Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Introduction

Diosgenin (DSG) is a steroidal sapogenin identified in the Makino ex Miyabe, and plant and used as a natural source of steroidal hormones. It possesses anti-inflammatory, anti-apoptotic, anti-oxidant, and several other pharmacological properties that make it a highly dependable drug for research purposes. The objective of this review is to provide a scientific rationale to researchers regarding the target-specific bio-potential of DSG as an ethnomedicine and to make it advantageous for drug designing and therapy modifications in the future.

Methods

Relevant literature was searched up to the current year by using online databases such as Scopus, Google Scholar, PubMed, Research Gate, and Science Direct by applying related search terms.

Results

This review first addressed the molecular action of DSG on NF-κB, TGF-β1/Smad, AMPK/ACC/CPT-1A and SERBP-1c/FAS, ., that are pathologically involved in a variety of diseases for better understanding as limited clinical research has been conducted to date. Further, the review explored the diverse pharmacological applications of DSG like neuroprotective, anti-cancer and anti-microbial activity. At last, we discussed the Green nanotechnology that is widely adopted to improve DSG’s pharmacokinetic profile.

Conclusion

Overall, the current review tries to update all the information about DSG's nutritional benefits, its application as nanomedicine, and diverse pharmacological actions based on various molecular targets for its commendable pre-clinical and clinical applications.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629330184240914131424
2025-01-28
2025-11-14
Loading full text...

Full text loading...

References

  1. ParamaD. BoruahM. YachnaK. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases.Life Sci.202026011818210.1016/j.lfs.2020.118182 32781063
    [Google Scholar]
  2. ChatterjeeS. YadavS. Anticarcinogenic activity of saponins with special reference to diosgenin.IISUniv J Sci Technol201211118
    [Google Scholar]
  3. ThomfordN.E. SenthebaneD.A. RoweA. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms19061578 29799486
    [Google Scholar]
  4. SunW. ShahrajabianM.H. ChengQ. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science.Mini Rev. Med. Chem.202121672473010.2174/1389557520666201127104907 33245271
    [Google Scholar]
  5. NazirR. KumarV. GuptaS. DwivediP. PandeyD.K. DeyA. Biotechnological strategies for the sustainable production of diosgenin from Dioscorea spp.Appl. Microbiol. Biotechnol.2021105256958510.1007/s00253‑020‑11055‑3 33404834
    [Google Scholar]
  6. ChenY. TangY.M. YuS.L. Advances in the pharmacological activities and mechanisms of diosgenin.Chin. J. Nat. Med.201513857858710.1016/S1875‑5364(15)30053‑4 26253490
    [Google Scholar]
  7. CaiB. ZhangY. WangZ. Therapeutic potential of diosgenin and its major derivatives against neurological diseases: Recent advances.Oxid. Med. Cell. Longev.2020202011610.1155/2020/3153082 32215172
    [Google Scholar]
  8. DeshpandeH.A. BhalsingS.R. Plant derived novel biomedicinal: Diosgenin.Int. J. Pharmacogn. Phytochem. Res.20146780784
    [Google Scholar]
  9. ManobharathiV. MirunaliniS. Pharmacological characteristics of a phytosteroidal food saponin: Diosgenin.Afr. J. Biotechnol.202027787
    [Google Scholar]
  10. HuangN. YuD. WuJ. XiaoweiD.U. Diosgenin: An important natural pharmaceutical active ingredient.Food Sci Technol202142e94521
    [Google Scholar]
  11. 360 Research Report. Global Phytosterols Market – Industry Reports 2020. Available from:https://www.360researchreports.com/global-phytosterols-market-15041569
  12. MarahathaR. GyawaliK. SharmaK. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials.Phytother. Res.20213595103512410.1002/ptr.7138 33957012
    [Google Scholar]
  13. WangH.W. LiuH.J. CaoH. QiaoZ.Y. XuY.W. Diosgenin protects rats from myocardial inflammatory injury induced by ischemia-reperfusion.Med. Sci. Monit.20182424625310.12659/MSM.907745 29329279
    [Google Scholar]
