Skip to content
2000
image of Evaluating the Antioxidant Activity of Four Iranian Euphorbia Species and Molecular Docking Analysis of Effective Compounds

Abstract

Introduction

Medicinal plants are a rich source of natural antioxidants and play an important role in preventing oxidative stress-related diseases. This study aimed to evaluate the antioxidant activity of four Iranian species (, , , and ).

Methods

The antioxidant activity of methanolic extracts from these species was evaluated using the DPPH assay. The most potent species was further subjected to fractionation, and each fraction was assessed using the same method. Subsequently, the antioxidant activity of compounds isolated from the effective fraction was evaluated using molecular docking against the MPO enzyme.

Results

exhibited the strongest DPPH radical scavenging activity among the four species. Its ethyl acetate fraction demonstrated the highest scavenging activity with an IC value of 2.65 μg/ml. Among the ethyl acetate fraction compounds, methyl gallate showed the most favorable docking score (-4.97 kcal/mol) and formed multiple hydrogen bonds with key MPO residues.

Discussion

The remarkable free radical scavenging activity of ethyl acetate fraction is closely associated with the presence of flavonoids and phenolic compounds. Molecular docking indicated that methyl gallate forms a stable complex with the MPO receptor, suggesting its potential as a promising MPO inhibitor.

Conclusion

The ethyl acetate fraction of and its compounds indicated significant antioxidant activity and the capacity to inhibit the MPO enzyme. The findings highlight the therapeutic potential of the species, making it an attractive candidate for further investigation in pharmaceutical applications, particularly for the development of therapies targeting inflammatory and oxidative stress-related illnesses.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080383638250613050818
2025-07-03
2025-09-26
Loading full text...

Full text loading...

