Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Millets have an incredible ability to withstand harsh environmental conditions, from drought to waterlogging, and can flourish in arid and semi-arid regions. Their nutritional composition varies among different varieties of millets and accounts for 60 to 70% carbohydrates, 6 to 9% proteins, 10 to 12% fibers, 1 to 5% fats, and about 2 to 4% minerals. The protein composition of millets consists mainly of albumin, prolamin, and globulin. Along with high nutritional value, the nutraceutical composition of millets has the potential to provide several additional health benefits depending on millet variety. Oxidative stress and inflammation are common pathologies of several diseases and increase the adversity of the disease. The nutraceutical composition of millet has anti-inflammatory and antioxidant properties, which provide benefits in different diseased conditions, including cardiovascular disorders, neurological disorders, cancers, diabetes, and several other conditions. Flavonoids, phenolic acid, catechins, tannins, arabinoxylans, alkaloids, phytosterols, tocopherols, phytic acid, and carotenoids present in millets act as lead bioactive agents and contribute to antioxidant and anti-inflammatory effects. The present review illustrates the nutritional and nutraceutical composition of different millet varieties, with a leading focus on the antioxidant and anti-inflammatory effects of different nutraceuticals. A wide range of procedures used to evaluate these effects in different studies has been elaborated along with diverse investigations conducted to analyze the effectiveness of millet nutraceuticals in diverse varieties of dreaded diseases.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629298743240320035203
2024-04-16
2025-09-05
Loading full text...

Full text loading...

References

  1. AlaliM. AlqubaisyM. AljaafariM.N. Nutraceuticals: Transformation of conventional foods into health promoters/disease preventers and safety considerations.Molecules2021269254010.3390/molecules26092540
    [Google Scholar]
  2. RuchiS. AmanjotK. SouravT. KeertiB. SujitB. Role of nutraceuticals in health care: A review.Int J Green Pharm20171103
    [Google Scholar]
  3. ZhangX. ShanS. ShiJ. LiH. LiZ. Polyphenol from millet bran increases the sensitivity of colorectal cancer cells to oxaliplatin by blocking the ganglioside GM3 catabolism.Food Funct.202112129130110.1039/D0FO02232B 33300910
    [Google Scholar]
  4. PerroneD. ArditoF. GiannatempoG. Biological and therapeutic activities, and anticancer properties of curcumin.Exp. Ther. Med.20151051615162310.3892/etm.2015.2749
    [Google Scholar]
  5. MakkarR. BehlT. BungauS. Nutraceuticals in neurological disorders.Int. J. Mol. Sci.20202112442410.3390/ijms21124424
    [Google Scholar]
  6. BorodinaI. KennyL.C. McCarthyC.M. The biology of ergothioneine, an antioxidant nutraceutical.Nutr. Res. Rev.202033219021710.1017/S0954422419000301 32051057
    [Google Scholar]
  7. AshtonM.M. KavanaghB.E. MarxW. A systematic review of nutraceuticals for the treatment of bipolar disorder.Can. J. Psychiatry202166326227310.1177/0706743720961734
    [Google Scholar]
  8. HassanZ.M. SebolaN.A. MabelebeleM. The nutritional use of millet grain for food and feed: A review.Agric. & Food Secur.2021101610.1186/s40066‑020‑00282‑6
    [Google Scholar]
  9. Himanshu ChauhanM SonawaneS.K. AryaS.S. Nutritional and nutraceutical properties of millets.J. Nutr. Diet.201811110
    [Google Scholar]
  10. ChandrasekaraA. ShahidiF. Antioxidant phenolics of millet control lipid peroxidation in human LDL cholesterol and food systems.J. Am. Oil Chem. Soc.201289227528510.1007/s11746‑011‑1918‑5
    [Google Scholar]