  14. DongM. MengZ. KuerbanK. QiF. LiuJ. WeiY. Diosgenin promotes antitumor immunity and PD-1 antibody efficacy against melanoma by regulating intestinal microbiota.Cell Death Dis.2018910103910.1038/s41419‑018‑1099‑3
    [Google Scholar]
  15. LondzinP. NawrotK.E. KocikS. Effects of diosgenin on the skeletal system in rats with experimental type 1 diabetes.Biomed. Pharmacother.2020129110342 32554252
    [Google Scholar]
  16. ZarchM.S.M. BaluchnejadmojaradT. NourabadiD. KhanizadehA.M. RoghaniM. Protective effect of diosgenin on LPS/D-Gal-induced acute liver failure in C57BL/6 mice.Microb. Pathog.202014610424310.1016/j.micpath.2020.104243 32389705
    [Google Scholar]
  17. SelimS. JaouniA.S. Anti-inflammatory, antioxidant and antiangiogenic activities of diosgenin isolated from traditional medicinal plant, Costus speciosus (Koen ex.Retz.) Sm.Nat. Prod. Res.201630161830183310.1080/14786419.2015.1065493 26222585
    [Google Scholar]
  18. LengJ. LiX. TianH. LiuC. GuoY. ZhangS. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/HO-1 pathway.BMC Compl. Med. Ther.201620112610.1186/s12906‑020‑02930‑7 32336289
    [Google Scholar]
  19. SunF. YangX. MaC. The effects of diosgenin on hypolipidemia and its underlying mechanism: A review.Diabetes Metab. Syndr. Obes.2021144015403010.2147/DMSO.S326054 34552341
    [Google Scholar]
  20. Hernández-VázquezJ.M. López-MuñozH. Escobar-SánchezM.L. Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells.Eur. J. Pharmacol.202087117294210.1016/j.ejphar.2020.172942 31972180
    [Google Scholar]
  21. LiuY. ZhouZ. YanJ. WuX. XuG. Diosgenin exerts antitumor activity via downregulation of Skp2 in breast cancer cells.BioMed Res. Int.2020202011010.1155/2020/8072639 32626765
    [Google Scholar]
  22. MaL. ZhangJ. WangX. Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways.Eur. J. Med. Chem.202121711336110.1016/j.ejmech.2021.113361 33740546
    [Google Scholar]
  23. OlaiyaC.O. SoetanK.O. A review of the health benefits of fenugreek (Trigonella foenum-graecum L): Nutritional, biochemical and pharmaceutical perspectives.Int J Adv Social Sci Humanit2014312
    [Google Scholar]
  24. WaniS.A. KumarP. Fenugreek: A review on its nutraceutical properties and utilization in various food products.J. Saudi Soc. Agric. Sci.20181729710610.1016/j.jssas.2016.01.007
    [Google Scholar]
  25. Żuk-Gołaszewska WierzbowskaJ. Fenugreek: Productivity, nutritional value and uses.J. Elem.201722310671080
    [Google Scholar]
  26. YadavU.C.S. BaquerN.Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease.Pharm. Biol.201452224325410.3109/13880209.2013.826247 24102093
    [Google Scholar]
  27. LeeE.L. Genotype x environment impact on selected bioactive compound content of fenugreek (Trigonella foenum-graecum).CanadaDepartment of Biological Sciences, University of Lethbridge20091150
    [Google Scholar]
  28. ImK.K. MaliakelB. Fenugreek dietary fibre a novel class of functional food ingredient.Agro Food Ind2008191821
    [Google Scholar]
  29. KumarS. DasG. ShinH.S. PatraJ.K. Dioscorea spp. (a wild edible tuber): A study on its ethnopharmacological potential and traditional use by the local people of Similipal Biosphere Reserve, India.Front. Pharmacol.201785210.3389/fphar.2017.00052 28261094
    [Google Scholar]
  30. ShajeelaP.S. MohanV.R. JesudasL.L. Nutritional and antinutritional evaluation of wild yam (Dioscorea spp.).Trop. Subtrop. Agroecosystems2011142723730
    [Google Scholar]
  31. ChaudharyS. ChaudharyP.S. ChikaraS.K. SharmaM.C. IritiM. Review on fenugreek (Trigonella foenum-graecum L.) and its important secondary metabolite diosgenin.Not. Bot. Horti Agrobot.2018461223110.15835/nbha46110996
    [Google Scholar]
  32. ObidiegwuJ.E. LyonsJ.B. ChilakaC.A. The Dioscorea genus (Yam)-An appraisal of nutritional and therapeutic potentials.Foods202099130410.3390/foods9091304 32947880
    [Google Scholar]
  33. CederbergD. SiesjöP. What has inflammation to do with traumatic brain injury?Childs Nerv. Syst.201026222122610.1007/s00381‑009‑1029‑x 19940996
    [Google Scholar]