References

  1. Azam F. Therapeutic potential of free radical scavengers in neurological disorders Handbook of free radicals: formation, types and effects. New York Nova Publishers 2010 57 97
    [Google Scholar]
  2. Engwa G.A. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases Phytochemicals: source of antioxidants and role in disease prevention. BoD–Books on Demand 2018 49 74 10.5772/intechopen.76719
    [Google Scholar]
  3. Ishihara Y. Takemoto T. Ishida A. Yamazaki T. Protective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds. Oxid. Med. Cell. Longev. 2015 2015 1 1 16 10.1155/2015/343706 25815107
    [Google Scholar]
  4. Zhang M. Lu Y. Chen Y. Zhang Y. Xiong B. Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes. Redox Biol. 2020 28 101327 10.1016/j.redox.2019.101327 31526949
    [Google Scholar]
  5. Karalı N. Güzel Ö. Özsoy N. Özbey S. Salman A. Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents. Eur. J. Med. Chem. 2010 45 3 1068 1077 10.1016/j.ejmech.2009.12.001 20045221
    [Google Scholar]
  6. Patil V.P. Markad V.L. Kodam K.M. Waghmode S.B. Facile preparation of tetrahydro-5H-pyrido[1,2,3-de]-1,4-benzoxazines via reductive cyclization of 2-(8-quinolinyloxy)ethanones and their antioxidant activity. Bioorg. Med. Chem. Lett. 2013 23 23 6259 6263 10.1016/j.bmcl.2013.09.088 24157368
    [Google Scholar]
  7. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024 25 1 13 33 10.1038/s41580‑023‑00645‑4 37714962
    [Google Scholar]
  8. Dizdaroglu M. Coskun E. Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic. Res. 2015 49 5 525 548 10.3109/10715762.2015.1014814 25812590
    [Google Scholar]
  9. Mao Z. Bostick R.M. Associations of dietary, lifestyle, other participant characteristics, and oxidative balance scores with plasma F 2-Isoprostanes concentrations in a pooled cross-sectional study. Eur. J. Nutr. 2021 3 1 20 34860269
    [Google Scholar]
  10. Cheng K. Song Z.H. Zheng X.C. Effects of dietary vitamin E type on the growth performance and antioxidant capacity in cyclophosphamide immunosuppressed broilers. Poult. Sci. 2017 96 5 1159 1166 10.3382/ps/pew336 27665006
    [Google Scholar]
  11. Nimse S.B. Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 2015 5 35 27986 28006 10.1039/C4RA13315C
    [Google Scholar]
  12. Finley J.W. Kong A.N. Hintze K.J. Jeffery E.H. Ji L.L. Lei X.G. Antioxidants in foods: State of the science important to the food industry. J. Agric. Food Chem. 2011 59 13 6837 6846 10.1021/jf2013875 21627162
    [Google Scholar]
  13. Bouayed J. Piri K. Rammal H. Comparative evaluation of the antioxidant potential of some Iranian medicinal plants. Food Chem. 2007 104 1 364 368 10.1016/j.foodchem.2006.11.069
    [Google Scholar]
  14. Wong C.C. Li H.B. Cheng K.W. Chen F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. 2006 97 4 705 711 10.1016/j.foodchem.2005.05.049
    [Google Scholar]
  15. Shittu O.K. Abubakar A. Evaluation of phytochemicals, proximate, minerals and anti-nutritional composition of Yam peel, Maize chaff and Bean coat. IJABR 2014 6 2 21 37
    [Google Scholar]
  16. Sun W. Shahrajabian M.H. Cheng Q. The most important medicinal herbs and plants in traditional Chinese and Iranian medicinal sciences with antioxidant activities. Lett. Drug Des. Discov. 2023 20 9 1171 1184 10.2174/1570180819666220414102700
    [Google Scholar]
  17. Govaerts R. World checklist and bibliography of Euphorbiaceae. Kew The Royal Botanic Gardens 2000
    [Google Scholar]
  18. Webster G.L. Classification of the Euphorbiaceae. Ann. Mo. Bot. Gard. 1994 81 1 3 32 10.2307/2399908
    [Google Scholar]
  19. Pahlevani A.H. Liede-Schumann S. Akhani H. Diversity, distribution, endemism and conservation status of Euphorbia (Euphorbiaceae) in SW Asia and adjacent countries. Plant Syst. Evol. 2020 306 5 80 10.1007/s00606‑020‑01705‑4
    [Google Scholar]
  20. Benjamaa R. Moujanni A. Kaushik N. Choi E.H. Essamadi A.K. Kaushik N.K. Euphorbia species latex: A comprehensive review on phytochemistry and biological activities. Front Plant Sci 2022 13 1008881 10.3389/fpls.2022.1008881 36275519
    [Google Scholar]
  21. Pahlevani A. Study of the genus Euphorbia and importance of its species in Iran with emphasis on biodiversity and their conservation status. Rostaniha 2022 23 1 59 78 10.22092/BOTANY.2022.358797.1309
    [Google Scholar]
  22. Pahlevani A. Janighorban M. Flora of Iran (Euphorbiaceae). Tehran Research Institute of Forests and Rangelands 2024 53 384
    [Google Scholar]
  23. Aghili Khorasani M.H. Makhzan al-Advieh. Tehran Rah-e-kamal press 2011 1388
    [Google Scholar]
  24. Avicenna H Ghanoon DT The Canon of Medicine. Sharafkandi A, trans Tehran: Univ of Tehran Press 1978
    [Google Scholar]
  25. Pascal OA Bertrand AEV Esaïe T Sylvie H-AM Eloi AY A review of the ethnomedical uses, phytochemistry and pharmacology of the Euphorbia genus. Pharma Innov 2017 6 34 (1, Part A)
    [Google Scholar]
  26. Ghorbannia-Dellavar S. Farimani M.M. Pahlevani A.H. Khoramjouy M. Mosaddegh M. Faizi M. Antinociceptive activity of Iranian Euphorbia species in mice: Preliminary phytochemical analysis of Euphorbia malleata. S. Afr. J. Bot. 2023 159 532 543 10.1016/j.sajb.2023.05.012
    [Google Scholar]
