  10. RubinszteinD.C. CarmichaelJ. Huntington’s disease: Molecular basis of neurodegeneration.Expert Rev. Mol. Med.200352012110.1017/S146239940300654914585171
    [Google Scholar]
  11. TripathiY.B. ChaurasiaS. TripathiE. UpadhyayA. DubeyG.P. Bacopa monniera Linn. as an antioxidant: Mechanism of action.Indian J. Exp. Biol.19963465235268792640
    [Google Scholar]
  12. RussoA. IzzoA.A. BorrelliF. RenisM. VanellaA. Free radical scavenging capacity and protective effect ofBacopa monniera L. on DNA damage.Phytother. Res.200317887087510.1002/ptr.106113680815
    [Google Scholar]
  13. MahdyH.M. TadrosM.G. MohamedM.R. KarimA.M. KhalifaA.E. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats.Neurochem. Int.201159677077810.1016/j.neuint.2011.07.01221827809
    [Google Scholar]
  14. KumarP. KumarA. Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease.J. Med. Food200912359160010.1089/jmf.2008.002819627208
    [Google Scholar]
  15. KumarP. KumarA. Effects of root extract of Withania somnifera in 3-Nitropropionic acid-induced cognitive dysfunction and oxidative damage in rats.Int J Health Res20081139149
    [Google Scholar]
  16. Sreejayan, Rao MNA. Nitric oxide scavenging by curcuminoids.J. Pharm. Pharmacol.201149110510710.1111/j.2042‑7158.1997.tb06761.x9120760
    [Google Scholar]
  17. DanielS. LimsonJ.L. DairamA. WatkinsG.M. DayaS. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain.J. Inorg. Biochem.200498226627510.1016/j.jinorgbio.2003.10.01414729307
    [Google Scholar]
  18. GhoneimA. Abdel-NaimA.B. KhalifaA. El-DensharyE.S. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain.Pharmacol. Res.200246327327910.1016/S1043‑6618(02)00123‑812220971
    [Google Scholar]
  19. RadadK. GilleG. LiuL. RauschW.D. Use of ginseng in medicine with emphasis on neurodegenerative disorders.J. Pharmacol. Sci.2006100317518610.1254/jphs.CRJ05010X16518078
    [Google Scholar]
  20. SoumyanathA. ZhongY.P. YuX. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro.J. Pharm. Pharmacol.20105791221122910.1211/jpp.57.9.001816105244
    [Google Scholar]
  21. ShinomolG.K. Muralidhara. Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice.Neurotoxicology200829694895710.1016/j.neuro.2008.09.00918930762
    [Google Scholar]
  22. ClerenC. CalingasanN.Y. ChenJ. BealM.F. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity.J. Neurochem.2005944995100410.1111/j.1471‑4159.2005.03253.x16092942
    [Google Scholar]
  23. ZhangY.Q. SargeK.D. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response.J. Mol. Med.200785121421142810.1007/s00109‑007‑0251‑917943263
    [Google Scholar]
  24. HsuD.Z. ChenK.T. LiY.H. ChuangY.C. LiuM.Y. Sesamol delays mortality and attenuates hepatic injury after cecal ligation and puncture in rats: Role of oxidative stress.Shock200625552853210.1097/01.shk.0000209552.95839.4316680019
    [Google Scholar]
  25. HsuD.Z. WanC.H. HsuH.F. LinY.M. LiuM.Y. The prophylactic protective effect of sesamol against ferric–nitrilotriacetate-induced acute renal injury in mice.Food Chem. Toxicol.20084682736274110.1016/j.fct.2008.04.02918539378
    [Google Scholar]
  26. TanakaM. MachidaY. NiuS. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease.Nat. Med.200410214815410.1038/nm98514730359
    [Google Scholar]
  27. SarkarS. DaviesJ.E. HuangZ. TunnacliffeA. RubinszteinD.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein.J. Biol. Chem.200728285641565210.1074/jbc.M60953220017182613
    [Google Scholar]
  28. AtessahinA. YilmazS. KarahanI. CeribasiA.O. KaraogluA. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats.Toxicology20052122-311612310.1016/j.tox.2005.04.01615946783
    [Google Scholar]
  29. KumarP. KaloniaH. KumarA. Lycopene modulates nitric oxide pathways against 3-nitropropionic acid-induced neurotoxicity.Life Sci.20098519-2071171810.1016/j.lfs.2009.10.00119822156
    [Google Scholar]
  30. Pedraza-ChaverríJ. Reyes-FermínL.M. Nolasco-AmayaE.G. ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons.Exp. Toxicol. Pathol.200961549150110.1016/j.etp.2008.11.00219108999