  34. LiuT. ZhangL. JooD. SunS.C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.2017211702310.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  35. CaiB. SeongK.J. BaeS.W. Water-soluble arginyl–diosgenin analog attenuates hippocampal neurogenesis impairment through blocking microglial activation underlying NF-κB and JNK MAPK signaling in adult mice challenged by LPS.Mol. Neurobiol.20195696218623810.1007/s12035‑019‑1496‑3 30740619
    [Google Scholar]
  36. MahmoudiN. KiasalariZ. RahmaniT. Diosgenin attenuates cognitive impairment in streptozotocin-induced diabetic rats: Underlying mechanisms.Neuropsychobiology2021801253510.1159/000507398 32526752
    [Google Scholar]
  37. ShishodiaS. KoulD. AggarwalB.B. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-κB activation through inhibition of activation of IκBα kinase and Akt in human non-small cell lung carcinoma: Correlation with suppression of COX-2 synthesis.J. Immunol.200417332011202210.4049/jimmunol.173.3.2011 15265936
    [Google Scholar]
  38. ShishodiaS. AggarwalB.B. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, IκB kinase activation and NF-κB-regulated gene expression.Oncogene200625101463147310.1038/sj.onc.1209194 16331273
    [Google Scholar]
  39. PujolsL. MullolJ. PicadoC. Glucocorticoid receptor in human respiratory epithelial cells.Neuroimmunomodulation200916529029910.1159/000216187 19571590
    [Google Scholar]
  40. ClarkA.R. BelvisiM.G. Maps and legends: The quest for dissociated ligands of the glucocorticoid receptor.Pharmacol. Ther.20121341546710.1016/j.pharmthera.2011.12.004 22212616
    [Google Scholar]
  41. BruscoliS. DonatoV. VelardiE. Glucocorticoid-induced leucine zipper (GILZ) and long GILZ inhibit myogenic differentiation and mediate anti-myogenic effects of glucocorticoids.J. Biol. Chem.201028514103851039610.1074/jbc.M109.070136 20124407
    [Google Scholar]
  42. QuanteT. NgY.C. RamsayE.E. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1.Am. J. Respir. Cell Mol. Biol.200839220821710.1165/rcmb.2007‑0014OC 18314542
    [Google Scholar]
  43. ImanifooladiA. YazdaniS. NouraniM. The role of nuclear factor-kappaB in inflammatory lung disease.Inflamm. Allergy Drug Targets20109319720510.2174/187152810792231904 20687892
    [Google Scholar]
  44. PrabhalaP. AmmitA.J. Tristetraprolin and its role in regulation of airway inflammation.Mol. Pharmacol.201587462963810.1124/mol.114.095984 25429052
    [Google Scholar]
  45. JunchaoY. ZhenW. YuanW. Anti-trachea inflammatory effects of diosgenin from Dioscorea nipponica through interactions with glucocorticoid receptor α.J. Int. Med. Res.201745110111310.1177/0300060516676724 27913746
    [Google Scholar]
  46. TsukayamaI. MegaT. HojoN. Diosgenin suppresses COX-2 and mPGES-1 via GR and improves LPS-induced liver injury in mouse.Pros Other Lip Med202115610658010.1016/j.prostaglandins.2021.106580 34252545
    [Google Scholar]
  47. CaiB. SeongK.J. BaeS.W. ChunC. KimW.J. JungJ.Y. A synthetic diosgenin primary amine derivative attenuates LPS-stimulated inflammation via inhibition of NF-κB and JNK MAPK signaling in microglial BV2 cells.Int. Immunopharmacol.20186120421410.1016/j.intimp.2018.05.021 29890414
    [Google Scholar]
  48. GaoM. ChenL. YuH. SunQ. KouJ. YuB. Diosgenin down-regulates NF-κB p65/p50 and p38 MAPK pathways and attenuates acute lung injury induced by lipopolysaccharide in mice.Int. Immunopharmacol.201315224024510.1016/j.intimp.2012.11.019 23246979
    [Google Scholar]
  49. JungD.H. ParkH.J. ByunH.E. Diosgenin inhibits macrophage-derived inflammatory mediators through downregulation of CK2, JNK, NF-κB and AP-1 activation.Int. Immunopharmacol.20101091047105410.1016/j.intimp.2010.06.004 20601188
    [Google Scholar]
  50. LibbyP. LiH. Vascular cell adhesion molecule-1 and smooth muscle cell activation during atherogenesis.J. Clin. Invest.199392253853910.1172/JCI116620 7688759
    [Google Scholar]
  51. JangY. LincoffA.M. PlowE.F. TopolE.J. Cell adhesion molecules in coronary artery disease.J. Am. Coll. Cardiol.19942471591160110.1016/0735‑1097(94)90162‑7 7963103
    [Google Scholar]
