Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Diabetes is a metabolic disease characterized by hyperglycemia. Persistent hyperglycemia can cause Diabetic nephropathy (DN). It is a major microvascular complication that leads to chronic kidney disease (CKD) that progressively develops into end-stage renal disease (ESRD). It is the most debilitating condition that affects 15-25% of patients with type I diabetes and approximately 30-40% with type II diabetes worldwide.

In this review, we aim at various inflammatory mediators and different inflammatory pathways involved in the progression of DN with special emphasis on phytoconstituents which gives protection against DN by acting on these mediators and pathways.

The literature was searched for the key words: inflammation, anti-inflamatory, phytoconstitutents/ phytochemicals, diabetic nephropathy, clinical and preclinical studies.

The various epidemiological, preclinical, and clinical evidence showed a close relationship between inflammatory response and progression of DN, as such, there is no effective treatment for DN, therefore, there is an unmet need for novel therapeutic approaches to treat them. From ancient times, phytochemicals, also known as phytonutrients, are the bioactive nutrients found in plants and foods, which have proven potentially useful for human well-being. Phytochemicals have demonstrated a promising therapeutic role in nephropathy, principally through the regulation of oxidative stress and inflammation.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230601100713
2024-04-01
2025-12-07
Loading full text...

Full text loading...

References

  1. SunH. SaeediP. KarurangaS. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  2. LinX. XuY. PanX. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025.Sci. Rep.20201011479010.1038/s41598‑020‑71908‑932901098
    [Google Scholar]
  3. MathersC.D. LoncarD. Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med.2006311e44210.1371/journal.pmed.003044217132052
    [Google Scholar]
  4. MorranM.P. VonbergA. KhadraA. PietropaoloM. Immunogenetics of type 1 diabetes mellitus.Mol. Aspects Med.201542426010.1016/j.mam.2014.12.00425579746
    [Google Scholar]
  5. PorthaB. LacrazG. KergoatM. The GK rat beta-cell: A prototype for the diseased human beta-cell in type 2 diabetes?Mol. Cell. Endocrinol.20092971-2738510.1016/j.mce.2008.06.01318640239
    [Google Scholar]
  6. ZimmetP. AlbertiK.G.M.M. ShawJ. Global and societal implications of the diabetes epidemic.Nature2001414686578278710.1038/414782a11742409
    [Google Scholar]
  7. Galicia-GarciaU. Benito-VicenteA. JebariS. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  8. MokdadA.H. FordE.S. BowmanB.A. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001.JAMA20032891767910.1001/jama.289.1.7612503980
    [Google Scholar]
  9. FeldmanE.L. CallaghanB.C. Pop-BusuiR. Diabetic neuropathy.Nat. Rev. Dis. Primers2019514110.1038/s41572‑019‑0092‑131197153
    [Google Scholar]
  10. LeeK.M.C. SumW.M.R. Prevalence of diabetic retinopathy in patients with recently diagnosed diabetes mellitus.Clin. Exp. Optom.201194437137510.1111/j.1444‑0938.2010.00574.x21323731
    [Google Scholar]
  11. LongA.N. Dagogo-JackS. Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection.J. Clin. Hypertens.201113424425110.1111/j.1751‑7176.2011.00434.x21466619
    [Google Scholar]