    [Google Scholar]
  31. ZhangH. PanN. XiongS. Inhibition of polyglutamine-mediated proteotoxicity by Astragalus membranaceus polysaccharide through the DAF-16/FOXO transcription factor in Caenorhabditis elegans.Biochem. J.2012441141742410.1042/BJ2011062121892924
    [Google Scholar]
  32. SagredoO. RamosJ.A. DecioA. MechoulamR. Fernández-RuizJ. Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors.Eur. J. Neurosci.200726484385110.1111/j.1460‑9568.2007.05717.x17672854
    [Google Scholar]
  33. EhrnhoeferD.E. DuennwaldM. MarkovicP. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models.Hum. Mol. Genet.200615182743275110.1093/hmg/ddl21016893904
    [Google Scholar]
  34. MaherP. DarguschR. BodaiL. GerardP.E. PurcellJ.M. MarshJ.L. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease.Hum. Mol. Genet.201120226127010.1093/hmg/ddq46020952447
    [Google Scholar]
  35. ParkJ.E. LeeS.T. ImW.S. ChuK. KimM. Galantamine reduces striatal degeneration in 3-nitropropionic acid model of Huntington’s disease.Neurosci. Lett.2008448114314710.1016/j.neulet.2008.10.02018938211
    [Google Scholar]
  36. MenzeE.T. TadrosM.G. Abdel-TawabA.M. KhalifaA.E. Potential neuroprotective effects of hesperidin on 3-nitropropionic acid-induced neurotoxicity in rats.Neurotoxicology20123351265127510.1016/j.neuro.2012.07.00722850463
    [Google Scholar]
  37. NonesJ. SpohrT.C.L.S. GomesF.C.A. Hesperidin, a flavone glycoside, as mediator of neuronal survival.Neurochem. Res.201136101776178410.1007/s11064‑011‑0493‑321553255
    [Google Scholar]
  38. LeeY.C. YangY.C. HuangC.L. When cytokinin, a plant hormone, meets the adenosine A2A receptor: A novel neuroprotectant and lead for treating neurodegenerative disorders?PLoS One201276e3886510.1371/journal.pone.003886522719969
    [Google Scholar]
  39. ZengK.W. ZhangT. FuH. LiuG.X. WangX.M. Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia.Eur. J. Pharmacol.20126921-3293710.1016/j.ejphar.2012.05.03022698579
    [Google Scholar]
  40. La CruzV.P-D. González-CortésC. Pedraza-ChaverríJ. MaldonadoP.D. Andrés-MartínezL. SantamaríaA. Protective effect of S-allylcysteine on 3-nitropropionic acid-induced lipid peroxidation and mitochondrial dysfunction in rat brain synaptosomes.Brain Res. Bull.200668537938310.1016/j.brainresbull.2005.09.01316377446
    [Google Scholar]
  41. PallosJ. BodaiL. LukacsovichT. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease.Hum. Mol. Genet.200817233767377510.1093/hmg/ddn27318762557
    [Google Scholar]
  42. SandhirR. MehrotraA. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20131832342143010.1016/j.bbadis.2012.11.01823220257
    [Google Scholar]
  43. WuA.G. WongV. XuS.W. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells.Int. J. Mol. Sci.20131411226182264110.3390/ijms14112261824248062
    [Google Scholar]
  44. KumarP. KumarA. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide.Behav. Brain Res.20102061384610.1016/j.bbr.2009.08.02819716383
    [Google Scholar]
  45. TariqM. KhanH.A. ElfakiI. DeebS.A. MoutaeryK.A. Neuroprotective effect of nicotine against 3-nitropropionic acid (3-NP)-induced experimental Huntington’s disease in rats.Brain Res. Bull.2005671-216116810.1016/j.brainresbull.2005.06.02416140176
    [Google Scholar]
  46. ReitzC. MayeuxR. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers.Biochem. Pharmacol.201488464065110.1016/j.bcp.2013.12.02424398425
    [Google Scholar]
  47. KumarA. SinghA. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update.Pharmacol. Rep.201567219520310.1016/j.pharep.2014.09.00425712639
    [Google Scholar]
  48. SolomonA. MangialascheF. RichardE. Advances in the prevention of Alzheimer’s disease and dementia.J. Intern. Med.2014275322925010.1111/joim.1217824605807
    [Google Scholar]
  49. ZhangL. YuH. ZhaoX. Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells.Neurochem. Int.201057554755510.1016/j.neuint.2010.06.02120615444
    [Google Scholar]
  50. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.107299412130773