  52. HoA. WongC. LamC. Tumor necrosis factor-α up-regulates the expression of CCL2 and adhesion molecules of human proximal tubular epithelial cells through MAPK signaling pathways.Immunobiology2008213753354410.1016/j.imbio.2008.01.003 18656701
    [Google Scholar]
  53. KangJ.S. YoonY.D. HanM.H. Glabridin suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-α-stimulated human umbilical vein endothelial cells by blocking sphingosine kinase pathway: Implications of Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB/Rel signaling pathways.Mol. Pharmacol.200669394194910.1124/mol.105.017442 16354764
    [Google Scholar]
  54. SpragueA.H. KhalilR.A. Inflammatory cytokines in vascular dysfunction and vascular disease.Biochem. Pharmacol.200978653955210.1016/j.bcp.2009.04.029 19413999
    [Google Scholar]
  55. KimH.S. LoughranP.A. RaoJ. BilliarT.R. ZuckerbraunB.S. Carbon monoxide activates NF-κB via ROS generation and Akt pathways to protect against cell death of hepatocytes.Am. J. Physiol. Gastrointest. Liver Physiol.20082951G146G15210.1152/ajpgi.00105.2007 18497334
    [Google Scholar]
  56. ChoiK.W. ParkH.J. JungD.H. Inhibition of TNF-α-induced adhesion molecule expression by diosgenin in mouse vascular smooth muscle cells via downregulation of the MAPK, Akt and NF-κB signaling pathways.Vascul. Pharmacol.2010535-627328010.1016/j.vph.2010.09.007 20932938
    [Google Scholar]
  57. FujitaA. KurachiY. Molecular aspects of ATP-sensitive K+ channels in the cardiovascular system and K+ channel openers.Pharmacol. Ther.2000851395310.1016/S0163‑7258(99)00050‑9 10674713
    [Google Scholar]
  58. SchulzR. KelmM. HeuschG. Nitric oxide in myocardial ischemia/reperfusion injury.Cardiovasc. Res.200461340241310.1016/j.cardiores.2003.09.019 14962472
    [Google Scholar]
  59. BadalzadehR. YousefiB. TajaddiniA. AhmadianN. Diosgenin-induced protection against myocardial ischaemia-reperfusion injury is mediated by mitochondrial KATP channels in a rat model.Perfusion201530756557110.1177/0267659114566064 25552273
    [Google Scholar]
  60. BadalzadehR. YousefiB. MajidiniaM. EbrahimiH. Anti-arrhythmic effect of diosgenin in reperfusion-induced myocardial injury in a rat model: Activation of nitric oxide system and mitochondrial KATP channel.J. Physiol. Sci.201464639340010.1007/s12576‑014‑0333‑8 25150984
    [Google Scholar]
  61. OruqajG. KarnatiS. VijayanV. Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling.Proc. Natl. Acad. Sci. USA201511216E2048E205710.1073/pnas.1415111112 25848047
    [Google Scholar]
  62. LichtmanM.K. VinasO.M. FalangaV. Transforming growth factor beta (TGF‐β) isoforms in wound healing and fibrosis.Wound Repair Regen.201624221522210.1111/wrr.12398 26704519
    [Google Scholar]
  63. ZhouJ.P. TangW. FengY. Angiotensin-(1–7) decreases the expression of collagen I via TGF-β1/Smad2/3 and subsequently inhibits fibroblast–myofibroblast transition.Clin. Sci.2016130211983199110.1042/CS20160193 27543459
    [Google Scholar]
  64. HuangH. NieC. QinX. ZhouJ. ZhangL. Diosgenin inhibits the epithelial mesenchymal transition initiation in osteosarcoma cells via the p38 MAPK signaling pathway.Oncol. Lett.20191844278428710.3892/ol.2019.10780 31579425
    [Google Scholar]
  65. BabuV.D. KumarA.S. SudhandiranG. Diosgenin inhibits TGF-β1/Smad signaling and regulates epithelial mesenchymal transition in experimental pulmonary fibrosis.Drug Chem. Toxicol.202245312641275 32924642
    [Google Scholar]
  66. GumpJ.M. ThorburnA. Autophagy and apoptosis: What is the connection?Trends Cell Biol.201121738739210.1016/j.tcb.2011.03.007 21561772
    [Google Scholar]
  67. SaxtonR.A. SabatiniD.M. mTOR signaling in growth, metabolism, and disease.Cell2017168696097610.1016/j.cell.2017.02.004 28283069
    [Google Scholar]
  68. HavasiA. DongZ. Autophagy and tubular cell death in the kidney.Semin. Nephrol.201636317418810.1016/j.semnephrol.2016.03.005 27339383
    [Google Scholar]
  69. KaushalG.P. ShahS.V. Autophagy in acute kidney injury.Kidney Int.201689477979110.1016/j.kint.2015.11.021 26924060
    [Google Scholar]