  12. AzushimaK. GurleyS.B. CoffmanT.M. Modelling diabetic nephropathy in mice.Nat. Rev. Nephrol.2018141485610.1038/nrneph.2017.14229062142
    [Google Scholar]
  13. ValenciaW.M. FlorezH. How to prevent the microvascular complications of type 2 diabetes beyond glucose control.BMJ2017356i650510.1136/bmj.i650528096078
    [Google Scholar]
  14. JohnS. Complication in diabetic nephropathy.Diabetes Metab. Syndr.201610424724910.1016/j.dsx.2016.06.00527389078
    [Google Scholar]
  15. JerumsG. PanagiotopoulosS. PremaratneE. MacIsaacR.J. Integrating albuminuria and GFR in the assessment of diabetic nephropathy.Nat. Rev. Nephrol.20095739740610.1038/nrneph.2009.9119556994
    [Google Scholar]
  16. HanedaM. UtsunomiyaK. KoyaD. A new Classification of Diabetic Nephropathy 2014: a report from Joint Committee on Diabetic Nephropathy.J. Diabetes Investig.20156224224610.1111/jdi.1231925802733
    [Google Scholar]
  17. ShafiS. TabassumN. AhmadF. Diabetic nephropathy and herbal medicines.Int J Phytopharm2012311017
    [Google Scholar]
  18. RaoV. RaoL.V. TanS.H. CandasamyM. BhattamisraS.K. Diabetic nephropathy: An update on pathogenesis and drug development.Diabetes Metab. Syndr.201913175476210.1016/j.dsx.2018.11.05430641802
    [Google Scholar]
  19. SagooM.K. GnudiL. Diabetic nephropathy: Is there a role for oxidative stress?Free Radic. Biol. Med.2018116506310.1016/j.freeradbiomed.2017.12.04029305106
    [Google Scholar]
  20. DronavalliS. DukaI. BakrisG.L. The pathogenesis of diabetic nephropathy.Nat. Clin. Pract. Endocrinol. Metab.20084844445210.1038/ncpendmet089418607402
    [Google Scholar]
  21. WadaJ. MakinoH. Inflammation and the pathogenesis of diabetic nephropathy.Clin. Sci.2013124313915210.1042/CS2012019823075333
    [Google Scholar]
  22. HostetterT.H. Hyperfiltration and glomerulosclerosis.Semin. Nephrol.200323219419910.1053/snep.2003.5001712704579
    [Google Scholar]
  23. HuangW. GalloisY. BoubyN. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse.Proc. Natl. Acad. Sci. USA20019823133301333410.1073/pnas.23147679811687636
    [Google Scholar]
  24. KanetsunaY. TakahashiK. NagataM. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice.Am. J. Pathol.200717051473148410.2353/ajpath.2007.06048117456755
    [Google Scholar]
  25. ZhangY. WangB. GuoF. LiZ. QinG. Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy.Biomed. Pharmacother.201810576677210.1016/j.biopha.2018.06.03629909344
    [Google Scholar]
  26. ThomsonSC VallonV BlantzRC Kidney function in early diabetes: The tubular hypothesis of glomerular filtration.Am J Physiol-Ren Physiol2004286155-1815
    [Google Scholar]
  27. AswarU. GogawaleV. MiniyarP. PatilY. Beneficial effects of Stevioside on AGEs, blood glucose, lipid profile and renal status in streptozotocin-induced diabetic rats.J. Appl. Biomed.201917319019710.32725/jab.2019.01334907701
    [Google Scholar]
  28. HeiligC.W. DebD.K. AbdulA. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy.Am. J. Nephrol.2013381394910.1159/00035198923817135
    [Google Scholar]
  29. SrivastavaS.K. RamanaK.V. BhatnagarA. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options.Endocr. Rev.200526338039210.1210/er.2004‑002815814847
    [Google Scholar]
  30. SegoS. Pathophysiology of diabetic nephropathy.Nephrol. Nurs. J.200734663163318203571
    [Google Scholar]
  31. NagarajanR.P. ChenF. LiW. Repression of transforming-growth-factor-β-mediated transcription by nuclear factor κB.Biochem. J.2000348359159610.1042/bj348059110839991