  11. VeenashriB.R. MuralikrishnaG. In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans – A comparative study.Food Chem.201112631475148110.1016/j.foodchem.2010.11.163
    [Google Scholar]
  12. IbrahimA. MuhammadS.A. Antioxidant-rich nutraceutical as a therapeutic strategy for sickle cell disease.J. Am. Nutr. Assoc.202342658859710.1080/27697061.2022.2108930
    [Google Scholar]
  13. PitchaiahG. AkulaA. ChandiV. Anticancer potential of nutraceutical formulations in MNU-induced mammary cancer in Sprague Dawley rats.Pharmacogn. Mag.20171349465010.4103/0973‑1296.197652 28216882
    [Google Scholar]
  14. ChandraS. SaklaniS. KumarP. KimB. CoutinhoH.D.M. Nutraceuticals: Pharmacologically active potent dietary supplements.Biomed Res. Int.20222022205101710.1155/2022/2051017
    [Google Scholar]
  15. LeeY. HuS. ParkY.K. LeeJ.Y. Health benefits of carotenoids: A role of carotenoids in the prevention of non-alcoholic fatty liver disease.Prev. Nutr. Food Sci.201924210311310.3746/pnf.2019.24.2.103
    [Google Scholar]
  16. KumarN. GoelN. Phenolic acids: Natural versatile molecules with promising therapeutic applications.Biotechnol. Rep.201924e0037010.1016/j.btre.2019.e00370
    [Google Scholar]
  17. KechagiaM. BasoulisD. KonstantopoulouS. Health benefits of probiotics: A review.ISRN Nutr.201320131710.5402/2013/481651 24959545
    [Google Scholar]
  18. BhowmikD. KumarK.P.S. PaswanS. SrivastavaS. Tomato-A natural medicine and its health benefits.J. Pharmacogn. Phytochem.2012113343
    [Google Scholar]
  19. SinghB. SinghJ.P. SinghN. KaurA. Saponins in pulses and their health promoting activities: A review.Food Chem.2017233540549
    [Google Scholar]
  20. VoT.S. KimS.K. Fucoidans as a natural bioactive ingredient for functional foods.J. Funct. Foods201351162710.1016/j.jff.2012.08.007
    [Google Scholar]
  21. WalkA.M. KhanN.A. BarnettS.M. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood.Int. J. Psychophysiol.20171181810.1016/j.ijpsycho.2017.05.005 28528704
    [Google Scholar]
  22. SolimanG.A. Dietary fiber, atherosclerosis, and cardiovascular disease.Nutrients2019115115510.3390/nu11051155 31126110
    [Google Scholar]
  23. KumarG.P. KhanumF. Neuroprotective potential of phytochemicals.Pharmacogn. Rev.2012612819010.4103/0973‑7847.99898
    [Google Scholar]
  24. PrasannaP.H.P. GrandisonA.S. CharalampopoulosD. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits.Food Res J20145524726210.1016/j.foodres.2013.11.013
    [Google Scholar]
  25. ShoaibM. ShehzadA. OmarM. Inulin: Properties, health benefits and food applications.Carbohydr. Polym.201614744445410.1016/j.carbpol.2016.04.020
    [Google Scholar]
  26. SkinnerM.A. LohJ.M.S. HunterD.C. ZhangJ. Gold kiwifruit (Actinidia chinensis ‘Hort16A’) for immune support.Proc. Nutr. Soc.201170227628010.1017/S0029665111000048 21349229
    [Google Scholar]
  27. DasL. BhaumikE. RaychaudhuriU. ChakrabortyR. Role of nutraceuticals in human health.J. Food Sci. Technol.201249217318310.1007/s13197‑011‑0269‑4 23572839
    [Google Scholar]
  28. ArshadM.S. KhalidW. AhmadR. Functional foods and human health: An overview.In: Functional Foods - Phytochemicals and Health Promoting Potential.IntechOpen202110.5772/intechopen.99000
    [Google Scholar]
  29. RanaS. BhandariN.S. Nutritional properties, nutraceutical potential of different millets, and their Value-Added Food Products.In: Millets - Rediscover Ancient Grains. IntechOpen202410.5772/intechopen.110548
    [Google Scholar]
  30. ShuklaK. SrivastavaS. Evaluation of finger millet incorporated noodles for nutritive value and glycemic index.J. Food Sci. Technol.201451352753410.1007/s13197‑011‑0530‑x 24587528
    [Google Scholar]
