Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Bifidobacteria, known as probiotics with a broad range of bioactivities, are ordinarily used in the dairy industry to enrich dairy products naturally. Due to the oxygen-sensitive nature of bifidobacteria, the application of this probiotic into dairy products has faced some limitations. On the other hand, in the recent decade, postbiotics, defined as bioactive metabolites derived from probiotics, have caught attention. In this regard, the bioactive metabolites of bifidobacteria, the possibility of use of bifidobacterial postbiotic, and their role in human health are discussed.

Bifidobacteria is a commercial probiotic that is widely used in industries. However, due to its oxygen-sensitive nature, industries have faced some limitations during the addition of the products. Recently it was stated that the metabolites secreted by bifidobacteria have a key role in improving health.

The possibility of a postbiotic replacement for probiotics in dairy industries and its effect on health are discussed.

the keywords including postbiotic, probiotic, dairy, bifidobacteria, inactivated bifidobacteria, bifidobacteria metabolites, the effect of bifidobacteria on psychology, human health, cancer, and inflammation are searched on Google Scholar as well as more than 600 research and review articles are read.

Bifidobacteria could change gut bacteria positively and improve health directly. Also, the metabolites produced by bifidobacteria indirectly have wide-range effects on health.

Due to the anaerobic nature of bifidobacteria, applying a postbiotic / non-viable form of bifidobacteria is a sagacious option in dairy products.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230818093034
2024-04-01
2025-12-07
Loading full text...

Full text loading...

References

  1. ZendeboodiF. KhorshidianN. MortazavianA.M. da CruzA.G. Probiotic: Conceptualization from a new approach.Curr. Opin. Food Sci.20203210312310.1016/j.cofs.2020.03.009
    [Google Scholar]
  2. HolzapfelW.H. HabererP. GeisenR. BjörkrothJ. SchillingerU. Taxonomy and important features of probiotic microorganisms in food and nutrition.Am. J. Clin. Nutr.2001732Suppl.365s373s10.1093/ajcn/73.2.365s11157343
    [Google Scholar]
  3. de Melo PereiraG.V. de Oliveira CoelhoB. Magalhães JúniorA.I. Thomaz-SoccolV. SoccolC.R. How to select a probiotic? A review and update of methods and criteria.Biotechnol. Adv.20183682060207610.1016/j.biotechadv.2018.09.00330266342
    [Google Scholar]
  4. RoyD. Technological aspects related to the use of bifidobacteria in dairy products.Lait2005851-2395610.1051/lait:2004026
    [Google Scholar]
  5. TavernitiV. GuglielmettiS. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept).Genes Nutr.20116326127410.1007/s12263‑011‑0218‑x21499799
    [Google Scholar]
  6. WeghC.A.M. GeerlingsS.Y. KnolJ. RoeselersG. BelzerC. Postbiotics and their potential applications in early life nutrition and beyond.Int. J. Mol. Sci.20192019467310.3390/ijms2019467331547172
    [Google Scholar]
  7. RivièreA. SelakM. LantinD. LeroyF. De VuystL. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut.Front. Microbiol.2016797910.3389/fmicb.2016.0097927446020
    [Google Scholar]
  8. EUZéBY JP. List of Bacterial Names with Standing in Nomenclature: A Folder Available on the Internet.Int. J. Syst. Evol. Microbiol.199747259059210.1099/00207713‑47‑2‑590
    [Google Scholar]
  9. LaureysD. CnockaertM. De VuystL. VandammeP. Bifidobacterium aquikefiri sp. nov., isolated from water kefir.Int. J. Syst. Evol. Microbiol.20166631281128610.1099/ijsem.0.00087726739269
    [Google Scholar]
  10. BezkorovainyA. Classification of bifidobacteria. In: Biochemistry and physiology of bifidobacteria.CRC Press202012810.1201/9780367811723‑1
    [Google Scholar]
  11. TurroniF. PeanoC. PassD.A. Diversity of bifidobacteria within the infant gut microbiota.PLoS One201275e3695710.1371/journal.pone.003695722606315
    [Google Scholar]
  12. O’CallaghanA. van SinderenD. Bifidobacteria and their role as members of the human gut microbiota.Front. Microbiol.2016792510.3389/fmicb.2016.0092527379055