    [Google Scholar]
  32. WadaJ. MakinoH. Innate immunity in diabetes and diabetic nephropathy.Nat. Rev. Nephrol.2016121132610.1038/nrneph.2015.17526568190
    [Google Scholar]
  33. TangS.C.W. YiuW.H. Innate immunity in diabetic kidney disease.Nat. Rev. Nephrol.202016420622210.1038/s41581‑019‑0234‑431942046
    [Google Scholar]
  34. SamsuN. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment.BioMed Res. Int.2021202111710.1155/2021/149744934307650
    [Google Scholar]
  35. Duran-SalgadoM.B. Rubio-GuerraA.F. Diabetic nephropathy and inflammation.World J. Diabetes20145339339810.4239/wjd.v5.i3.39324936261
    [Google Scholar]
  36. MaJ. LiY.J. ChenX. KwanT. ChadbanS.J. WuH. Interleukin 17A promotes diabetic kidney injury.Sci. Rep.201991226410.1038/s41598‑019‑38811‑430783187
    [Google Scholar]
  37. FeigerlováE. Battaglia-HsuS.F. IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives.Cytokine Growth Factor Rev.20173737576510.1016/j.cytogfr.2017.03.00328363692
    [Google Scholar]
  38. Rayego-MateosS. Morgado-PascualJ.L. Opazo-RíosL. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy.Int. J. Mol. Sci.20202111379810.3390/ijms2111379832471207
    [Google Scholar]
  39. ShaJ. SuiB. SuX. MengQ. ZhangC. Alteration of oxidative stress and inflammatory cytokines induces apoptosis in diabetic nephropathy.Mol. Med. Rep.20171657715772310.3892/mmr.2017.752228944839
    [Google Scholar]
  40. Donate-CorreaJ. Martín-NúñezE. Muros-de-FuentesM. Mora-FernándezC. Navarro-GonzálezJ.F. Inflammatory cytokines in diabetic nephropathy.J. Diabetes Res.201520151910.1155/2015/94841725785280
    [Google Scholar]
  41. MurakoshiM. GohdaT. TanimotoM. FunabikiK. HorikoshiS. TominoY. Role of mindin in diabetic nephropathy.Exp. Diabetes Res.201120111610.1155/2011/48630522235198
    [Google Scholar]
  42. Navarro-GonzálezJ.F. Mora-FernándezC. The role of inflammatory cytokines in diabetic nephropathy.J. Am. Soc. Nephrol.200819343344210.1681/ASN.200709104818256353
    [Google Scholar]
  43. YaribeygiH. AtkinS.L. SahebkarA. Interleukin‐18 and diabetic nephropathy: A review.J. Cell. Physiol.201923455674568210.1002/jcp.2742730417374
    [Google Scholar]
  44. MiyauchiK. TakiyamaY. HonjyoJ. TatenoM. HanedaM. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-β1 enhanced IL-18 expression in human renal proximal tubular epithelial cells.Diabetes Res. Clin. Pract.200983219019910.1016/j.diabres.2008.11.01819110334
    [Google Scholar]
  45. ParkC.W. KimJ.H. LeeJ.W. High glucose-induced intercellular adhesion molecule-1 (ICAM-1) expression through an osmotic effect in rat mesangial cells is PKC-NF-ϰB-dependent.Diabetologia200043121544155310.1007/s00125005156711151765
    [Google Scholar]
  46. BertaniT. AbbateM. ZojaC. Tumor necrosis factor induces glomerular damage in the rabbit.Am. J. Pathol.198913424194302916653
    [Google Scholar]
  47. Wójciak-StothardB. EntwistleA. GargR. RidleyA.J. Regulation of TNF-α-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells.J. Cell. Physiol.1998176115016510.1002/(SICI)1097‑4652(199807)176:1<150:AID‑JCP17>3.0.CO;2‑B9618155
    [Google Scholar]
  48. SavicV. StefanovicV. ArdaillouN. ArdaillouR. Induction of ecto-5′-nucleotidase of rat cultured mesangial cells by interleukin-1 beta and tumour necrosis factor-alpha.Immunology19907033213262165999
    [Google Scholar]