  31. RathoreS. PandeyA.K. Effectual study, statistical optimization, and neural network‐based predictive model of pearl millet and amaranth flours formulations for gluten‐free pasta.JSFA Rep.202331157258110.1002/jsf2.160
    [Google Scholar]
  32. KhareP. MauryaR. BhatiaR. Polyphenol rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations.Food Funct.202011119833984710.1039/D0FO01643H 33089852
    [Google Scholar]
  33. TirlaA. IslamF. IslamM.R. VicasI.S. CavaluS. New insight and future perspectives on nutraceuticals for improving sports performance of combat players: Focus on natural supplements, importance and advantages over synthetic ones.Appl. Sci.202212861110.3390/app12178611
    [Google Scholar]
  34. KulkarniM. Protein supplements-An emerging market in the field of nutraceuticals.Pharma Times20154791416
    [Google Scholar]
  35. PottooF.H. HaqueS.E. IqubalA. BansalP. IqubalM.K. An overview and therapeutic promise of nutraceuticals against sports-related brain injury.Curr. Mol. Pharmacol.202115132210.2174/1874467214666210203211914 33538684
    [Google Scholar]
  36. HernandezD.F. CervantesE.L. Luna-VitalD.A. MojicaL. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products.Crit. Rev. Food Sci. Nutr.202161223740375510.1080/10408398.2020.1805407
    [Google Scholar]
  37. HortasL.L. FernandezF.N. TorresM.D. Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics.Mar. Drugs2021191055210.3390/md19100552
    [Google Scholar]
  38. AbioyeV.F. BabarindeG.O. OgunlakinG.O. AdejuyitanJ.A. OlatundeS.J. AbioyeA.O. Varietal and processing influence on nutritional and phytochemical properties of finger millet: A review.Heliyon2022812e1231010.1016/j.heliyon.2022.e12310
    [Google Scholar]
  39. ChH. RaniS.Y. TsskP. Estimation of nutritive composition of seven small millets.J. Pharmacogn. Phytochem.20209318711874
    [Google Scholar]
  40. AmadoubrI. LeM. LeG.W. Millets: Nutritional composition, some health benefits and processing - A<br>review.Emir. J. Food Agric.201325750110.9755/ejfa.v25i7.12045
    [Google Scholar]
  41. McClementsD.J. Enhanced delivery of lipophilic bioactives using emulsions: A review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility.Food Funct.201891224110.1039/C7FO01515A 29119979
    [Google Scholar]
  42. PathakR.K. GuptaA. ShuklaR. BaunthiyalM. Identification of new drug-like compounds from millets as Xanthine oxidoreductase inhibitors for treatment of hyperuricemia: A molecular docking and simulation study.Comput. Biol. Chem.201876324110.1016/j.compbiolchem.2018.05.015 29906649
    [Google Scholar]
  43. PradeepP.M. SreeramaY.N. Soluble and bound phenolics of two different millet genera and their milled fractions: Comparative evaluation of antioxidant properties and inhibitory effects on starch hydrolysing enzyme activities.J. Funct. Foods20173568269310.1016/j.jff.2017.06.033
    [Google Scholar]
  44. RajeswariN. DrV. Nutrients and nutraceutical content of polished and unpolished kodo millet – A quantitative analysis.J Adv Appl Scient Res202134949910.46947/joaasr342021135
    [Google Scholar]
  45. KumarA. MetwalM. KaurS. Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn., and their improvement using omics approaches.Front Plant Sci2016793410.3389/fpls.2016.00934 27446162
    [Google Scholar]
  46. RaoB.R. NagasampigeM. RavikiranM. Evaluation of nutraceutical properties of selected small millets.J. Pharm. Bioallied Sci.20113227727910.4103/0975‑7406.80775 21687358
    [Google Scholar]
  47. NithiyananthamS. KalaiselviP. MahomoodallyM.F. ZenginG. AbiramiA. SrinivasanG. Nutritional and functional roles of millets-A review.J. Food Biochem.2019437e1285910.1111/jfbc.12859
    [Google Scholar]
  48. de FariasP.D. de AraújoF.F. NumaN.I.A. PastoreG.M. Antidiabetic potential of dietary polyphenols: A mechanistic review.Food Res. Int.202114511038310.1016/j.foodres.2021.110383