    [Google Scholar]
  13. FernandesS.S. CoelhoM.S. de las Mercedes Salas-MelladoM. Bioactive compounds as ingredients of functional foods: Polyphenols, carotenoids, peptides from animal and plant sources new. In: Bioactive compounds.Elsevier201912914210.1016/B978‑0‑12‑814774‑0.00007‑4
    [Google Scholar]
  14. BanwoK. OlojedeA.O. Adesulu-DahunsiA.T. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends.Food Biosci.20214310132010.1016/j.fbio.2021.101320
    [Google Scholar]
  15. Hernández-GranadosM.J. Franco-RoblesE. Postbiotics in human health: Possible new functional ingredients?Food Res. Int.202013710966010.1016/j.foodres.2020.10966033233239
    [Google Scholar]
  16. LeeM-J. ZangZ-L. ChoiE-Y. ShinH-K. JiG-E. Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts.J. Microbiol. Biotechnol.2002123398405
    [Google Scholar]
  17. LiJ. WangW. XuS.X. MagarveyN.A. McCormickJ.K. Lactobacillus reuteri -produced cyclic dipeptides quench agr -mediated expression of toxic shock syndrome toxin-1 in staphylococci.Proc. Natl. Acad. Sci. USA201110883360336510.1073/pnas.101743110821282650
    [Google Scholar]
  18. KamiyaT. WangL. ForsytheP. Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats.Gut200655219119610.1136/gut.2005.07098716361309
    [Google Scholar]
  19. Dinić M, Lukić J, Djokić J, et al Lactobacillus fermentum postbioticinduced autophagy as potential approach for treatment of acetaminophen hepatotoxicity.Front Microbiol2017859410.3389/fmicb.2017.0059428428777
    [Google Scholar]
  20. Aguilar-ToaláJ.E. HallF.G. Urbizo-ReyesU.C. In silico prediction and in vitro assessment of multifunctional properties of postbiotics obtained from two probiotic bacteria.Probiotics Antimicrob. Proteins202012260862210.1007/s12602‑019‑09568‑z31280464
    [Google Scholar]
  21. VriesW. StouthamerA.H. Factors determining the degree of anaerobiosis of Bifidobacterium strains.Arch. Microbiol.196965327528710.1007/BF004071094915432
    [Google Scholar]
  22. PengM. TabashsumZ. AndersonM. Effectiveness of probiotics, prebiotics, and prebiotic‐like components in common functional foods.Compr. Rev. Food Sci. Food Saf.20201941908193310.1111/1541‑4337.1256533337097
    [Google Scholar]
  23. LinaresD.M. GómezC. RenesE. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods.Front. Microbiol.2017884610.3389/fmicb.2017.0084628572792
    [Google Scholar]
  24. SabahiS. Homayouni RadA. Aghebati-MalekiL. Postbiotics as the new frontier in food and pharmaceutical research.Crit. Rev. Food Sci. Nutr.202363268375840210.1080/10408398.2022.205672735348016
    [Google Scholar]
  25. LeahyS.C. HigginsD.G. FitzgeraldG.F. SinderenD. Getting better with bifidobacteria.J. Appl. Microbiol.20059861303131510.1111/j.1365‑2672.2005.02600.x15916644
    [Google Scholar]
  26. GorissenL. RaesK. WeckxS. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species.Appl. Microbiol. Biotechnol.20108762257226610.1007/s00253‑010‑2713‑120556602
    [Google Scholar]
  27. GorissenL. De VuystL. RaesK. De SmetS. LeroyF. Conjugated linoleic and linolenic acid production kinetics by bifidobacteria differ among strains.Int. J. Food Microbiol.2012155323424010.1016/j.ijfoodmicro.2012.02.01222405353
    [Google Scholar]
  28. RossiM. AmarettiA. RaimondiS. Folate production by probiotic bacteria.Nutrients20113111813410.3390/nu301011822254078
    [Google Scholar]
  29. GagnonM SavardP RivièreA LaPointeG RoyD Bioaccessible antioxidants in milk fermented by Bifidobacterium longum subsp. longum strains.BioMed Research International20152015
    [Google Scholar]
  30. ÖzerB. Production of concentrated products.Fermented milks2006128-55
    [Google Scholar]
  31. RajakovichL.J. BalskusE.P. Metabolic functions of the human gut microbiota: The role of metalloenzymes.Nat. Prod. Rep.201936459362510.1039/C8NP00074C30452039
    [Google Scholar]
  32. VickersN.J. Animal communication: When i’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.06428743020
    [Google Scholar]