  70. GarciaD. ShawR.J. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance.Mol. Cell201766678980010.1016/j.molcel.2017.05.032 28622524
    [Google Scholar]
  71. SciarrettaS. VolpeM. SadoshimaJ. Mammalian target of rapamycin signaling in cardiac physiology and disease.Circ. Res.2014114354956410.1161/CIRCRESAHA.114.302022 24481845
    [Google Scholar]
  72. JinC. MiaoX. ZhongY. The renoprotective effect of diosgenin on aristolochic acid I-induced renal injury in rats: Impact on apoptosis, mitochondrial dynamics and autophagy.Food Funct.20201197456746710.1039/D0FO00401D 32789347
    [Google Scholar]
  73. BegricheK. IgoudjilA. PessayreD. FromentyB. Mitochondrial dysfunction in NASH: Causes, consequences and possible means to prevent it.Mitochondrion20066112810.1016/j.mito.2005.10.004 16406828
    [Google Scholar]
  74. RonnettG.V. KlemanA.M. KimE.K. LandreeL.E. TuY. Fatty acid metabolism, the central nervous system, and feeding.Obesity200614S8201S207S10.1038/oby.2006.309 17021367
    [Google Scholar]
  75. KeR. XuQ. LiC. LuoL. HuangD. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism.Cell Biol. Int.201842438439210.1002/cbin.10915 29205673
    [Google Scholar]
  76. DengX. DongQ. BridgesD. RaghowR. ParkE.A. ElamM.B. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851121521152910.1016/j.bbalip.2015.08.007 26327595
    [Google Scholar]
  77. FangK. WuF. ChenG. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells.BMC Complement. Altern. Med.201919125510.1186/s12906‑019‑2671‑9 31519174
    [Google Scholar]
  78. HuaS. LiY. SuL. LiuX. Diosgenin ameliorates gestational diabetes through inhibition of sterol regulatory element-binding protein-1.Biomed. Pharmacother.20168414601465 27810341
    [Google Scholar]
  79. UemuraT. GotoT. KangM.S. Diosgenin, the main aglycon of fenugreek, inhibits LXRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice.J. Nutr.20111411172310.3945/jn.110.125591 21106928
    [Google Scholar]
  80. KornblitB. FogM.L. MadsenH.O. StrømJ. VindeløvL. GarredP. Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome.Crit. Care2008123R8310.1186/cc6935 18577209
    [Google Scholar]
  81. LeiC. JiaoY. HeB. WangG. WangQ. WangJ. RIP140 down-regulation alleviates acute lung injury via the inhibition of LPS-induced PPARγ promoter methylation.Pulm. Pharmacol. Ther.201637576410.1016/j.pupt.2016.02.001 26921464
    [Google Scholar]
  82. ChenL. TianG. TangW. LuoW. LiuP. MaZ. Protective effect of luteolin on streptozotocin-induced diabetic renal damage in mice via the regulation of RIP140/NF-кB pathway and insulin signalling pathway.J. Funct. Foods2016229310010.1016/j.jff.2016.01.023
    [Google Scholar]
  83. WuY. YeF. LuY. Diosgenin glucoside protects against myocardial injury in diabetic mice by inhibiting RIP140 signaling.Am. J. Transl. Res.2018101137423749 30662624
    [Google Scholar]
  84. AhadiR. NezhadM.A. TabatabaeiF.S. SoleimaniM. HajisoltaniR. The neuroprotective effect of diosgenin in the rat valproic acid model of autism.Brain Res.2024183814896310.1016/j.brainres.2024.148963
    [Google Scholar]
  85. AzuB.B. AdebayoO.G. FokouaA.R. Antipsychotic effect of diosgenin in ketamine-induced murine model of schizophrenia: Involvement of oxidative stress and cholinergic transmission.IBRO Neurosci. Rep.202416869710.1016/j.ibneur.2023.12.008 38282757
    [Google Scholar]
  86. AzuB.B. AdebayoO.G. FokouaA.R. Containment of neuroimmune challenge by diosgenin confers amelioration of neurochemical and neurotrophic dysfunctions in ketamine-induced schizophrenia in mice.Brain Disord.20241310012210.1016/j.dscb.2024.100122
    [Google Scholar]
  87. AzuB.B. AdebayoO.G. AdebesinA. Diosgenin reverses posttraumatic stress disorder in mice by augmenting neurochemical release and inhibiting HPA axis dysfunction, oxidative stress, and neuroinflammaion.J. Affect. Disord.202417100814
    [Google Scholar]
  88. AzuB.B. ChidebeE.O. ToloyaiP.E.Y. Adaptogenic action of diosgenin againsts chronic unpredictable mild stress-induced neuroimmune dysfunction of HPA axis reverses psychiatric behavior in mice.Clin Trad Med Phar20245220014810.1016/j.ctmp.2024.200148