    [Google Scholar]
  49. SoujanyaK.V. JayadeepA.P. Obesity-associated biochemical markers of inflammation and the role of grain phytochemicals.J. Food Biochem.2022469e1425710.1111/jfbc.14257
    [Google Scholar]
  50. PrasannaC.J. GirishC. An overview on echinochloa frumentacea millets.J. Glob. Trends Pharm. Sci.2020111
    [Google Scholar]
  51. SivalingamN. RamadossD.P. Vanillin extracted from proso and barnyard millets induces cell cycle inhibition and apoptotic cell death in MCF-7 cell line.J. Cancer Res. Ther.20211761425143310.4103/jcrt.JCRT_1128_19 34916373
    [Google Scholar]
  52. MuthamilarasanM. DhakaA. YadavR. PrasadM. Exploration of millet models for developing nutrient rich graminaceous crops.Plant Sci.2016242899710.1016/j.plantsci.2015.08.023 26566827
    [Google Scholar]
  53. KimY. JeY. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies.Arch. Cardiovasc. Dis.20161091395410.1016/j.acvd.2015.09.005 26711548
    [Google Scholar]
  54. ParkK.O. ItoY. NagasawaT. ChoiM.R. NishizawaN. Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice.Biosci. Biotechnol. Biochem.200872112918292510.1271/bbb.80395 18997420
    [Google Scholar]
  55. SireeshaY. KasettiR.B. NabiS.A. SwapnaS. ApparaoC. Antihyperglycemic and hypolipidemic activities of Setaria italica seeds in STZ diabetic rats.Pathophysiology201118215916410.1016/j.pathophys.2010.08.003 20869855
    [Google Scholar]
  56. RaoD.B. MalleshiN.G. AnnorG.A. PatilJ.V. Nutritional and Health benefits of Millets.RajendranagarHyderabad: ICAR_Indian Institute of Millets Research (IIMR)201611210.1079/9781780648309.0024
    [Google Scholar]
  57. BanerjeeS. Finger millet (Eleusine coracana) polyphenols: Investigation of their antioxidant capacity and antimicrobial activity.Afr. J. Food Sci.201261310.5897/AJFS12.031
    [Google Scholar]
  58. MawoumaS. ConduracheN.N. TurturicăM. ConstantinO.E. CroitoruC. RapeanuG. Chemical composition and antioxidant profile of sorghum (Sorghumbicolor (L.) Moench) and pearl millet (Pennisetumglaucum (L.) R.Br.) grains cultivated in the far-north region of cameroon.Foods20221114202610.3390/foods11142026 35885272
    [Google Scholar]
  59. PanwarP. DubeyA. VermaA.K. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region.J. Food Sci. Technol.20165362779278710.1007/s13197‑016‑2250‑8 27478234
    [Google Scholar]
  60. SharmaR. GuptaP. Nutraceutical potential of Pennisetum typhoides microgreens: In vitro evaluation of antioxidant and antibacterial activities and in silico Staphylococcus aureus FtsZ inhibition.Food Biosci.20214210115110.1016/j.fbio.2021.101151
    [Google Scholar]
  61. WeiS. ChengD. YuH. WangX. SongS. WangC. Millet-enriched diets attenuate high salt-induced hypertension and myocardial damage in male rats.J. Funct. Foods20184430431210.1016/j.jff.2018.03.028
    [Google Scholar]
  62. DeviP.B. VijayabharathiR. SathyabamaS. MalleshiN.G. PriyadarisiniV.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review.J. Food Sci. Technol.20145161021104010.1007/s13197‑011‑0584‑9
    [Google Scholar]
  63. BellatoS. CiccorittiR. Del FrateV. SgrullettaD. CarboneK. Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains.J. Cereal Sci.201357216216910.1016/j.jcs.2012.11.003
    [Google Scholar]
  64. LiangS. LiangK. Millet grain as a candidate antioxidant food resource: A review.Inter J Food Propert20192211652166110.1080/10942912.2019.1668406
    [Google Scholar]
  65. YuanY. XiangJ. ZhengB. Diversity of phenolics including hydroxycinnamic acid amide derivatives, phenolic acids contribute to antioxidant properties of proso millet.Lebensm. Wiss. Technol.202215411261110.1016/j.lwt.2021.112611
    [Google Scholar]