    [Google Scholar]
  51. ChunW. JohnsonG.V. The role of tau phosphorylation and cleavage in neuronal cell death.Front. Biosci.200712173375610.2741/209717127334
    [Google Scholar]
  52. MarchbanksR.M. Biochemistry of Alzheimer’s dementia.J. Neurochem.198239191510.1111/j.1471‑4159.1982.tb04695.x6806445
    [Google Scholar]
  53. UabunditN. WattanathornJ. MucimapuraS. IngkaninanK. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model.J. Ethnopharmacol.20101271263110.1016/j.jep.2009.09.05619808086
    [Google Scholar]
  54. LimpeanchobN. JaipanS. RattanakarunaS. PhrompittayaratW. IngkaninanK. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture.J. Ethnopharmacol.2008120111211710.1016/j.jep.2008.07.03918755259
    [Google Scholar]
  55. ZhouL.J. ZhuX.Z. Reactive oxygen species-induced apoptosis in PC12 cells and protective effect of bilobalide.J. Pharmacol. Exp. Ther.2000293398298810869401
    [Google Scholar]
  56. TchantchouF. LacorP.N. CaoZ. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons.J. Alzheimers Dis.200918478779810.3233/JAD‑2009‑118919661619
    [Google Scholar]
  57. Veerendra KumarM.H. GuptaY.K. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats.Clin. Exp. Pharmacol. Physiol.2003305-633634210.1046/j.1440‑1681.2003.03842.x12859423
    [Google Scholar]
  58. DhanasekaranM. HolcombL.A. HittA.R. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model.Phytother. Res.2009231141910.1002/ptr.240519048607
    [Google Scholar]
  59. VeldmanE.R. JiaZ. HalldinC. SvedbergM.M. Amyloid binding properties of curcumin analogues in Alzheimer’s disease postmortem brain tissue.Neurosci. Lett.201663018318810.1016/j.neulet.2016.07.04527461789
    [Google Scholar]
  60. DiSilvestroR.A. JosephE. ZhaoS. BomserJ. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people.Nutr. J.20121117910.1186/1475‑2891‑11‑7923013352
    [Google Scholar]
  61. SethiyaN.K. NahataA. MishraS.H. DixitV.K. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine.J. Chin. Integr. Med.20097111001102210.3736/jcim2009110119912732
    [Google Scholar]
  62. BihaqiS. SinghA. TiwariM. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and Amyloid precursor protein (AβPP) expression in rat brain.Indian J. Pharmacol.201244559359810.4103/0253‑7613.10038323112420
    [Google Scholar]
  63. ObohG. AdemiluyiA.O. AkinyemiA.J. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale).Exp. Toxicol. Pathol.201264431531910.1016/j.etp.2010.09.00420952170
    [Google Scholar]
  64. BorekC. Garlic reduces dementia and heart-disease risk.J. Nutr.20061363Suppl.810S812S10.1093/jn/136.3.810S16484570
    [Google Scholar]
  65. QuZ. MossineV.V. CuiJ. SunG.Y. GuZ. Protective effects of AGE and its components on neuroinflammation and neurodegeneration.Neuromolecular Med.201618347448210.1007/s12017‑016‑8410‑127263111
    [Google Scholar]
  66. Jiménez-AliagaK. Bermejo-BescósP. BenedíJ. Martín-AragónS. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells.Life Sci.20118925-2693994510.1016/j.lfs.2011.09.02322008478
    [Google Scholar]
  67. MorenoL.C.G.I. PuertaE. Suárez-SantiagoJ.E. Santos-MagalhãesN.S. RamirezM.J. IracheJ.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease.Int. J. Pharm.20175171-2505710.1016/j.ijpharm.2016.11.06127915007
    [Google Scholar]
  68. LeeY.J. ChoiD.Y. YunY.P. HanS.B. OhK.W. HongJ.T. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties.J. Nutr. Biochem.201324129831010.1016/j.jnutbio.2012.06.01122959056
    [Google Scholar]
  69. ChangX RongC ChenY (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer ׳s disease model mice by upregulating neprilysin expression.Exp. Cell Res.2015334113614510.1016/j.yexcr.2015.04.00425882496
    [Google Scholar]
  70. HuangM. JiangX. LiangY. LiuQ. ChenS. GuoY. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease.Exp. Gerontol.201791253310.1016/j.exger.2017.02.00428223223
    [Google Scholar]
  71. de OliveiraJ.S. AbdallaF.H. DornellesG.L. Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: Involvement of acetylcholinesterase and cell death.Neurotoxicology20165724125010.1016/j.neuro.2016.10.00827746125