  33. LevyM. ThaissC.A. ElinavE. Metabolites: messengers between the microbiota and the immune system.Genes Dev.201630141589159710.1101/gad.284091.11627474437
    [Google Scholar]
  34. D’AimmoM.R. MattarelliP. BiavatiB. CarlssonN.G. AndlidT. The potential of bifidobacteria as a source of natural folate.J. Appl. Microbiol.2012112597598410.1111/j.1365‑2672.2012.05261.x22335359
    [Google Scholar]
  35. SugaharaH. OdamakiT. HashikuraN. AbeF. XiaoJ. Differences in folate production by bifidobacteria of different origins.Biosci. Microbiota Food Health2015344879310.12938/bmfh.2015‑00326594608
    [Google Scholar]
  36. SolopovaA. BottaciniF. Venturi degli EspostiE. Riboflavin biosynthesis and overproduction by a derivative of the human gut commensal bifidobacterium longum subsp. infantis ATCC 15697.Front. Microbiol.20201157333510.3389/fmicb.2020.57333533042083
    [Google Scholar]
  37. YouJ. PanX. YangC. Microbial production of riboflavin: Biotechnological advances and perspectives.Metab. Eng.202168465810.1016/j.ymben.2021.08.00934481976
    [Google Scholar]
  38. JungH.S. KimK.R. KimK.H. Investigation on human milk oligosaccharide utilization and vitamin B biosynthesis by Bifidobacterium strains isolated from infant feces.Microbiological Society of Korea2020563297306
    [Google Scholar]
  39. PeluzioM.C.G. MartinezJ.A. MilagroF.I. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions.Trends Food Sci. Technol.2021108112610.1016/j.tifs.2020.12.004
    [Google Scholar]
  40. CzajecznyD WójciakR CzajecznyD Kabzińska-MilewskaK Bifidobacterium lactis BS01 and Lactobacillus acidophilus LA02 supplementation may change the mineral balance in healthy young women.J Elem2021264/202110.5601/jelem.2021.26.1.2121
    [Google Scholar]
  41. LiC. HuangQ. YangR. Gut microbiota composition and bone mineral loss—epidemiologic evidence from individuals in Wuhan, China.Osteoporos. Int.20193051003101310.1007/s00198‑019‑04855‑530666372
    [Google Scholar]
  42. SkrypnikK. Bogdański P, Schmidt M, Suliburska J. The effect of multispecies probiotic supplementation on iron status in rats.Biol. Trace Elem. Res.2019192223424310.1007/s12011‑019‑1658‑130746586
    [Google Scholar]
  43. Vazquez-GutierrezP. LacroixC. JaeggiT. ZederC. ZimmermanM.B. ChassardC. Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron.BMC Microbiol.2015151310.1186/s12866‑014‑0334‑z25591860
    [Google Scholar]
  44. LeBlancJ.G. MatarC. ValdézJ.C. LeBlancJ. PerdigonG. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus.J. Dairy Sci.200285112733274210.3168/jds.S0022‑0302(02)74360‑912487440
    [Google Scholar]
  45. NongoniermaA.B. FitzGeraldR.J. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review.J. Funct. Foods20151764065610.1016/j.jff.2015.06.021
    [Google Scholar]
  46. LosurdoL. QuintieriL. CaputoL. GalleraniR. MayoB. De LeoF. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum.FEMS Microbiol. Lett.20133401243210.1111/1574‑6968.1206823278337
    [Google Scholar]
  47. MengD. SommellaE. SalviatiE. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine.Pediatr. Res.202088220921710.1038/s41390‑019‑0740‑x31945773
    [Google Scholar]
  48. FengT. WangJ. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review.Gut Microbes2020121180194410.1080/19490976.2020.180194432795116
    [Google Scholar]
  49. WangY. WuY. WangY. Antioxidant properties of probiotic bacteria.Nutrients20179552110.3390/nu905052128534820
    [Google Scholar]
  50. MartorellP. AlvarezB. LlopisS. Heat-treated Bifidobacterium longum CECT-7347: A whole-cell postbiotic with antioxidant, anti-inflammatory, and gut-barrier protection properties.Antioxidants202110453610.3390/antiox1004053633808122
    [Google Scholar]
  51. AmarettiA. di NunzioM. PompeiA. RaimondiS. RossiM. BordoniA. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities.Appl. Microbiol. Biotechnol.201397280981710.1007/s00253‑012‑4241‑722790540
    [Google Scholar]
  52. LiS. HuangR. ShahN.P. TaoX. XiongY. WeiH. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315.J. Dairy Sci.201497127334734310.3168/jds.2014‑791225282420
    [Google Scholar]