  66. OlawoleT.D. OkundigieM.I. RotimiS.O. OkwumabuaO. AfolabiI.S. Preadministration of fermented sorghum diet provides protection against hyperglycemia-induced oxidative stress and suppressed glucose utilization in alloxan-induced diabetic rats.Front. Nutr.201851610.3389/fnut.2018.00016 29594128
    [Google Scholar]
  67. LiuX. QiuB. LiuW. The preventive effects of fermented and germinated foxtail millet whole grain on kidney damage in a diabetic mouse model.Front. Nutr.2022994040410.3389/fnut.2022.940404 35782913
    [Google Scholar]
  68. AlzahraniN.S. AlshammariG.M. El-AnsaryA. Anti-hyperlipidemia, hypoglycemic, and hepatoprotective impacts of pearl millet (Pennisetum glaucum L.) grains and their ethanol extract on rats fed a high-fat diet.Nutrients2022149179110.3390/nu14091791 35565759
    [Google Scholar]
  69. JayawardanaS.A.S. SamarasekeraJ.K.R.R. HettiarachchiG.H.C.M. GooneratneJ. ChoudharyM.I. JabeenA. Anti-inflammatory and antioxidant properties of finger millet (Eleusine coracana (L.) Gaertn.) varieties cultivated in Sri Lanka.BioMed Res. Int.2021202111010.1155/2021/7744961 34631888
    [Google Scholar]
  70. HeR. LiuM. ZouZ. Anti-inflammatory activity of peptides derived from millet bran in vitro and in vivo.Food Funct.20221341881188910.1039/D1FO03711K 35084423
    [Google Scholar]
  71. HuS. YuanJ. GaoJ. Antioxidant and anti-inflammatory potential of peptides derived from in vitro gastrointestinal digestion of germinated and heat-treated foxtail millet (Setaria italica) proteins.J. Agric. Food Chem.202068359415942610.1021/acs.jafc.0c03732 32786864
    [Google Scholar]
  72. JakubczykA. SzymanowskaU. KaraśM. ZłotekU. KowalczykD. Potential anti-inflammatory and lipase inhibitory peptides generated by in vitro gastrointestinal hydrolysis of heat treated millet grains.CYTA J. Food201917132433310.1080/19476337.2019.1580317
    [Google Scholar]
  73. GowdaM.M.D. JayachandraK. SiddeshaJ.M. JameelM.N. VishwanathS. Phenolic rich extract of finger millet bran attenuates lung inflammation and fibrosis in a mouse model of ovalbumin induced asthma.Int. J. Life Sci. Pharma Res.2022121L238L24610.22376/ijpbs/lpr.2022.12.1.L238‑246
    [Google Scholar]
  74. LestienneI. RivierM.C. VernièreI.C. RochetteI. TrècheS. The effects of soaking of whole, dehulled and ground millet and soybean seeds on phytate degradation and Phy/Fe and Phy/Zn molar ratios.Int. J. Food Sci. Technol.200540439139910.1111/j.1365‑2621.2004.00941.x
    [Google Scholar]
  75. AroraS. JoodS. KhetarpaulN. Effect of germination and probiotic fermentation on nutrient profile of pearl millet based food blends.Br. Food J.2011113447048110.1108/00070701111123952
    [Google Scholar]
  76. KrishnanR. DharmarajU. MalleshiN.G. Influence of decortication, popping and malting on bioaccessibility of calcium, iron and zinc in finger millet.Lebensm. Wiss. Technol.201248216917410.1016/j.lwt.2012.03.003
    [Google Scholar]
  77. GuptaV. NagarR. Effect of cooking, fermentation, dehulling and utensils on antioxidants present in pearl millet rabadi — A traditional fermented food.J. Food Sci. Technol.2010471737610.1007/s13197‑010‑0018‑0 23572604
    [Google Scholar]
  78. RajeswariN. PriyadharshiniV.P. Evaluation of nutritional and nutraceutical content of polished and unpolished barnyard millet - An analytical study.Curr. Res. Nutr. Food Sci.2021931067107310.12944/CRNFSJ.9.3.31
    [Google Scholar]
  79. RaoS.M.V.S.S.T. MuralikrishnaG. Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (ragi, Eleusine coracana Indaf-15).J. Agric. Food Chem.200250488989210.1021/jf011210d 11829663
    [Google Scholar]
  80. TowoE.E. SvanbergU. NdossiG.D. Effect of grain pre‐treatment on different extractable phenolic groups in cereals and legumes commonly consumed in Tanzania.J. Sci. Food Agric.200383998098610.1002/jsfa.1435