  49. KoikeN. TakamuraT. KanekoS. Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-α stimulation, and effects of a phosphodiesterase inhibitor.Life Sci.200780181721172810.1016/j.lfs.2007.02.00117346751
    [Google Scholar]
  50. CortvrindtC. SpeeckaertR. MoermanA. DelangheJ.R. SpeeckaertM.M. The role of interleukin-17A in the pathogenesis of kidney diseases.Pathology201749324725810.1016/j.pathol.2017.01.00328291548
    [Google Scholar]
  51. Van KootenC. BoonstraJ.G. PaapeM.E. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection.J. Am. Soc. Nephrol.1998981526153410.1681/ASN.V9815269697677
    [Google Scholar]
  52. DudasP.L. SagueS.L. EllosoM.M. FarrellF.X. Proinflammatory/profibrotic effects of interleukin-17A on human proximal tubule epithelium.Nephron, Exp. Nephrol.20111174e114e12310.1159/00032017720924205
    [Google Scholar]
  53. OrejudoM. Rodrigues-DiezR.R. Rodrigues-DiezR. Interleukin 17A participates in renal inflammation associated to experimental and human hypertension.Front. Pharmacol.201910101510.3389/fphar.2019.0101531572188
    [Google Scholar]
  54. XuJ. LongY. NiL. Anticancer effect of berberine based on experimental animal models of various cancers: A systematic review and meta-analysis.BMC Cancer201919158910.1186/s12885‑019‑5791‑131208348
    [Google Scholar]
  55. LiJ. BaoJ. ZengJ. YanA. ZhaoC. ShuQ. Iguratimod: A valuable remedy from the Asia Pacific region for ameliorating autoimmune diseases and protecting bone physiology.Bone Res.2019712710.1038/s41413‑019‑0067‑6
    [Google Scholar]
  56. DengY. ZhangX. ShiQ. ChenY. QiuX. ChenB. Anti-hyperglycemic effects and mechanism of traditional Chinese medicine Huanglian Wan in streptozocin-induced diabetic rats.J. Ethnopharmacol.2012144242543210.1016/j.jep.2012.09.03923036812
    [Google Scholar]
  57. QingY. DongX. HongliL. YanhuiL. Berberine promoted myocardial protection of postoperative patients through regulating myocardial autophagy.Biomed. Pharmacother.20181051050105310.1016/j.biopha.2018.06.08830021340
    [Google Scholar]
  58. SinghA.K. SinghS.K. NandiM.K. Berberine: A plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease.Cent. Nerv. Syst. Agents Med. Chem.201919315417010.2174/187152491966619082016005331429696
    [Google Scholar]
  59. ZhuL. ZhangD. ZhuH. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe−/− mice.Atherosclerosis201826811712610.1016/j.atherosclerosis.2017.11.02329202334
    [Google Scholar]
  60. EhteshamfarS.M. AkhbariM. AfshariJ.T. Anti‐inflammatory and immune‐modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation.J. Cell. Mol. Med.20202423135731358810.1111/jcmm.1604933135395
    [Google Scholar]
  61. ChenY. WangY. ZhangJ. SunC. LopezA. Berberine improves glucose homeostasis in streptozotocin-induced diabetic rats in association with multiple factors of insulin resistance.ISRN Endocrinol.201120111810.5402/2011/51937122363882
    [Google Scholar]
  62. XieX. ChangX. ChenL. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling.Mol. Cell. Endocrinol.20133811-2566510.1016/j.mce.2013.07.01923896433
    [Google Scholar]
  63. Avila-CarrascoL. García-MayorgaE.A. Díaz-AvilaD.L. Garza-VelozI. Martinez-FierroM.L. González-MateoG.T. Potential therapeutic effects of natural plant compounds in kidney disease.Molecules20212620609610.3390/molecules2620609634684678
    [Google Scholar]
  64. KollárP. HotolováH. Biological effects of resveratrol and other constituents of wine.Ceska Slov. Farm.200352627228114661366
    [Google Scholar]