  53. DarvishiN. FardN.A. SadrniaM. Genomic and proteomic comparisons of bacteriocins in probiotic species Lactobacillus and Bifidobacterium and inhibitory ability of Escherichia coli MG 1655.Biotechnol. Rep. (Amst.)202131e0065410.1016/j.btre.2021.e0065434258243
    [Google Scholar]
  54. InturriR. StivalaA. FurneriP.M. BlandinoG. Growth and adhesion to HT-29 cells inhibition of Gram-negatives by Bifidobacterium longum BB536 e Lactobacillus rhamnosus HN001 alone and in combination.Eur. Rev. Med. Pharmacol. Sci.201620234943494927981539
    [Google Scholar]
  55. LeeD.K. ParkS.Y. AnH.M. Antimicrobial activity of Bifidobacterium spp. isolated from healthy adult Koreans against cariogenic microflora.Arch. Oral Biol.201156101047105410.1016/j.archoralbio.2011.03.00221439550
    [Google Scholar]
  56. LeeD.K. KimM.J. HamJ.W. In Vitro evaluation of antibacterial activities and anti-inflammatory effects of Bifidobacterium spp. addressing acne vulgaris.Arch. Pharm. Res.20123561065107110.1007/s12272‑012‑0614‑922870816
    [Google Scholar]
  57. Muñoz-QuezadaS. ChenollE. María VieitesJ. Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants.Br. J. Nutr.2013109S2Suppl. 2S51S6210.1017/S000711451200521123360881
    [Google Scholar]
  58. MaL. TuH. ChenT. Postbiotics in human health: A narrative review.Nutrients202315229110.3390/nu1502029136678162
    [Google Scholar]
  59. NieR. HaoX. LiuG. Controlled release study on bifidocin a from a polyvinyl alcohol/chitosan blend particle-based biodegradable and active packaging coupled with mechanistic assessment and experimental modeling.J. Biomed. Nanotechnol.202117112226223910.1166/jbn.2021.318834906283
    [Google Scholar]
  60. LiuG. RenL. SongZ. WangC. SunB. Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animals BB04 from centenarians’ intestine.Food Control20155088989510.1016/j.foodcont.2014.10.049
    [Google Scholar]
  61. RodriguezA. Evaluation of the synbiotic strategy as prevention and treatment of swine digestive pathologies2019
    [Google Scholar]
  62. YildirimZ. WintersD.K. JohnsonM.G. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454.J. Appl. Microbiol.1999861455410.1046/j.1365‑2672.1999.00629.x10030011
    [Google Scholar]
  63. KadhemB.M. MaterH.N. AlsaadiL.G. Antibacterial activity of a novel lectin produced by bee honey bifidobacterium adolescentis against multidrug resistant salmonella typhi.J Pharma Sci and Res201911311021106
    [Google Scholar]
  64. YangJ. YangH. Non-antibiotic therapy for Clostridioides difficile infection: a review.Crit. Rev. Clin. Lab. Sci.201956749350910.1080/10408363.2019.164837731411909
    [Google Scholar]
  65. MohamedS. ElmohamadyM.N. AbdelrahmanS. AmerM.M. AbdelhamidA.G. Antibacterial effects of antibiotics and cell-free preparations of probiotics against Staphylococcus aureus and Staphylococcus epidermidis associated with conjunctivitis.Saudi Pharm. J.202028121558156510.1016/j.jsps.2020.10.00233424249
    [Google Scholar]
  66. GhazviniR.D. KouhsariE. ZibafarE. HashemiS.J. AminiA. NiknejadF. Antifungal activity and aflatoxin degradation of Bifidobacterium bifidum and Lactobacillus fermentum against toxigenic Aspergillus parasiticus.Open Microbiol. J.201610119720110.2174/187428580161001019728077976
    [Google Scholar]
  67. AmiriS. Rezaei MokarramR. Sowti KhiabaniM. Rezazadeh BariM. Alizadeh KhaledabadM. Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens.Lebensm. Wiss. Technol.202215311244910.1016/j.lwt.2021.112449
    [Google Scholar]
  68. Sosa-CastañedaJ. Hernández-MendozaA. Astiazarán-GarcíaH. Screening of Lactobacillus strains for their ability to produce conjugated linoleic acid in milk and to adhere to the intestinal tract.J. Dairy Sci.201598106651665910.3168/jds.2014‑851526233456
    [Google Scholar]
  69. FlorenceA.C.R. da SilvaR.C. do Espírito SantoA.P. GioielliL.A. TamimeA.Y. de OliveiraM.N. Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures.Dairy Sci. Technol.200989654155310.1051/dst/2009030
    [Google Scholar]