    [Google Scholar]
  81. SalarR.K. PurewalS.S. SandhuK.S. Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential.Food Res. Int.2017100Pt 220421010.1016/j.foodres.2017.08.045 28888442
    [Google Scholar]
  82. Kalam AzadM.O. JeongD.I. AdnanM. Effect of different processing methods on the accumulation of the phenolic compounds and antioxidant profile of broomcorn millet (Panicum miliaceum L.) flour.Foods20198723010.3390/foods8070230 31252701
    [Google Scholar]
  83. PradeepS.R. GuhaM. Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts.Food Chem.201112641643164710.1016/j.foodchem.2010.12.047 25213939
    [Google Scholar]
  84. CuiK. WuH. FanJ. The mixture of ferulic acid and P-coumaric acid suppresses colorectal cancer through lncRNA 495810/PKM2 mediated aerobic glycolysis.Int. J. Mol. Sci.202223201210610.3390/ijms232012106 36292959
    [Google Scholar]
  85. ChandrasekaraA. ShahidiF. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn.J. Funct. Foods201133144158a10.1016/j.jff.2011.03.007
    [Google Scholar]
  86. YehR.D. ChenJ.C. LaiT.Y. Gallic acid induces G0/G1 phase arrest and apoptosis in human leukemia HL-60 cells through inhibiting cyclin D and E, and activating mitochondria-dependent pathway.Anticancer Res.201131928212832 21868525
    [Google Scholar]
  87. EitsukaT. TatewakiN. NishidaH. KurataT. NakagawaK. MiyazawaT. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid.Biochem. Biophys. Res. Commun.2014453360661110.1016/j.bbrc.2014.09.126 25285637
    [Google Scholar]
  88. ShanS NiuJ YinR Peroxidase from foxtail millet bran exerts anti-colorectal cancer activity via targeting cell-surface GRP78 to inactivate STAT3 pathway.Acta Pharm Sin B20221231254127010.1016/j.apsb.2021.10.004 35530132
    [Google Scholar]
  89. ZhangL. LaX. TianJ. The phytochemical vitexin and syringic acid derived from foxtail fillet bran inhibit breast cancer cells proliferation via GRP78/SREBP-1/SCD1 signaling axis.J. Funct. Foods20218510462010.1016/j.jff.2021.104620
    [Google Scholar]
  90. ShiJ. ShanS. LiZ. LiH. LiX. LiZ. Bound polyphenol from foxtail millet bran induces apoptosis in HCT-116 cell through ROS generation.J. Funct. Foods20151795896810.1016/j.jff.2015.06.049
    [Google Scholar]
  91. ZhangL.Z. LiuR.H. Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet.Food Chem.201517449550110.1016/j.foodchem.2014.09.089 25529711
    [Google Scholar]
  92. KuruburuM.G. BovillaV.R. NaazR. LeihangZ. MadhunapantulaS.V. Variations in the anticancer activity of free and bound phenolics of finger millet (Eleusine coracana (L) Gaertn; Variety KMR-301) seeds.Phytomedicine Plus20222210027610.1016/j.phyplu.2022.100276
    [Google Scholar]
  93. AnandP. SinghB. SinghN. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease.Bioorg. Med. Chem.20122031175118010.1016/j.bmc.2011.12.042
    [Google Scholar]
  94. HofmannJ. SpatzP. WaltherR. GutmannM. MauriceT. DeckerM. Synthesis and biological evaluation of flavonoid‐cinnamic acid amide hybrids with distinct activity against neurodegeneration in vitro and in vivo.Chemistry20222839e20220078610.1002/chem.202200786 35621167
    [Google Scholar]
  95. AnushaC. SumathiT. JosephL.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis.Chem. Biol. Interact.2017269677910.1016/j.cbi.2017.03.016 28389404
    [Google Scholar]
  96. KatalinićM. RusakG. BarovićD.J. Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase.Eur. J. Med. Chem.201045118619210.1016/j.ejmech.2009.09.041 19879672
    [Google Scholar]
  97. BurkhardtR. Hyperlipidemia and cardiovascular disease: New insights on lipoprotein(a).Curr. Opin. Lipidol.201930326026110.1097/MOL.0000000000000594
    [Google Scholar]