    [Google Scholar]
  89. El-FarA.H. ElghaityM.M. MohamedS.A. Diosgenin alleviates D-galactose-induced oxidative stress in rats’ brain and liver targeting aging and apoptotic marker genes.Front. Mol. Biosci.202411130337910.3389/fmolb.2024.1303379
    [Google Scholar]
  90. AzuB.B. MokeE.G. OzokoC.L.E. Diosgenin alleviates alcohol-mediated escalation of social defeat stress and the neurobiological sequalae.Psychopharmacology2024241478580310.1007/s00213‑023‑06509‑1 38311692
    [Google Scholar]
  91. TohdaC. Pharmacological intervention for chronic phase of spinal cord injury.Neural Regen. Res.20252051377138910.4103/NRR.NRR‑D‑24‑00176 38934397
    [Google Scholar]
  92. TohdaC. UranoT. UmezakiM. NemereI. KuboyamaT. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice.Sci. Rep.20122153510.1038/srep00535 22837815
    [Google Scholar]
  93. YangX. TohdaC. Diosgenin restores memory function via SPARC-driven axonal growth from the hippocampus to the PFC in Alzheimer’s disease model mice.Mol. Psychiatry2023a2862398241110.1038/s41380‑023‑02052‑9 37085711
    [Google Scholar]
  94. YangX. TohdaC. Axonal regeneration mediated by a novel axonal guidance pair, galectin-1 and secernin-1.Mol. Neurobiol.20236031250126610.1007/s12035‑022‑03125‑6 36437381
    [Google Scholar]
  95. YangX. TohdaC. Diosgenin restores Aβ-induced axonal degeneration by reducing the expression of heat shock cognate 70 (HSC70).Sci. Rep.2018811170710.1038/s41598‑018‑30102‑8 30076345
    [Google Scholar]
  96. NakanoA. YangX. KuboyamaT. InadaY. TohdaC. Intrathecal Infusion of diosgenin during the chronic phase of spinal cord injury ameliorates motor function and axonal density.Neurochem. J.202115445446110.1134/S1819712421040085
    [Google Scholar]
  97. WangF. LiangL. YuM. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects.Phytomedicine202412815543210.1016/j.phymed.2024.155432 38518645
    [Google Scholar]
  98. ChenP.S. ShihY.W. HuangH.C. ChengH.W. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.PLoS One201165e2016410.1371/journal.pone.0020164 21629786
    [Google Scholar]
  99. YousefE.H. MeseryE.M.E. HabeebM.R. EissaL.A. Diosgenin potentiates the anticancer effect of doxorubicin and volasertib via regulating polo-like kinase 1 and triggering apoptosis in hepatocellular carcinoma cells.Naunyn Schmiedebergs Arch. Pharmacol.202439774883489410.1007/s00210‑023‑02894‑8 38165424
    [Google Scholar]
  100. RuanS. GuL. WangY. HuangX. CaoH. Diosgenin glucoside inhibits the progression of osteosarcoma MG-63 by regulating the PI3K/AKT/mTOR pathway.Anticancer. Agents Med. Chem.202323141670167710.2174/1871520623666230420081738 37078348
    [Google Scholar]
  101. SharmaS. Natural compounds diosgenin and panaxadiol exhibit anti-cancer activities, potentially through targeting RORγ.University of California Davis2023
    [Google Scholar]
  102. PengY. TangR. DingL. Diosgenin inhibits prostate cancer progression by inducing UHRF1 protein degradation.Eur. J. Pharmacol.202394217552210.1016/j.ejphar.2023.175522 36681316
    [Google Scholar]
  103. Silva dMF, Lima dLVA, Oliveira dLM, et al. Regulation of cytokinesis and necroptosis pathways by diosgenin inhibits the proliferation of NCI-H460 lung cancer cells. Life Sci202333012203310.1016/j.lfs.2023.122033 37598976
    [Google Scholar]
  104. AminA. LoneA. FarooqF. WaniU.M. KawoosaF. QadriR.A. Identification of novel inhibitors of tetranectin–plasminogen interaction to suppress breast cancer invasion: An integrated computational and cell-based investigation.J. Biomol. Struct. Dyn.20234124150231503210.1080/07391102.2023.2187228 36927470
    [Google Scholar]
  105. KimS.Y. KimM. KimT.J. Regulation of σB-dependent biofilm formation in Staphylococcus aureus through strain-specific signaling induced by diosgenin.Microorganisms20231110237610.3390/microorganisms11102376 37894034
    [Google Scholar]
  106. do Socorro CostaM Silva dARP, Araújo NJS, et al Evaluation of the antibacterial and inhibitory activity of NorA and MepA efflux pumps from Staphylococcus aureus by diosgenin.Life Sci.202230812097810.1016/j.lfs.2022.120978 36122765