  70. CruzB.C.S. SarandyM.M. MessiasA.C. GonçalvesR.V. FerreiraC.L.L.F. PeluzioM.C.G. Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: A systematic review.Nutr. Rev.202078866768710.1093/nutrit/nuz08731917829
    [Google Scholar]
  71. MarcobalA. BarbozaM. FroehlichJ.W. Consumption of human milk oligosaccharides by gut-related microbes.J. Agric. Food Chem.20105895334534010.1021/jf904420520394371
    [Google Scholar]
  72. MorrisonD.J. PrestonT. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.Gut Microbes20167318920010.1080/19490976.2015.113408226963409
    [Google Scholar]
  73. ChambersE.S. PrestonT. FrostG. MorrisonD.J. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health.Curr. Nutr. Rep.20187419820610.1007/s13668‑018‑0248‑830264354
    [Google Scholar]
  74. LevyM. BlacherE. ElinavE. Microbiome, metabolites and host immunity.Curr. Opin. Microbiol.20173581510.1016/j.mib.2016.10.00327883933
    [Google Scholar]
  75. GosálbezL. RamónD. Probiotics in transition: novel strategies.Trends Biotechnol.201533419519610.1016/j.tibtech.2015.01.00625702610
    [Google Scholar]
  76. LamasB. RichardM.L. LeducqV. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands.Nat. Med.201622659860510.1038/nm.410227158904
    [Google Scholar]
  77. SarkarS. Whether viable and dead probiotic are equally efficacious?Nutr. Food Sci.201848228530010.1108/NFS‑07‑2017‑0151
    [Google Scholar]
  78. ColladoM.C. VinderolaG. SalminenS. Postbiotics: facts and open questions. A position paper on the need for a consensus definition.Benef. Microbes201910771171910.3920/BM2019.001531965850
    [Google Scholar]
  79. BouhnikY. PochartP. MarteauP. ArletG. GoderelI. RambaudJ.C. Fecal recovery in humans of viable Bifidobacterium sp ingested in fermented milk.Gastroenterology1992102387587810.1016/0016‑5085(92)90172‑U1537524
    [Google Scholar]
  80. BouhnikY. FlouriéB. RiottotM. Effects of fructo‐oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans.Nutr. Cancer1996261212910.1080/01635589609514459
    [Google Scholar]
  81. BerradaN. LemelandJ.F. LarocheG. ThouvenotP. PiaiaM. Bifidobacterium from fermented milks: Survival during gastric transit.J. Dairy Sci.199174240941310.3168/jds.S0022‑0302(91)78183‑62045548
    [Google Scholar]
  82. YaeshimaT. TakahashiS. IshibashiN. ShimamuraS. Identification of bifidobacteria from dairy products and evaluation of a microplate hybridization method.Int. J. Food Microbiol.199630330331310.1016/0168‑1605(96)00956‑78854183
    [Google Scholar]
  83. MarteauP. MinekusM. HavenaarR. Huis In’t VeldJ.H.J. Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile.J. Dairy Sci.19978061031103710.3168/jds.S0022‑0302(97)76027‑29201571
    [Google Scholar]
  84. PochartP. MarteauP. BouhnikY. GoderelI. BourliouxP. RambaudJ.C. Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion.Am. J. Clin. Nutr.1992551788010.1093/ajcn/55.1.781728822
    [Google Scholar]
  85. SanzY. Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: A way of selecting improved probiotic strains.Int. Dairy J.200717111284128910.1016/j.idairyj.2007.01.016
    [Google Scholar]
  86. DashG. RamanR.P. Pani PrasadK. MakeshM. PradeepM.A. SenS. Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879).Fish Shellfish Immunol.201543116717410.1016/j.fsi.2014.12.00725542379
    [Google Scholar]
  87. Molaee ParvareiM. FazeliM.R. MortazavianA.M. Comparative effects of probiotic and paraprobiotic addition on microbiological, biochemical and physical properties of yogurt.Food Res. Int.202114011003010.1016/j.foodres.2020.11003033648258
    [Google Scholar]
  88. de AlmadaC.N. AlmadaC.N. MartinezR.C.R. Sant’AnaA.S. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods.Trends Food Sci. Technol.2016589611410.1016/j.tifs.2016.09.011
    [Google Scholar]
  89. Aguilar-ToaláJ.E. Garcia-VarelaR. GarciaH.S. Postbiotics: An evolving term within the functional foods field.Trends Food Sci. Technol.20187510511410.1016/j.tifs.2018.03.009
    [Google Scholar]
  90. ShigwedhaN. SichelL. JiaL. ZhangL. Probiotical cell fragments (PCFs) as “novel nutraceutical ingredients”.J. Biosci. Med.201423435510.4236/jbm.2014.23007