  65. XuF. WangY. CuiW. Resveratrol prevention of diabetic nephropathy is associated with the suppression of renal inflammation and mesangial cell proliferation: Possible roles of Akt/NF- κ B pathway.Int. J. Endocrinol.201420141910.1155/2014/28932724672545
    [Google Scholar]
  66. HarikumarK.B. AggarwalB.B. Resveratrol: A multitargeted agent for age-associated chronic diseases.Cell Cycle2008781020103510.4161/cc.7.8.574018414053
    [Google Scholar]
  67. PalsamyP. SubramanianS. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling.Biochim. Biophys. Acta Mol. Basis Dis.20111812771973110.1016/j.bbadis.2011.03.00821439372
    [Google Scholar]
  68. GuoR. LiuB. WangK. ZhouS. LiW. XuY. Resveratrol ameliorates diabetic vascular inflammation and macrophage infiltration in db/db mice by inhibiting the NF-κB pathway.Diab. Vasc. Dis. Res.20141129210210.1177/147916411352033224464099
    [Google Scholar]
  69. SattarinezhadA. RoozbehJ. Shirazi YeganehB. OmraniG.R. ShamsM. Resveratrol reduces albuminuria in diabetic nephropathy: A randomized double-blind placebo-controlled clinical trial.Diabetes Metab.2019451535910.1016/j.diabet.2018.05.01029983230
    [Google Scholar]
  70. ShuklaS. GuptaS. Apigenin: A promising molecule for cancer prevention.Pharm. Res.201027696297810.1007/s11095‑010‑0089‑720306120
    [Google Scholar]
  71. HouY. ZhangY. LinS. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis.Am. J. Transl. Res.20211342006202034017372
    [Google Scholar]
  72. MalikS. SuchalK. KhanS.I. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways.Am. J. Physiol. Renal Physiol.20173132F414F42210.1152/ajprenal.00393.201628566504
    [Google Scholar]
  73. CeciC. LacalP. TentoriL. De MartinoM. MianoR. GrazianiG. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid.Nutrients20181011175610.3390/nu1011175630441769
    [Google Scholar]
  74. Baradaran RahimiV. GhadiriM. RamezaniM. AskariV.R. Antiinflammatory and anti‐cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies.Phytother. Res.202034468572010.1002/ptr.656531908068
    [Google Scholar]
  75. ZhouB. LiQ. WangJ. ChenP. JiangS. Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling.Food Chem. Toxicol.2019123162710.1016/j.fct.2018.10.03630342113
    [Google Scholar]
  76. AhadA. GanaiA.A. MujeebM. SiddiquiW.A. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy.Chem. Biol. Interact.2014219647510.1016/j.cbi.2014.05.01124877639
    [Google Scholar]
  77. AggarwalB.B. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals.Annu. Rev. Nutr.201030117319910.1146/annurev.nutr.012809.10475520420526
    [Google Scholar]
  78. PanY. WangY. CaiL. Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats.Br. J. Pharmacol.201216631169118210.1111/j.1476‑5381.2012.01854.x22242942
    [Google Scholar]
  79. PanY. ZhuG. WangY. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart.J. Nutr. Biochem.201324114615510.1016/j.jnutbio.2012.03.01222819547
    [Google Scholar]
  80. SoetiknoV. SariF.R. VeeraveeduP.T. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy.Nutr. Metab.2011813510.1186/1743‑7075‑8‑3521663638
    [Google Scholar]
  81. ParsamaneshN. MoossaviM. BahramiA. ButlerA.E. SahebkarA. Therapeutic potential of curcumin in diabetic complications.Pharmacol. Res.201813618119310.1016/j.phrs.2018.09.01230219581
    [Google Scholar]
  82. AshrafizadehM. TavakolS. AhmadiZ. RoomianiS. MohammadinejadR. SamarghandianS. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress.Phytother. Res.202034591192310.1002/ptr.657731829475