    [Google Scholar]
  107. CongS. PengQ. CaoL. Diosgenin prevents periodontitis by inhibiting inflammation and promoting osteogenic differentiation.Oral Dis.20243042497251010.1111/odi.14708 37593795
    [Google Scholar]
  108. RakshitS. MoreA. GaikwadS. Role of diosgenin extracted from Helicteres isora L in suppression of HIV-1 replication: An in vitro preclinical study.Heliyon2024102e2435010.1016/j.heliyon.2024.e24350 38288021
    [Google Scholar]
  109. do Socorro CostaM Silva dARP, Araújo SJ, et al. In vitro evaluation of fungal susceptibility and inhibition of virulence by diosgenin.Chem. Biodivers.2024217e20240044410.1002/cbdv.202400444 38670923
    [Google Scholar]
  110. HajizadehM.R. ParvazN. BaraniM. Diosgenin-loaded niosome as an effective phytochemical nanocarrier: Physicochemical characterization, loading efficiency, and cytotoxicity assay.Daru201927132933910.1007/s40199‑019‑00277‑0 31134490
    [Google Scholar]
  111. XuX. HoW. ZhangX. BertrandN. FarokhzadO. Cancer nanomedicine: From targeted delivery to combination therapy.Trends Mol. Med.201521422323210.1016/j.molmed.2015.01.001 25656384
    [Google Scholar]
  112. GadA. KyddJ. PielB. RaiP. Targeting cancer using polymeric nanoparticle mediated combination chemotherapy.Int. J. Nanomed. Nanosurg.2016232 28042613
    [Google Scholar]
  113. BazylińskaU. LewińskaA. LamchŁ. WilkK.A. Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer.Colloids Surf. A Physicochem. Eng. Asp.2014442424910.1016/j.colsurfa.2013.02.023
    [Google Scholar]
  114. UlbrichK. HoláK. ŠubrV. BakandritsosA. TučekJ. ZbořilR. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies.Chem. Rev.201611695338543110.1021/acs.chemrev.5b00589 27109701
    [Google Scholar]
  115. QuiñonesJ.P. BrüggemannO. CovasC.P. OssipovD.A. Self-assembled hyaluronic acid nanoparticles for controlled release of agrochemicals and diosgenin.Carbohydr. Polym.201717315716910.1016/j.carbpol.2017.05.048 28732854
    [Google Scholar]
  116. ErdagiI.S. YildizU. Diosgenin-conjugated PCL–MPEG polymeric nanoparticles for the co-delivery of anticancer drugs: Design, optimization, in vitro drug release and evaluation of anticancer activity.New J. Chem.201943176622663510.1039/C9NJ00659A
    [Google Scholar]
  117. SharmaN. SinghalM. KumariR.M. Diosgenin loaded polymeric nanoparticles with potential anticancer efficacy.Biomolecules20201012167910.3390/biom10121679 33339083
    [Google Scholar]
  118. RabhaB. BharadwajK.K. BaishyaD. SarkarT. EdinurH.A. PatiS. Synthesis and characterization of diosgenin encapsulated poly-ε-caprolactone-pluronic nanoparticles and its effect on brain cancer cells.Polymers2021138132210.3390/polym13081322 33919483
    [Google Scholar]
  119. IssacP.K. SanthiJ.J. JanarthanamV.A. VelumaniK. Diosgenin conjugated zinc oxide nanoparticles: A sustainable approach to counter antibiotic-induced oxidative stress in the aquatic environment using the in vivo zebrafish larvae model (Danio rerio).Bionanoscience202414290391810.1007/s12668‑024‑01383‑3
    [Google Scholar]
  120. ChiangL.H. ChenS.H. YehA.I. Preparation of nano/submicrometer yam and its benefits on collagen secretion from skin fibroblast cells.J. Agric. Food Chem.20126050123321234010.1021/jf304036c 23205552
    [Google Scholar]
  121. EismannP. DalcinA.J. LeiriaR.G. MortariS.R. GomesP. Stability study of nanoemulsions of diosgenin.Discip Sci Nat Tec2020213119137
    [Google Scholar]
  122. UnerM. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems.Pharmazie2006615375386 16724531
    [Google Scholar]
  123. LacatusuI. BadeaN. UdeanuD. Improved anti-obesity effect of herbal active and endogenous lipids co-loaded lipid nanocarriers: Preparation, in vitro and in vivo evaluation.Mater. Sci. Eng. C201999122410.1016/j.msec.2019.01.071 30889655
    [Google Scholar]
  124. KhanH. NazirS. FarooqR.K. KhanI.N. JavedA. fabrication and assessment of diosgenin encapsulated stearic acid solid lipid nanoparticles for its anticancer and antidepressant effects using in vitro and in vivo models.Front. Neurosci.20221580671310.3389/fnins.2021.806713 35221890