    [Google Scholar]
  91. ArunachalamK.D. Role of Bifidobacteria in nutrition, medicine and technology.Nutr. Res.199919101559159710.1016/S0271‑5317(99)00112‑8
    [Google Scholar]
  92. HomayouniA. AlizadehM. AlikhahH. ZijahV. Functional dairy probiotic food development: trends, concepts, and products. In Immunology and Microbiology.Probiotics. RigobeloE. RijekaInTech201219721210.5772/48797
    [Google Scholar]
  93. GomesA.M.P. MalcataF.X. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics.Trends Food Sci. Technol.1999104-513915710.1016/S0924‑2244(99)00033‑3
    [Google Scholar]
  94. DaveR.I. ShahN.P. Evaluation of media for selective enumeration of streptococcus thermophilus, lactobacillus delbrueckii ssp. bulgaricus, lactobacillus acidophilus, and bifidobacteria.J. Dairy Sci.19967991529153610.3168/jds.S0022‑0302(96)76513‑X8899517
    [Google Scholar]
  95. SunW. GriffithsM.W. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads.Int. J. Food Microbiol.2000611172510.1016/S0168‑1605(00)00327‑511028956
    [Google Scholar]
  96. Homayouni RadA. Yari KhosroushahiA. KhaliliM. JafarzadehS. Folate bio-fortification of yoghurt and fermented milk: A review.Dairy Sci. Technol.201696442744110.1007/s13594‑016‑0286‑1
    [Google Scholar]
  97. RoyD. WardP. ChampagneG. Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction.Int. J. Food Microbiol.1996291112910.1016/0168‑1605(95)00013‑58722183
    [Google Scholar]
  98. SamonaA. RobinsonR.K. Effect of yogurt cultures on the survival of bifidobacteria in fermented milks.Int. J. Dairy Technol.1994472586010.1111/j.1471‑0307.1994.tb01273.x
    [Google Scholar]
  99. GomesA M MalcataF KlaverF GrandeH Incorporation and survival of Bifidobacterium sp. strain Bo and Lactobacillus acidophilus strain Ki in a cheese product.1995
    [Google Scholar]
  100. HamannW.T. MarthE.H. Survival of Streptococcus thermophilus and Lactobacillus bulgaricus in commercial and experimental yogurts.J. Food Prot.1984471078178610.4315/0362‑028X‑47.10.78130934509
    [Google Scholar]
  101. DaveR.I. ShahN.P. Characteristics of bacteriocin produced by Lactobacillus acidophilus LA-1.Int. Dairy J.199771170771510.1016/S0958‑6946(97)00095‑2
    [Google Scholar]
  102. KarimiR. MortazavianA.M. Da CruzA.G. Viability of probiotic microorganisms in cheese during production and storage: a review.Dairy Sci. Technol.201191328330810.1007/s13594‑011‑0005‑x
    [Google Scholar]
  103. MartinovicA. BredeM.E. VegarudG.E. ØstlieH.M. NarvhusJ. SkeieS.B. Survival of lactic acid and propionibacteria in low- and full-fat Dutch-type cheese during human digestion ex vivo.Lett. Appl. Microbiol.201662540441010.1111/lam.1256126950045
    [Google Scholar]
  104. OhN.S. JoungJ.Y. LeeJ.Y. KimS.H. KimY. Characterization of the microbial diversity and chemical composition of Gouda cheese made by potential probiotic strains as an adjunct starter culture.J. Agric. Food Chem.201664397357736610.1021/acs.jafc.6b0268927606488
    [Google Scholar]
  105. AraújoK.B.S. RangelA.H.N. FonsecaF.C.E. Influence of the year and calving season on production, composition and mozzarella cheese yield of water buffalo in the State of Rio Grande Do Norte, Brazil.Ital. J. Anim. Sci.2012111e1610.4081/ijas.2012.e16
    [Google Scholar]
  106. GiraffaG. Selection and design of lactic acid bacteria probiotic cultures.Eng. Life Sci.201212439139810.1002/elsc.201100118
    [Google Scholar]
  107. KunjiE.R.S. MierauI. HagtingA. PoolmanB. KoningsW.N. The proteotytic systems of lactic acid bacteria.Antonie van Leeuwenhoek1996702-418722110.1007/BF003959338879407
    [Google Scholar]
  108. SabikhiL. KumarM.H.S. MathurB.N. Bifidobacterium bifidum in probiotic Edam cheese: Influence on cheese ripening.J. Food Sci. Technol.201451123902390910.1007/s13197‑013‑0945‑725477659
    [Google Scholar]
  109. DinakarP. MistryV.V. Growth and viability of Bifidobacterium bifidum in cheddar cheese.J. Dairy Sci.199477102854286410.3168/jds.S0022‑0302(94)77225‑87836576
    [Google Scholar]