    [Google Scholar]
  72. LiF. GongQ. DongH. ShiJ. Resveratrol, a neuroprotective supplement for Alzheimer’s disease.Curr. Pharm. Des.2012181273310.2174/13816121279891907522211686
    [Google Scholar]
  73. KarthickC. PeriyasamyS. JayachandranK.S. AnusuyadeviM. Intrahippocampal administration of ibotenic acid induced cholinergic dysfunction via NR2A/NR2B expression: Implications of resveratrol against Alzheimer disease pathophysiology.Front. Mol. Neurosci.201692810.3389/fnmol.2016.0002827199654
    [Google Scholar]
  74. WangC.Y. ZhengW. WangT. Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model.Neuropsychopharmacology20113651073108910.1038/npp.2010.24521289607
    [Google Scholar]
  75. ZhouF. ChenS. XiongJ. LiY. QuL. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells.Biol. Trace Elem. Res.2012149227327910.1007/s12011‑012‑9411‑z22528780
    [Google Scholar]
  76. LiuR. MengF. ZhangL. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells.Molecules20111632084209610.3390/molecules1603208421368720
    [Google Scholar]
  77. IuvoneT. De FilippisD. EspositoG. D’AmicoA. IzzoA.A. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-β peptide-induced neurotoxicity.J. Pharmacol. Exp. Ther.200631731143114910.1124/jpet.105.09931716495207
    [Google Scholar]
  78. SrivareeratM. TranT.T. SalimS. AleisaA.M. AlkadhiK.A. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease.Neurobiol. Aging201132583484410.1016/j.neurobiolaging.2009.04.01519464074
    [Google Scholar]
  79. LuJ.H. ArdahM.T. DurairajanS.S.K. Baicalein inhibits formation of α-synuclein oligomers within living cells and prevents Aβ peptide fibrillation and oligomerisation.ChemBioChem201112461562410.1002/cbic.20100060421271629
    [Google Scholar]
  80. ZhangS.Q. ObregonD. EhrhartJ. Baicalein reduces β‐amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model.J. Neurosci. Res.20139191239124610.1002/jnr.2324423686791
    [Google Scholar]
  81. KimS. ChoiK.J. ChoS.J. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors.Sci. Rep.2016612493310.1038/srep2493327112200
    [Google Scholar]
  82. PantanoD. LuccariniI. NardielloP. ServiliM. StefaniM. CasamentiF. Oleuropein aglycone and polyphenols from olive mill waste water ameliorate cognitive deficits and neuropathology.Br. J. Clin. Pharmacol.2017831546210.1111/bcp.1299327131215
    [Google Scholar]
  83. GhahghaeiA. BathaieS.Z. BahraminejadE. Mechanisms of the effects of crocin on aggregation and deposition of Aβ1–40 fibrils in Alzheimer’s Disease.Int. J. Pept. Res. Ther.201218434735110.1007/s10989‑012‑9308‑x
    [Google Scholar]
  84. GhahghaeiA. BathaieS. KheirkhahH. BahraminejadE. The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro.Cell. Mol. Biol. Lett.201318332833910.2478/s11658‑013‑0092‑123737042
    [Google Scholar]
  85. DurairajanS.S.K. YuanQ. XieL. Salvianolic acid B inhibits Aβ fibril formation and disaggregates preformed fibrils and protects against Aβ-induced cytotoxicty.Neurochem. Int.2008524-574175010.1016/j.neuint.2007.09.00617964692
    [Google Scholar]
  86. MeiZ.R. TanX.P. LiuS.Z. HuangH.H. [Puerarin alleviates cognitive impairment and tau hyperphosphorylation in APP/PS1 transgenic mice].Zhongguo Zhongyao Zazhi201641173285328928920384
    [Google Scholar]
  87. RivièreC. PapastamoulisY. FortinP.Y. New stilbene dimers against amyloid fibril formation.Bioorg. Med. Chem. Lett.201020113441344310.1016/j.bmcl.2009.09.07420452207
    [Google Scholar]
  88. JiaoY. KongL. YaoY. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer’s disease.Neuropharmacology201610833234410.1016/j.neuropharm.2016.04.04627143098
    [Google Scholar]
  89. YaoY. WangY. KongL. ChenY. YangJ. RETRACTED: Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer’s disease.Life Sci.2019217162410.1016/j.lfs.2018.11.03830471283
    [Google Scholar]
  90. MdS GanSY HawYH HoCL WongS ChoudhuryH In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation.Int J Biol Macromol2018118Pt A1211910.1016/j.ijbiomac.2018.06.19030001606
