Skip to content
2000
image of Advances in Liposome Technology: An Intensive Review of Formulation, Therapeutic Applications, and Challenges

Abstract

Introduction

Liposomes are versatile drug delivery vehicles due to their nanoscale lipid bilayer vesicles, capable of encapsulating both hydrophilic and hydrophobic substances. They have shown promise in vaccine development, gene therapy, cancer treatment, and targeted drug delivery. However, their clinical applicability is limited due to factors like drug stability, manufacturing constraints, regulatory challenges, and immune responses. This study explores liposome formulations by focusing on enhanced stability, robustness, and drug-loading efficiency. It also discusses therapeutic implementation challenges.

Methods

A systematic literature review was conducted using specific keywords and Boolean operators across databases, such as Web of Science, PubMed, and Scopus. Non-peer-reviewed articles, conference abstracts, and studies with poor methodology were excluded.

Results

This review highlights advances in liposome formulation that boost therapeutic performance, enhance stability, and improve drug loading. Despite their promise, clinical application depends on overcoming issues like manufacturing complexity, regulatory constraints, and immune reaction limitations.

Discussion

Liposomes enable efficient encapsulation and targeted delivery for both hydrophilic and hydrophobic drugs, enhancing therapeutic efficacy. Their biocompatibility makes them effective in cancer therapy, vaccine transport, and gene delivery. Nevertheless, further research is needed to improve production processes and ensure long-term safety for regulatory approval and commercial scalability.

Conclusion

Liposomes hold strong potential for medical use and drug delivery. To achieve broader clinical adoption, challenges in formulation and regulation must be addressed. This review highlights recent innovations and strategies to optimize liposome-based therapeutics.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080391666250605113411
2025-07-04
2025-09-26
Loading full text...

Full text loading...