  110. OngL. HenrikssonA. ShahN.P. Chemical analysis and sensory evaluation of Cheddar cheese produced with Lactobacillus acidophilus, Lb. casei, Lb. paracasei or Bifidobacterium sp.Int. Dairy J.200717893794510.1016/j.idairyj.2007.01.002
    [Google Scholar]
  111. PradoM.R. BlandónL.M. VandenbergheL.P.S. Milk kefir: composition, microbial cultures, biological activities, and related products.Front. Microbiol.20156117710.3389/fmicb.2015.0117726579086
    [Google Scholar]
  112. SerafiniF. TurroniF. Ruas-MadiedoP. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression.Int. J. Food Microbiol.2014178505910.1016/j.ijfoodmicro.2014.02.02424667318
    [Google Scholar]
  113. Akın MB, Akın MS, Kırmacı Z. Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream.Food Chem.20071041939910.1016/j.foodchem.2006.11.030
    [Google Scholar]
  114. DavidsonR.H. DuncanS.E. HackneyC.R. EigelW.N. BolingJ.W. Probiotic culture survival and implications in fermented frozen yogurt characteristics.J. Dairy Sci.200083466667310.3168/jds.S0022‑0302(00)74927‑710791781
    [Google Scholar]
  115. CorrêaS.B.M. CastroI.A. SaadS.M.I. Probiotic potential and sensory properties of coconut flan supplemented with Lactobacillus paracasei and Bifidobacterium lactis.Int. J. Food Sci. Technol.20084391560156810.1111/j.1365‑2621.2007.01585.x
    [Google Scholar]
  116. BuritiF.C.A. Haíssa, Cardarelli R, Saad SMI. Biopreservation by Lactobacillus paracasei in coculture with Streptococcus thermophilus in potentially probiotic and synbiotic fresh cream cheeses.J. Food Prot.200770122823510.4315/0362‑028X‑70.1.22817265887
    [Google Scholar]
  117. Karaçalı R, Özdemİr Nİ Çon AH. Aromatic and functional aspects of kefir produced using soya milk and Bifidobacterium species.Int. J. Dairy Technol.201871492193310.1111/1471‑0307.12537
    [Google Scholar]
  118. KatariaA. AchiS.C. HalamiP.M. Effect of encapsulation on viability of bifidobacterium longum CFR815J and physiochemical properties of ice cream.Indian J. Microbiol.201858224825110.1007/s12088‑018‑0720‑629651187
    [Google Scholar]
  119. PintoS.S. Fritzen-FreireC.B. MuñozI.B. BarretoP.L.M. PrudêncioE.S. AmboniR.D.M.C. Effects of the addition of microencapsulated Bifidobacterium BB-12 on the properties of frozen yogurt.J. Food Eng.2012111456356910.1016/j.jfoodeng.2012.03.016
    [Google Scholar]
  120. KalliomäkiM. Carmen ColladoM. SalminenS. IsolauriE. Early differences in fecal microbiota composition in children may predict overweight.Am. J. Clin. Nutr.200887353453810.1093/ajcn/87.3.53418326589
    [Google Scholar]
  121. GaoX. JiaR. XieL. KuangL. FengL. WanC. Obesity in school-aged children and its correlation with Gut E.coli and Bifidobacteria: a case–control study.BMC Pediatr.20151516410.1186/s12887‑015‑0384‑x26024884
    [Google Scholar]
  122. SantacruzA. ColladoM.C. García-ValdésL. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women.Br. J. Nutr.20101041839210.1017/S000711451000017620205964
    [Google Scholar]
  123. MénardO. ButelM.J. Gaboriau-RouthiauV. Waligora-DuprietA.J. Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants.Appl. Environ. Microbiol.200874366066610.1128/AEM.01261‑0718083875
    [Google Scholar]
  124. Homayouni RadA. TorabR. GhalibafM. NorouziS. MehrabanyE.V. Might patients with immune-related diseases benefit from probiotics?Nutrition201329358358610.1016/j.nut.2012.10.00823398922
    [Google Scholar]
  125. Di GioiaD. AloisioI. MazzolaG. BiavatiB. Bifidobacteria: Their impact on gut microbiota composition and their applications as probiotics in infants.Appl. Microbiol. Biotechnol.201498256357710.1007/s00253‑013‑5405‑924287935
    [Google Scholar]
  126. BiagiE. CandelaM. Fairweather-TaitS. FranceschiC. BrigidiP. Ageing of the human metaorganism: The microbial counterpart.Age (Omaha)201234124726710.1007/s11357‑011‑9217‑521347607
    [Google Scholar]
  127. MalaguarneraG. LeggioF. VacanteM. Probiotics in the gastrointestinal diseases of the elderly.J. Nutr. Health Aging201216440241010.1007/s12603‑011‑0357‑122499466
    [Google Scholar]
  128. TojoR. SuárezA. ClementeM.G. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis.World J. Gastroenterol.20142041151631517610.3748/wjg.v20.i41.1516325386066