    [Google Scholar]
  91. JankovicJ. Parkinson’s disease: Clinical features and diagnosis.J. Neurol. Neurosurg. Psychiatry200879436837610.1136/jnnp.2007.13104518344392
    [Google Scholar]
  92. AlexanderG.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder.Dialogues Clin. Neurosci.20046325928010.31887/DCNS.2004.6.3/galexander22033559
    [Google Scholar]
  93. BerardelliA. RothwellJ.C. ThompsonP.D. HallettM. Pathophysiology of bradykinesia in Parkinson’s disease.Brain2001124112131214610.1093/brain/124.11.213111673316
    [Google Scholar]
  94. DauerW. PrzedborskiS. Parkinson’s Disease.Neuron200339688990910.1016/S0896‑6273(03)00568‑312971891
    [Google Scholar]
  95. KimW.S. KågedalK. HallidayG.M. Alpha-synuclein biology in Lewy body diseases.Alzheimers Res. Ther.201465-87310.1186/s13195‑014‑0073‑225580161
    [Google Scholar]
  96. CardinaleA. ChiesaR. SierksM. Protein misfolding and neurodegenerative diseases.Int. J. Cell Biol.201420141210.1155/2014/21737124799906
    [Google Scholar]
  97. ShobanaC. Ramesh KumarR. SumathiT. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: A pilot study.Cell. Mol. Neurobiol.20123271099111210.1007/s10571‑012‑9833‑322527857
    [Google Scholar]
  98. AhmadM. SaleemS. AhmadA.S. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences.J. Neurochem.20059319410410.1111/j.1471‑4159.2005.03000.x15773909
    [Google Scholar]
  99. KwonI.H. ChoiH.S. ShinK.S. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson’s disease.Neurosci. Lett.20104861293310.1016/j.neulet.2010.09.03820851167
    [Google Scholar]
  100. KhuwajaG. KhanM.M. IshratT. Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats: Behavioral, neurochemical and immunohistochemical studies.Brain Res.2011136825426310.1016/j.brainres.2010.10.02320951685
    [Google Scholar]
  101. SedaghatR. RoghaniM. KhaliliM. Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model.Iran. J. Pharm. Res.201413122723424734075
    [Google Scholar]
  102. BaluchnejadmojaradT. Jamali-RaeufyN. ZabihnejadS. RabieeN. RoghaniM. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson’s disease: Possible involvement of PI3K/ERβ signaling.Eur. J. Pharmacol.2017801727810.1016/j.ejphar.2017.03.00228284752
    [Google Scholar]
  103. Van KampenJ.M. BaranowskiD.B. ShawC.A. KayD.G. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease.Exp. Gerontol.2014509510510.1016/j.exger.2013.11.01224316034
    [Google Scholar]
  104. HaleagraharaN. SiewC.J. PonnusamyK. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats.J. Toxicol. Sci.2013381253310.2131/jts.38.2523358137
    [Google Scholar]
  105. ChaturvediR.K. ShuklaS. SethK. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease.Neurobiol. Dis.200622242143410.1016/j.nbd.2005.12.00816480889
    [Google Scholar]
  106. WuC.R. TsaiC.W. ChangS.W. LinC.Y. HuangL.C. TsaiC.W. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of antioxidative enzymes induction.Chem. Biol. Interact.2015225404610.1016/j.cbi.2014.11.01125446857
    [Google Scholar]
  107. ChanW.S. DurairajanS.S.K. LuJ.H. Neuroprotective effects of Astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture.Neurochem. Int.200955641442210.1016/j.neuint.2009.04.01219409437
    [Google Scholar]
  108. MuX. HeG. ChengY. LiX. XuB. DuG. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro.Pharmacol. Biochem. Behav.200992464264810.1016/j.pbb.2009.03.00819327378
    [Google Scholar]
  109. MansouriM.T. FarboodY. SameriM.J. SarkakiA. NaghizadehB. RafeiradM. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats.Food Chem.20131382-31028103310.1016/j.foodchem.2012.11.02223411210
    [Google Scholar]
  110. HongZ. WangG. GuJ. Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice.Eur. J. Neurosci.20072661500150810.1111/j.1460‑9568.2007.05766.x17714494
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230627124045
Loading
/content/journals/cff/10.2174/2666862901666230627124045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test