  98. AnithaS. BothaR. Kane-PotakaJ. Can millet consumption help manage hyperlipidemia and obesity?: A systematic review and meta-analysis.Front. Nutr.2021870077810.3389/fnut.2021.700778
    [Google Scholar]
  99. KangN. LeeJ.H. LeeW. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect.Environ. Toxicol. Pharmacol.201539276477210.1016/j.etap.2015.02.006 25727171
    [Google Scholar]
  100. AgunloyeO.M. ObohG. AdemiluyiA.O. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats.Biomed. Pharmacother.201910945045810.1016/j.biopha.2018.10.044 30399581
    [Google Scholar]
  101. ZhouZ.Y. XuJ.Q. ZhaoW.R. Ferulic acid relaxed rat aortic, small mesenteric and coronary arteries by blocking voltage-gated calcium channel and calcium desensitization via dephosphorylation of ERK1/2 and MYPT1.Eur. J. Pharmacol.2017815263210.1016/j.ejphar.2017.10.008 28989085
    [Google Scholar]
  102. DianatM. RadmaneshE. BadaviM. MardS.A. GoudarziG. Disturbance effects of PM10 on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia–reperfusion injury in isolated rat heart: Protective role of vanillic acid.Environ. Sci. Pollut. Res. Int.20162365154516510.1007/s11356‑015‑5759‑x 26552794
    [Google Scholar]
  103. KuH.C. LeeS.Y. YangK.C. KuoY.H. SuM.J. Modification of caffeic acid with pyrrolidine enhances antioxidant ability by activating AKT/HO-1 pathway in heart.PLoS One2016112e014854510.1371/journal.pone.0148545 26845693
    [Google Scholar]
  104. HügelH.M. JacksonN. MayB. ZhangA.L. XueC.C. Polyphenol protection and treatment of hypertension.Phytomedicine201623222023110.1016/j.phymed.2015.12.012
    [Google Scholar]
  105. AzarkhiaviR.K. IranshahyM. SahebkarA. ShiraniK. KarimiG. The protective role of phenolic compounds against doxorubicin-induced cardiotoxicity: A comprehensive review.Nutr. Cancer201668689291710.1080/01635581.2016.1187280
    [Google Scholar]
  106. ChenJ. DuanW. RenX. Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats.Eur. J. Nutr.20175662129213810.1007/s00394‑016‑1252‑7 27344669
    [Google Scholar]
  107. NiewiadomskaJ. MareckaG.A. GajekJ. NowakN.A. Biological potential of polyphenols in the context of metabolic syndrome: An analysis of studies on animal models.Biology2022114559213810.3390/biology11040559
    [Google Scholar]
  108. VedamanickamR. AnandanP. BupeshG. VasanthS. Study of millet and non-millet diet on diabetics and associated metabolic syndrome.Biomedicine202040110.51248/.v40i1.102
    [Google Scholar]
  109. El-BassossyH. BadawyD. NeamatallahT. FahmyA. Ferulic acid, a natural polyphenol, alleviates insulin resistance and hypertension in fructose fed rats: Effect on endothelial-dependent relaxation.Chem. Biol. Interact.201625419119710.1016/j.cbi.2016.06.013 27287418
    [Google Scholar]
  110. GuoX. RimbauT.A. EstruchR. Polyphenol levels are inversely correlated with body weight and obesity in an elderly population after 5 years of follow up (The randomised PREDIMED study).Nutrients20179545210.3390/nu9050452 28467383
    [Google Scholar]
  111. BlahovaJ. MartiniakovaM. BabikovaM. KovacovaV. MondockovaV. OmelkaR. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus.Pharmaceuticals202114880610.3390/ph14080806
    [Google Scholar]
  112. FuY. YinR. GuoE. Protein isolates from raw and cooked foxtail millet attenuate development of type 2 diabetes in streptozotocin‐induced diabetic mice.Mol. Nutr. Food Res.2021656200036510.1002/mnfr.202000365 33480470
    [Google Scholar]
/content/journals/cff/10.2174/0126668629298743240320035203
Loading
/content/journals/cff/10.2174/0126668629298743240320035203
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-inflammatory; antioxidants; flavonoids; Millets; nutraceuticals; polyphenols
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test