    [Google Scholar]
  83. HuQ. QuC. XiaoX. Flavonoids on diabetic nephropathy: Advances and therapeutic opportunities.Chin. Med.20211617410.1186/s13020‑021‑00485‑434364389
    [Google Scholar]
  84. SharmaD. GondaliyaP. TiwariV. KaliaK. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling.Biomed. Pharmacother.20191091610161910.1016/j.biopha.2018.10.19530551415
    [Google Scholar]
  85. HuangT. LiuY. ZhangC. Pharmacokinetics and bioavailability enhancement of baicalin: A review.Eur. J. Drug Metab. Pharmacokinet.201944215916810.1007/s13318‑018‑0509‑330209794
    [Google Scholar]
  86. HuQ. ZhangW. WuZ. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects.Pharmacol. Res.202116510544410.1016/j.phrs.2021.10544433493657
    [Google Scholar]
  87. ZhangS. XuL. LiangR. YangC. WangP. Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells.J. Physiol. Biochem.202076340741610.1007/s13105‑020‑00747‑z32500512
    [Google Scholar]
  88. ZhengX. NieQ. FengJ. Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin.BMC Nephrol.202021117410.1186/s12882‑020‑01833‑632398108
    [Google Scholar]
  89. YangM. KanL. WuL. ZhuY. WangQ. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism.Exp. Ther. Med.20191732071207610.3892/etm.2019.7181
    [Google Scholar]
  90. ZaidunN.H. ThentZ.C. LatiffA.A. Combating oxidative stress disorders with citrus flavonoid.Naringenin. Life Sci201820811112210.1016/j.lfs.2018.07.01730021118
    [Google Scholar]
  91. ZengW. JinL. ZhangF. ZhangC. LiangW. Naringenin as a potential immunomodulator in therapeutics.Pharmacol. Res.201813512212610.1016/j.phrs.2018.08.00230081177
    [Google Scholar]
  92. TsaiS.J. HuangC.S. MongM.C. KamW.Y. HuangH.Y. YinM.C. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice.J. Agric. Food Chem.201260151452110.1021/jf203259h22117528
    [Google Scholar]
  93. ChenF. WeiG. XuJ. MaX. WangQ. Naringin ameliorates the high glucose-induced rat mesangial cell inflammatory reaction by modulating the NLRP3 Inflammasome.BMC Complement. Altern. Med.201818119210.1186/s12906‑018‑2257‑y29929501
    [Google Scholar]
  94. RoyS. AhmedF. BanerjeeS. SahaU. Naringenin ameliorates streptozotocin-induced diabetic rat renal impairment by downregulation of TGF-β1 and IL-1 via modulation of oxidative stress correlates with decreased apoptotic events.Pharm. Biol.20165491616162710.3109/13880209.2015.111059926928632
    [Google Scholar]
  95. YanN. WenL. PengR. Naringenin ameliorated kidney injury through Let-7a/TGFBR1 signaling in diabetic nephropathy.J. Diabetes Res.2016201611310.1155/2016/873876027446963
    [Google Scholar]
  96. LarsonA.J. SymonsJ.D. JaliliT. Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms.Adv. Nutr.201231394610.3945/an.111.00127122332099
    [Google Scholar]
  97. StewartL.K. SoileauJ.L. RibnickyD. Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet.Metabolism2008577Suppl. 1S39S4610.1016/j.metabol.2008.03.00318555853
    [Google Scholar]
  98. WangC. PanY. ZhangQ.Y. WangF.M. KongL.D. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation.PLoS One201276e3828510.1371/journal.pone.003828522701621
    [Google Scholar]
  99. ChenP. ShiQ. XuX. WangY. ChenW. WangH. Quercetin suppresses NF-κB and MCP-1 expression in a high glucose-induced human mesangial cell proliferation model.Int. J. Mol. Med.201230111912522469745
    [Google Scholar]