References

  1. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  2. Daraee H. Etemadi A. Kouhi M. Alimirzalu S. Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 381 391 10.3109/21691401.2014.953633 25222036
    [Google Scholar]
  3. Filipczak N. Pan J. Yalamarty S.S.K. Torchilin V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020 156 4 22 10.1016/j.addr.2020.06.022 32593642
    [Google Scholar]
  4. Dua J.S. Rana A.C. Bhandari A.K. Liposome: Methods of preparation and applications. Int J Pharm Stud Res 2022 2022 1 7
    [Google Scholar]
  5. Tenchov R. Bird R. Curtze A.E. Zhou Q. Lipid nanoparticles—from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021 15 11 16982 17015 10.1021/acsnano.1c04996 34181394
    [Google Scholar]
  6. Sang R. Stratton B. Engel A. Deng W. Liposome technologies towards colorectal cancer therapeutics. Acta Biomater. 2021 127 24 40 10.1016/j.actbio.2021.03.055 33812076
    [Google Scholar]
  7. Chang H.I. Yeh M.K. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine 2012 7 49 60 10.2147/IJN.S26766 22275822
    [Google Scholar]
  8. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  9. Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target 2015 27 7 742 61 10.1080/1061186X.2018.1527337 30239255
    [Google Scholar]
  10. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Woo Joo S, Zarghami N, Hanifehpour Y. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2022 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  11. Chrai S.S. Murari R. Ahmad I. Pharmaceutical technology 2002 Available from: www.pharmtech.com
    [Google Scholar]
  12. Castañeda-Reyes E.D. Perea-Flores M de J. Davila-Ortiz G. Lee Y. de Mejia E.G. Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review. Int. J. Nanomedicine 2020 15 7627 7650 10.2147/IJN.S263516 33116492
    [Google Scholar]
  13. Nakhaei P. Margiana R. Bokov D.O. RETRACTED: Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. 2021 9 705886 10.3389/fbioe.2021.705886 34568298
    [Google Scholar]
  14. Large D.E. Abdelmessih R.G. Fink E.A. Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021 176 113851 10.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  15. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  16. Bnyan R. Khan I. Ehtezazi T. Saleem I. Gordon S. Roberts M. Surfactant effects on lipid-based vesicles properties. J. Pharm. Sci. 2018 107 5 1237 1246 10.1016/j.xphs.2018.01.005 29336980
    [Google Scholar]
  17. Vaisar T. Wang S. Omer M. 10,12-Conjugated linoleic acid supplementation improves HDL composition and function in mice. J. Lipid Res. 2022 63 8 100241 10.1016/j.jlr.2022.100241 35714730
    [Google Scholar]
  18. Samad A. Sultana Y. Aqil M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv. 2007 4 4 297 305 10.2174/156720107782151269 17979650
    [Google Scholar]
  19. Pradhan B. Kumar N. Saha S. Roy A. Liposome: Method of preparation, advantages, evaluation and its application. J. Appl. Pharm. Res. 2015 3 3 1 8
    [Google Scholar]
  20. Tonger R. Sharma H. Setia M. A review on “development and evaluation of liposomes. World J. Pharm. Res. 2020 9 5 223 236
    [Google Scholar]
  21. Bafana AL Mundada AS Liposomes: A review. Int J Indig Herb Drugs 2020 V VI 10.46956/ijihd.vi.116
    [Google Scholar]
  22. Šturm L. Ulrih N.P. Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. Int. J. Mol. Sci. 2021 22 12 6547 10.3390/ijms22126547 34207189
    [Google Scholar]
  23. Xun Z. Li T. Xue X. The application strategy of liposomes in organ targeting therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 2 e1955 10.1002/wnan.1955 38613219
    [Google Scholar]
  24. Allen T.M. Romans A.Y. Kercret H. Segrest J.P. Detergent removal during membrane reconstitution. Biochim. Biophys. Acta Biomembr. 1980 601 328 342 10.1016/0005‑2736(80)90537‑4
    [Google Scholar]
  25. Sejwal K. Chami M. Baumgartner P. Kowal J. Müller S.A. Stahlberg H. Proteoliposomes - A system to study membrane proteins under buffer gradients by cryo-EM. Nanotechnol. Rev. 2017 6 1 57 74
    [Google Scholar]
  26. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  27. Has C. Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res. 2020 30 4 336 365 10.1080/08982104.2019.1668010 31558079
    [Google Scholar]
  28. Gu Z. Da Silva C.G. van der Maaden K. Ossendorp F. Cruz L.J. Liposome-based drug delivery systems in cancer immunotherapy. Pharmaceutics 2020 12 11 1054 10.3390/pharmaceutics12111054
    [Google Scholar]
  29. Daryl J. Clinical pharmacology of encapsulated sustained-release cytarabine. Ann. Pharmacother. 2000 34 1173 1178 10.1345/aph.19347
    [Google Scholar]
  30. Lasic D.D. Frederik P.M. Stuart M.C.A. Barenholz Y. Melntosh T.J. Gelation of liposome interior: A novel method for drug encapsulation. FEBS Lett. 1992 312 2–3 255 258 10.1016/0014‑5793(92)80947‑F
    [Google Scholar]
  31. Chen W. Goldys E.M. Deng W. Light-induced liposomes for cancer therapeutics. Prog. Lipid Res. 2020 79 101052 10.1016/j.plipres.2020.101052 32679153
    [Google Scholar]
  32. Batist G. Cardiac safety of liposomal anthracyclines. Cardiovasc. Toxicol. 2007 7 2 72 74 10.1007/s12012‑007‑0014‑4
    [Google Scholar]
  33. Honeywell-Nguyen PL Bouwstra JA Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol. 2005 126 Spring; 2 1 67 74 doi: 10.1016/j.ddtec.2005.05.003. 24981757 10.18502/cmm.7.1.6247
    [Google Scholar]
  34. Madden T.D. Janoff A.S. Cullis P.R. Incorporation of amphotericin B into large unilamellar vesicles composed of phosphatidylcholine and phosphatidylglycerol. Chem. Phys. Lipids 1990 52 3-4 189 198 10.1016/0009‑3084(90)90114‑7
    [Google Scholar]
  35. Olsen S.J. Swerdel M.R. Blue B. Clark J.M. Bonner D.P. Tissue distribution of amphotericin B lipid complex in laboratory animals. J. Pharm. Pharmacol. 1991 43 12 831 835 10.1111/j.2042‑7158.1991.tb03189.x 1687580
    [Google Scholar]