    [Google Scholar]
  129. Ornella GuardamagnaM Francesca AbelloM Paola CaglieroD Maddalena RossiD. Bifidobacteria supplementation: effects on plasma lipid profile in dyslipidemic children2014
    [Google Scholar]
  130. SavignacH.M. KielyB. DinanT.G. CryanJ.F. B ifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice.Neurogastroenterol. Motil.201426111615162710.1111/nmo.1242725251188
    [Google Scholar]
  131. ParkA.J. BercikP. HuangX. The anxiolytic effect of Bifidobacterium longum Ncc3001 requires vagal integrity for gut-brain communication.Gastroenterology20111405S-18S-1910.1016/S0016‑5085(11)60072‑3
    [Google Scholar]
  132. NakamuraT. SasakiT. FujimoriM. Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors.Biosci. Biotechnol. Biochem.200266112362236610.1271/bbb.66.236212506973
    [Google Scholar]
  133. LonghiG. van SinderenD. VenturaM. TurroniF. Microbiota and cancer: the emerging beneficial role of bifidobacteria in cancer immunotherapy.Front. Microbiol.20201157507210.3389/fmicb.2020.57507233013813
    [Google Scholar]
  134. VermaR. LeeC. JeunE.J. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3 + regulatory T cells.Sci. Immunol.2018328eaat697510.1126/sciimmunol.aat697530341145
    [Google Scholar]
  135. CroninM. MorrisseyD. RajendranS. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors.Mol. Ther.20101871397140710.1038/mt.2010.5920389288
    [Google Scholar]
  136. SivanA. CorralesL. HubertN. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy.Science201535062641084108910.1126/science.aac425526541606
    [Google Scholar]
  137. RongY. DongZ. HongZ. Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8+ T cell response and better prognosis in HBV-related hepatocellular carcinoma.Exp. Cell Res.2017358235235910.1016/j.yexcr.2017.07.00928694023
    [Google Scholar]
  138. AllenA.P. HutchW. BorreY.E. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers.Transl. Psychiatry2016611e939e910.1038/tp.2016.19127801892
    [Google Scholar]
  139. WangH. BraunC. MurphyE.F. EnckP. Bifidobacterium longum 1714™ Strain Modulates Brain Activity of Healthy Volunteers During Social Stress.Am. J. Gastroenterol.201911471152116210.14309/ajg.000000000000020330998517
    [Google Scholar]
  140. TamimeA SkriverA NilssonL. Starter cultures200611-5210.1002/9780470995501.ch2
    [Google Scholar]
  141. PatelA. ShahN. PrajapatiJ. Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera-A promising approach.Croat. J. Food Sci. Technol.2013528591
    [Google Scholar]
  142. CrittendenR.G. MartinezN.R. PlayneM.J. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria.Int. J. Food Microbiol.200380321722210.1016/S0168‑1605(02)00170‑812423923
    [Google Scholar]
  143. Gonzalez-GonzalezC. GibsonT. JauregiP. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5.Int. J. Food Microbiol.2013167213113710.1016/j.ijfoodmicro.2013.09.00224135669
    [Google Scholar]
  144. Van NieuwenhoveC.P. OliszewskiR. GonzálezS.N. Pérez ChaiaA.B. Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk.Lett. Appl. Microbiol.200744546747410.1111/j.1472‑765X.2007.02135.x17451511
    [Google Scholar]
  145. PrasannaP.H.P. GrandisonA.S. CharalampopoulosD. Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains.Food Res. Int.2013511152210.1016/j.foodres.2012.11.016
    [Google Scholar]
  146. EwaschukJ.B. DiazH. MeddingsL. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function.Am. J. Physiol. Gastrointest. Liver Physiol.20082955G1025G103410.1152/ajpgi.90227.200818787064
    [Google Scholar]
  147. ChandanR.C. Enhancing market value of milk by adding cultures.J. Dairy Sci.199982102245225610.3168/jds.S0022‑0302(99)75472‑X10531614
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230818093034
Loading
/content/journals/cff/10.2174/2666862901666230818093034
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Bifidobacteria; dairy products; functional food; postbiotics; probiotic; yogurt
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test