  100. LaiP.B. ZhangL. YangL.Y. Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-β1 and connective tissue growth factor in streptozotocin-induced diabetic rats.Ren. Fail.2012341838710.3109/0886022X.2011.62356422011322
    [Google Scholar]
  101. HicksonL.J. Langhi PrataL.G.P. BobartS.A. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease.EBioMedicine20194744645610.1016/j.ebiom.2019.08.06931542391
    [Google Scholar]
  102. ElmarakbyA.A. IbrahimA.S. FaulknerJ. MozaffariM.S. LiouG.I. AbdelsayedR. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice.Vascul. Pharmacol.2011555-614915610.1016/j.vph.2011.07.00721807121
    [Google Scholar]
  103. MukundV. MukundD. SharmaV. MannarapuM. AlamA. Genistein: Its role in metabolic diseases and cancer.Crit. Rev. Oncol. Hematol.2017119132210.1016/j.critrevonc.2017.09.00429065980
    [Google Scholar]
  104. KimM.J. LimY. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage.Mediators Inflamm.2013201311410.1155/2013/51021223737649
    [Google Scholar]
  105. WangY. LiY. ZhangT. ChiY. LiuM. LiuY. Genistein and myd88 activate autophagy in high glucose-induced renal podocytes in vitro.Med. Sci. Monit.2018244823483110.12659/MSM.91086829999001
    [Google Scholar]
  106. RehmanK. AliM.B. AkashM.S.H. Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses.Biomed. Pharmacother.201911210867010.1016/j.biopha.2019.10867030784939
    [Google Scholar]
  107. AbbasiB. MirlohiM. DanialiM. GhiasvandR. Effects of probiotic soymilk on lipid panel in type 2 diabetic patients with nephropathy: A double-blind randomized clinical trial.Prog. Nutr.2018207078
    [Google Scholar]
  108. ChoiE.J. AhnW.S. Neuroprotective effects of chronic hesperetin administration in mice.Arch. Pharm. Res.200831111457146210.1007/s12272‑001‑2130‑119023542
    [Google Scholar]
  109. IranshahiM. RezaeeR. ParhizH. RoohbakhshA. SoltaniF. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin.Life Sci.201513712513210.1016/j.lfs.2015.07.01426188593
    [Google Scholar]
  110. MahmoudA.M. AshourM.B. Abdel-MoneimA. AhmedO.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats.J. Diabetes Complications201226648349010.1016/j.jdiacomp.2012.06.00122809898
    [Google Scholar]
  111. JayaramanR. SubramaniS.S. AbdullahS.H. UdaiyarM. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlidemic in streptozotocin-induced diabetic rats.Biomed. Pharmacother.2018979810610.1016/j.biopha.2017.10.10229080465
    [Google Scholar]
  112. ChenY.J. KongL. TangZ.Z. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway.Biomed. Pharmacother.20191112091166117510.1016/j.biopha.2019.01.03030841430
    [Google Scholar]
  113. LvJ. ZhouD. WangY. Effects of luteolin on treatment of psoriasis by repressing HSP90.Int. Immunopharmacol.20207910607010.1016/j.intimp.2019.10607031918062
    [Google Scholar]
  114. AzizN. KimM.Y. ChoJ.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies.J. Ethnopharmacol.201822534235810.1016/j.jep.2018.05.01929801717
    [Google Scholar]
  115. XiongC. WuQ. FangM. LiH. ChenB. ChiT. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats.J. Int. Med. Res.202048410.1177/030006052090364232242458
    [Google Scholar]
  116. ZhangM. HeL. LiuJ. ZhouL. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway.Exp. Clin. Endocrinol. Diabetes20211291072973910.1055/a‑0998‑798531896157
    [Google Scholar]
  117. YuQ. ZhangM. QianL. WenD. WuG. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway.Life Sci.20192252251710.1016/j.lfs.2019.03.07330935950