  36. Janoff A.S. Perkins W.R. Saletan S.L. Swenson C.E. Amphotericin B. Amphotericin B lipid complex (Ablc™): A molecular rationale for the attenuation of amphotericin B related toxicities. J. Liposome Res. 1993 3 3 451 471 10.3109/08982109309150730
    [Google Scholar]
  37. Adedoyin A. Bernardo J.F. Swenson C.E. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): Combined experience from phase I and phase II studies. Antimicrob. Agents Chemother. 1997 41 10 2201 2208 10.1128/AAC.41.10.2201 9333048
    [Google Scholar]
  38. Adler-moore J.P. Proffitt R.T. Development, characterization, efficacy and mode of action of ambisome, a unilamellar liposomal formulation of amphotericin B. J. Liposome Res. 1993 3 3 429 450 10.3109/08982109309150729
    [Google Scholar]
  39. Boswell G.W. Buell D. Bekersky I. AmBisome (liposomal amphotericin B): A comparative review. J. Clin. Pharmacol. 1998 38 7 583 592 10.1002/j.1552‑4604.1998.tb04464.x 9702842
    [Google Scholar]
  40. Nordling-David M.M. Golomb G. Gene delivery by liposomes. Isr. J. Chem. 2013 53 9-10 737 747 10.1002/ijch.201300055
    [Google Scholar]
  41. Tseu G.Y.W. Kamaruzaman K.A. A review of different types of liposomes and their advancements as a form of gene therapy treatment for breast cancer. Molecules 2023 28 3 1498 10.3390/molecules28031498
    [Google Scholar]
  42. De Leo V. Maurelli A.M. Giotta L. Catucci L. Liposomes containing nanoparticles: Preparation and applications. Colloids Surf. B Biointerfaces 2022 218 112737 10.1016/j.colsurfb.2022.112737 35933888
    [Google Scholar]
  43. Ohno S. Kohyama S. Taneichi M. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine 2009 27 29 3912 3920 10.1016/j.vaccine.2009.04.001 19490987
    [Google Scholar]
  44. Sharma A. Sharma U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997 154 2 123 140 10.1016/S0378‑5173(97)00135‑X
    [Google Scholar]
  45. Meure L.A. Foster N.R. Dehghani F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech 2008 9 3 798 809 10.1208/s12249‑008‑9097‑x 18597175
    [Google Scholar]
  46. Toh M.R. Chiu G.N.C. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci 2013 8 88 95 10.1016/j.ajps.2013.07.011
    [Google Scholar]
  47. Erdogan S. Ozer Y.A. Ekizoglu M. Gamma irradiation of liposomal phospholipids. Fabad J Pharm Sci 2006 31 4 182 190
    [Google Scholar]
  48. Raju R. Abuwatfa W.H. Pitt W.G. Husseini G.A. Liposomes for the treatment of brain cancer — A review. Pharmaceutics 2023 16 8 1056 10.3390/ph16081056
    [Google Scholar]
  49. Kommineni N. Chaudhari R. Conde J. Engineered liposomes in interventional theranostics of solid tumors. ACS Biomater. Sci. Eng. 2023 9 8 4527 4557 10.1021/acsbiomaterials.3c00510 37450683
    [Google Scholar]
  50. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 Feb 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  51. Mischler R Metcalfe IC Inflexal®V a trivalent virosome subunit nfluenza vaccine: production. Vaccine 2002 20 B17 23 (Suppl. 5) 10.1016/S0264‑410X(02)00512‑1 12477413
    [Google Scholar]
  52. Angst M.S. Drover D.R. Pharmacology of drugs formulated with DepoFoam: A sustained release drug delivery system for parenteral administration using multivesicular liposome technology. Clin. Pharmacokinet. 2006 45 12 1153 1176 10.2165/00003088‑200645120‑00002 17112293
    [Google Scholar]
  53. Clemons K.V. Stevens D.A. Comparative efficacies of four amphotericin B formulations--Fungizone, amphotec (Amphocil), AmBisome, and Abelcet--against systemic murine aspergillosis. Antimicrob. Agents Chemother. 2004 48 3 1047 1050 10.1128/AAC.48.3.1047‑1050.2004 14982807
    [Google Scholar]
  54. Al-Hasani R. Bruchas M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011 115 6 1363 1381 10.1097/ALN.0b013e318238bba6 22020140
    [Google Scholar]
  55. Khan O. Chaudary N. The use of amikacin liposome inhalation suspension (Arikayce) in the treatment of refractory nontuberculous mycobacterial lung disease in adults. Drug Des. Devel. Ther. 2020 14 2287 2294 10.2147/DDDT.S146111 32606598
    [Google Scholar]
  56. Kager L. Pötschger U. Bielack S. Review of mifamurtide in the treatment of patients with osteosarcoma. Ther. Clin. Risk Manag. 2010 6 Jun 279 286 10.2147/TCRM.S5688 20596505
    [Google Scholar]
  57. Carvalho B. Roland L.M. Chu L.F. Campitelli V.A. Riley E.T. Single-dose, extended-release epidural morphine (DepoDur) compared to conventional epidural morphine for post-cesarean pain. Anesth. Analg. 2007 105 1 176 183 10.1213/01.ane.0000265533.13477.26 17578973
    [Google Scholar]
  58. Passero F.C. Grapsa D. Syrigos K.N. Saif M.W. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev. Anticancer Ther. 2016 16 7 697 703 10.1080/14737140.2016.1192471 27219482
    [Google Scholar]
  59. Patel V. Dave P.Y. Liposomal technology in drug formulations: Enhancing therapeutic efficacy and safety. In: Latest Research on Drug Formulation Design. IntechOpen 2025 10.5772/intechopen.1007868
    [Google Scholar]
  60. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  61. Sapkota R. Dash A.K. Liposomes and transferosomes: A breakthrough in topical and transdermal delivery. Ther. Deliv. 2021 12 2 145 158 10.4155/tde‑2020‑0122 33583219
    [Google Scholar]
  62. Fan Y. Marioli M. Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 2021 192 113642 10.1016/j.jpba.2020.113642 33011580
    [Google Scholar]
  63. Peng P. Chen Z. Wang M. Wen B. Deng X. Polysaccharide‐modified liposomes and their application in cancer research. Chem. Biol. Drug Des. 2023 101 4 998 1011 10.1111/cbdd.14201 36597375
    [Google Scholar]
  64. Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005 4 2 145 160 10.1038/nrd1632 15688077
    [Google Scholar]
/content/journals/cei/10.2174/0115734080391666250605113411
Loading
/content/journals/cei/10.2174/0115734080391666250605113411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test