  27. Gulcin İ. Alwasel S.H. DPPH radical scavenging assay. Processes 2023 11 8 2248 10.3390/pr11082248
    [Google Scholar]
  28. Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958 181 4617 1199 1200 10.1038/1811199a0
    [Google Scholar]
  29. Hajimehdipoor H. Ara L. Moazzeni H. Esmaeili S. Evaluating the antioxidant and acetylcholinesterase inhibitory activities of some plants from Kohgiluyeh va Boyerahmad province, Iran. Res J Pharmacogn 2016 3 4 1 7
    [Google Scholar]
  30. Galal S.A.B. Elzanfaly E.S. Hussien E.M. Amer E.A.H. Zaazaa H.E. Spectrofluorimetric determination of butylated hydroxytoluene and butylated hydroxyanisole in their combined formulation: application to butylated hydroxyanisole residual analysis in milk and butter. Sci. Rep. 2024 14 1 4498 10.1038/s41598‑024‑54483‑1 38402246
    [Google Scholar]
  31. Danne A.B. Lathi K.V. Sangshetti J.N. Khedkar V.M. Khalse L.D. Shingate B.B. New 1,2,3-triazole tethered-1,4-dihydropyridines as potential antioxidant agents: Synthesis and molecular docking study. J. Mol. Struct. 2024 1299 137129 10.1016/j.molstruc.2023.137129
    [Google Scholar]
  32. Madhavi Sastry G. Adzhigirey M. Day T. Annabhimoju R. Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013 27 3 221 234 10.1007/s10822‑013‑9644‑8 23579614
    [Google Scholar]
  33. Szerlauth A. Muráth S. Viski S. Szilagyi I. Radical scavenging activity of plant extracts from improved processing. Heliyon 2019 5 11 e02763 10.1016/j.heliyon.2019.e02763 31844703
    [Google Scholar]
  34. Thaipong K. Boonprakob U. Crosby K. Cisneros-Zevallos L. Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006 19 6-7 669 675 10.1016/j.jfca.2006.01.003
    [Google Scholar]
  35. Jun M. Fu H.Y. Hong J. Wan X. Yang C.S. Ho C.T. Comparison of antioxidant activities of isoflavones from kudzu root (Pueraria lobata Ohwi). J. Food Sci. 2003 68 6 2117 2122 10.1111/j.1365‑2621.2003.tb07029.x
    [Google Scholar]
  36. Santos CC Salvadori MS Mota VG Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J 2013 2013 949452 10.1155/2013/949452.
    [Google Scholar]
  37. Magozwi D.K. Dinala M. Mokwana N. Flavonoids from the genus euphorbia: Isolation, structure, pharmacological activities and structure–activity relationships. Pharmaceuticals 2021 14 5 428 10.3390/ph14050428 34063311
    [Google Scholar]
  38. Zare S. Moheimanian N. Firuzi O. Jassbi A.R. Antioxidant, cytotoxic and antibacterial activity and total phenol contents of the roots and the shoots of Euphorbia macrostegia and Euphorbia microsciadia. J. Environ. Treat. Tech. 2021 9 1 328 334
    [Google Scholar]
  39. Tran N. Nguyen M. Le K.P.B. Nguyen N. Tran Q. Le L. Screening of antibacterial activity, antioxidant activity, and anticancer activity of Euphorbia hirta Linn. Extracts. Appl. Sci. 2020 10 23 8408 10.3390/app10238408
    [Google Scholar]
  40. Lahmadi S. Belhamra M. Karoune S. Phenolic constituents and antioxidant activity of Euphorbia retusa Forssk. Nat. Prod. Res. 2020 34 24 3545 3547 10.1080/14786419.2019.1582040 30835550
    [Google Scholar]
  41. Senhaji S. Lamchouri F. Bouabid K. Phenolic contents and antioxidant properties of aqueous and organic extracts of a Moroccan Ajuga iva subsp. Pseudoiva. J. Herbs Spices Med. Plants 2020 26 3 248 266 10.1080/10496475.2019.1709249
    [Google Scholar]
  42. Nwozo O.S. Effiong E.M. Aja P.M. Awuchi C.G. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. Int. J. Food Prop. 2023 26 1 359 388 10.1080/10942912.2022.2157425
    [Google Scholar]
  43. Barku V.Y. Wound healing: Contributions from plant secondary metabolite antioxidants. In: Wound healing-current perspectives. Croatia IntechOpen 2019
    [Google Scholar]
  44. Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018 640 47 52 10.1016/j.abb.2018.01.004 29336940
    [Google Scholar]
  45. Gellhaar S. Sunnemark D. Eriksson H. Olson L. Galter D. Myeloperoxidase-immunoreactive cells are significantly increased in brain areas affected by neurodegeneration in Parkinson’s and Alzheimer’s disease. Cell Tissue Res. 2017 369 3 445 454 10.1007/s00441‑017‑2626‑8 28466093
    [Google Scholar]
  46. Mariani F. Roncucci L. Role of the vanins–myeloperoxidase axis in colorectal carcinogenesis. Int. J. Mol. Sci. 2017 18 5 918 10.3390/ijms18050918 28448444
    [Google Scholar]
  47. Chen G. Seukep A.J. Guo M. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs 2020 18 11 545 10.3390/md18110545 33143025
    [Google Scholar]
  48. Almeida V.M. Dias Ê.R. Souza B.C. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: In vitro and in silico assays. J. Biomol. Struct. Dyn. 2022 40 16 7574 7583 10.1080/07391102.2021.1900916 33739225
    [Google Scholar]
  49. Aldib I. Gelbcke M. Soubhye J. Novel bis-arylalkylamines as myeloperoxidase inhibitors: Design, synthesis, and structure-activity relationship study. Eur. J. Med. Chem. 2016 123 746 762 10.1016/j.ejmech.2016.07.053 27537923
    [Google Scholar]
/content/journals/cei/10.2174/0115734080383638250613050818
Loading
/content/journals/cei/10.2174/0115734080383638250613050818
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: molecular docking ; Euphorbia ; DPPH ; MPO enzyme ; Antioxidant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test