    [Google Scholar]
  118. FuJ. LiY. WangL. GaoB. ZhangN. JiQ. Paeoniflorin prevents diabetic nephropathy in rats.Comp. Med.200959655756620034431
    [Google Scholar]
  119. ZhangT. ZhuQ. ShaoY. WangK. WuY. Paeoniflorin prevents TLR2/4-mediated inflammation in type 2 diabetic nephropathy.Biosci. Trends201711330831810.5582/bst.2017.0110428626209
    [Google Scholar]
  120. ChenY. ChenL. YangT. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-β/Smad and JAK2/STAT3/SOCS1 pathway.Life Sci.202127111919710.1016/j.lfs.2021.11919733577847
    [Google Scholar]
  121. XuH. WangX. ChengY. Ursolic acid improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-induced rats.Biomed. Pharmacother.201810591592110.1016/j.biopha.2018.06.05530021385
    [Google Scholar]
  122. GarudM.S. KulkarniY.A. Gallic acid attenuates type I diabetic nephropathy in rats.Chem. Biol. Interact.2018282697610.1016/j.cbi.2018.01.01029331653
    [Google Scholar]
  123. XuX. ZhengN. ChenZ. HuangW. LiangT. KuangH. Puerarin, isolated from Pueraria lobata (Willd.), protects against diabetic nephropathy by attenuating oxidative stress.Gene2016591241141610.1016/j.gene.2016.06.03227317894
    [Google Scholar]
  124. Sathibabu UddandraoV.V. BrahmanaiduP. RavindarnaikR. SureshP. VadivukkarasiS. SaravananG. Restorative potentiality of S-allylcysteine against diabetic nephropathy through attenuation of oxidative stress and inflammation in streptozotocin–nicotinamide-induced diabetic rats.Eur. J. Nutr.20195862425243710.1007/s00394‑018‑1795‑x30062492
    [Google Scholar]
  125. MaheshwariR. BalaramanR. SenA.K. ShuklaD. SethA. Effect of concomitant administration of coenzyme Q10 with sitagliptin on experimentally induced diabetic nephropathy in rats.Ren. Fail.201739113013910.1080/0886022X.2016.125465927841100
    [Google Scholar]
  126. QiM. WangX. XuH. YangZ. ChengY. ZhouB. Protective effect of ferulic acid on STZ-induced diabetic nephropathy in rats.Food Funct.20201143706371810.1039/C9FO02398D32307498
    [Google Scholar]
  127. LuM. YinN. LiuW. CuiX. ChenS. WangE. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling.BioMed Res. Int.2017201711010.1155/2017/151698528194406
    [Google Scholar]
  128. ZhuQ. QiX. WuY. WangK. Clinical study of total glucosides of paeony for the treatment of diabetic kidney disease in patients with diabetes mellitus.Int. Urol. Nephrol.201648111873188010.1007/s11255‑016‑1345‑527342654
    [Google Scholar]
  129. FallahzadehM.K. DormaneshB. SaghebM.M. Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: A randomized, double-blind, placebo-controlled trial.Am. J. Kidney Dis.201260689690310.1053/j.ajkd.2012.06.00522770926
    [Google Scholar]
  130. BorgesC.M. PapadimitriouA. DuarteD.A. Lopes de FariaJ.M. Lopes de FariaJ.B. The use of green tea polyphenols for treating residual albuminuria in diabetic nephropathy: A double-blind randomised clinical trial.Sci. Rep.2016612828210.1038/srep2828227320846
    [Google Scholar]
  131. GhoshB. Usha, Agrawal A, Dubey GP, Singh RG, Rajak M. Comparative evaluation of fosinopril and herbal drug Dioscorea bulbifera in patients of diabetic nephropathy.Saudi J. Kidney Dis. Transpl.201324473774210.4103/1319‑2442.11386623816723
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230601100713
Loading
/content/journals/cff/10.2174/2666862901666230601100713
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test