    [Google Scholar]
  125. PopA.L. CrișanS. HenteșP. PaliA. LăcătușuI. BadeaN. Comparative dissolution study of a solid pharmaceutical form containing nanostructured lipid carrier (NLC) incorporating diosgenin–conventional versus biorelevant dissolution media.Farmacia202371111612910.31925/farmacia.2023.1.15
    [Google Scholar]
  126. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  127. PaulW. SharmaC.P. Chitosan, a drug carrier for the 21st century: A review.STP Pharma Sci200010522
    [Google Scholar]
  128. PathakS.R. Bioavailability enhancement of poorly water-soluble nano diosgenin by encapsulation using chitosan/bovine serum albumin bilayers.Asian J. Pharm.20181202
    [Google Scholar]
  129. PetrovL. StoilovaO. PramatarovG. Effect of chitosan-diosgenin combination on wound healing.Int. J. Mol. Sci.2023245504910.3390/ijms24055049 36902475
    [Google Scholar]
  130. ZaibS. ShahH.S. KhanI. Fabrication and evaluation of anticancer potential of diosgenin incorporated chitosan-silver nanoparticles; in vitro , in silico and in vivo studies.Int. J. Biol. Macromol.2024254Pt 312797510.1016/j.ijbiomac.2023.127975 37944715
    [Google Scholar]
  131. ValleD.L. DíazA. PuiggalíJ. Hydrogels for biomedical applications: Cellulose, chitosan, and protein/peptide derivatives.Gels2017332710.3390/gels3030027 30920524
    [Google Scholar]
  132. NgwabebhohF.A. YildizU. Nature‐derived fibrous nanomaterial toward biomedicine and environmental remediation: Today’s state and future prospects.J. Appl. Polym. Sci.2019136354787810.1002/app.47878
    [Google Scholar]
  133. ErdagiI.S. NgwabebhohA.F. YildizU. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications.Int. J. Biol. Macromol.202014965166310.1016/j.ijbiomac.2020.01.279 32006574
    [Google Scholar]
  134. YamadaK. YamashitaJ. TodoH. Preparation and evaluation of liquid-crystal formulations with skin-permeation-enhancing abilities for entrapped drugs.J. Oleo Sci.2011601314010.5650/jos.60.31 21178315
    [Google Scholar]
  135. LeeK. NguyenT. HanleyT. BoydB. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs.Int. J. Pharm.20093651-219019910.1016/j.ijpharm.2008.08.022 18790030
    [Google Scholar]
  136. OkawaraM. HashimotoF. TodoH. SugibayashiK. TokudomeY. Effect of liquid crystals with cyclodextrin on the bioavailability of a poorly water-soluble compound, diosgenin, after its oral administration to rats.Int. J. Pharm.20144721-225726110.1016/j.ijpharm.2014.06.032 24954725
    [Google Scholar]
  137. MüllerR.H. JacobsC. KayserO. Nanosuspensions as particulate drug formulations in therapy.Adv. Drug Deliv. Rev.200147131910.1016/S0169‑409X(00)00118‑6 11251242
    [Google Scholar]
  138. LiuC. ChangJ. ZhangL. Preparation and evaluation of diosgenin nanocrystals to improve oral bioavailability.AAPS PharmSciTech20171862067207610.1208/s12249‑016‑0684‑y 27995466
    [Google Scholar]
  139. GongN. YuH. WangY. Crystal structures, stability, and solubility evaluation of a 2: 1 diosgenin–piperazine cocrystal.Nat. Prod. Bioprospect.202010426126710.1007/s13659‑020‑00256‑y 32632767
    [Google Scholar]
  140. MykhailivO. ZubykH. BrzezinskaP.M.E. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications.Inorg. Chim. Acta2017468496610.1016/j.ica.2017.07.021
    [Google Scholar]
  141. AbidiS.M. ShuklaA.K. RandhawaS. BathlaM. AcharyaA. Diosgenin loaded cellulose nanoonion impedes different stages of protein aggregation induced cell death via alleviating mitochondrial dysfunction and upregulation of autophagy.Int. J. Biol. Macromol.2024266131108
    [Google Scholar]
  142. AbouAitahK. AbdelazizA.M. HigazyI.M. Functionalized carbon nanotubes for delivery of ferulic acid and diosgenin anticancer natural agents.ACS Appl. Bio Mater.20247279181110.1021/acsabm.3c00700 38253026
    [Google Scholar]
/content/journals/cff/10.2174/0126668629330184240914131424
Loading
/content/journals/cff/10.2174/0126668629330184240914131424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test