Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder marked by memory loss and cognitive decline, primarily linked to the excessive breakdown of acetylcholine by the enzyme Acetylcholinesterase (AChE), which impairs neurotransmission. Current research is exploring plant-derived compounds that inhibit AChE, offering a potential therapeutic approach for AD.

This study aimed to screen indigenous medicinal plants and their parts for acetylcholinesterase inhibitory activity.

Methods

Eleven medicinal plants from the Rajasthan state of India were collected. Twenty-six plant extracts were prepared using methanol. AChE inhibitory activity was assessed using a spectrophotometer and HPTLC bioassay based on Ellman's method. Experiments were conducted in triplicate.

Results

TLC bioautographic (qualitative) (with the concentration of methanolic extract being 10mg/ml and inhibition time approximately 15-20 minutes) and spectrophotometric (quantitative) (with the concentration of methanolic extract being 1mg/ml and inhibition time approximately 2-3 minutes) methods revealed that extracts from nine of the eleven plant species exhibited AChE inhibitory activity. Specifically, the fruit extract of Cogn exhibited maximum activity (73.72 ± 3.93%), and the flower extract of L. demonstrated minimum (19.78 ± 3.09%) acetylcholinesterase inhibitory activity.

Discussion

AChE inhibitors derived from plant extracts have gained significant attention due to their potential in managing Alzheimer’s disease. Natural AChE inhibitors are often associated with fewer side effects compared to synthetic drugs, making them promising candidates for therapeutic development. Continued exploration of plant-based inhibitors could lead to safer and more effective treatments for cognitive decline.

Conclusion

In conclusion, fourteen extracts from nine plant species exhibited notable cholinesterase inhibition, suggesting their potential as candidates for further research.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080356410250407092844
2025-10-01
2025-12-15
Loading full text...

Full text loading...

References

  1. AdamsR.L. CraigP.L. ParsonsO.A. Neuropsychology of Dementia.Neurol. Clin.19864238740410.1016/S0733‑8619(18)30976‑9 2940456
    [Google Scholar]
  2. AisenP.S. DavisK.L. The search for disease-modifying treatment for Alzheimer’s disease.Neurology1997485_sSuppl_6S35S4110.1212/WNL.48.5_Suppl_6.35S 9153159
    [Google Scholar]
  3. BartusR.T. DeanR.L. BeerB. The cholinergic hypothesis of geriatric memory dysfunction.Science19822174558408414
    [Google Scholar]
  4. BallardC. GauthierS. CorbettA. BrayneC. AarslandD. JonesE. Alzheimer’s disease.Lancet2011377977010191031
    [Google Scholar]
  5. SoreqH. SeidmanS. Acetylcholinesterase — New roles for an old actor.Nat. Rev. Neurosci.20012429430210.1038/35067589 11283752
    [Google Scholar]
  6. RoyS.K. WangJ.J. XuY.M. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.13016 36918389
    [Google Scholar]
  7. SelkoeD.J. Treatments for Alzheimer’s disease emerge.Science2021373655562462610.1126/science.abi6401 34353940
    [Google Scholar]
  8. AnandP. SinghB. A review on cholinesterase inhibitors for Alzheimer’s disease.Arch. Pharm. Res.201336437539910.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  9. AndrieuS. ColeyN. LovestoneS. AisenP.S. VellasB. Prevention of sporadic Alzheimer’s disease: Lessons learned from clinical trials and future directions.Lancet Neurol.201514992694410.1016/S1474‑4422(15)00153‑2 26213339
    [Google Scholar]
  10. SantosT.C. GomesT.M. PintoB.A.S. CamaraA.L. PaesA.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy.Front. Pharmacol.20189119210.3389/fphar.2018.01192 30405413
    [Google Scholar]
  11. MurrayA. FaraoniM. CastroM. AlzaN. CavallaroV. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy.Curr. Neuropharmacol.201311438841310.2174/1570159X11311040004 24381530
    [Google Scholar]
  12. HuangL. SuT. LiX. Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease.Curr. Top. Med. Chem.201313151864187810.2174/15680266113139990142 23931437
    [Google Scholar]
  13. FriedliM.J. InestrosaN.C. Huperzine A and its neuroprotective molecular signalling in Alzheimer’s disease.Molecules20212621653110.3390/molecules26216531 34770940
    [Google Scholar]
  14. BatihaG.E.S. AlkazmiL.M. NadwaE.H. Physostigmine: A plant alkaloid isolated from Physostigma venenosum: A review on pharmacokinetics, pharmacological and toxicological activities.J. Drug Deliv. Ther.2020101-s18719010.22270/jddt.v10i1‑s.3866
    [Google Scholar]
  15. NgY.P. OrT.C.T. IpN.Y. Plant alkaloids as drug leads for Alzheimer’s disease.Neurochem. Int.20158926027010.1016/j.neuint.2015.07.018 26220901
    [Google Scholar]
  16. KloseJ. GriehlC. RoßnerS. SchillingS. Natural products from plants and algae for treatment of Alzheimer’s disease: A review.Biomolecules202212569410.3390/biom12050694 35625622
    [Google Scholar]
  17. ShiC. LiuJ. WuF. YewD. Ginkgo biloba extract in Alzheimer’s disease: From action mechanisms to medical practice.Int. J. Mol. Sci.201011110712310.3390/ijms11010107 20162004
    [Google Scholar]
  18. ZałuskiD. KuźniewskiR. In vitro anti‐AChE, anti‐BuChE, and antioxidant activity of 12 extracts of Eleutherococcus species.Oxid. Med. Cell. Longev.201620161413513510.1155/2016/4135135 27803761
    [Google Scholar]
  19. RheeI.K. van de MeentM. IngkaninanK. VerpoorteR. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining.J. Chromatogr. A20019151-221722310.1016/S0021‑9673(01)00624‑0 11358251
    [Google Scholar]
  20. KielyJ.S. MoosW.H. PaviaM.R. SchwarzR.D. WoodardG.L. A silica gel plate-based qualitative assay for acetylcholinesterase activity: A mass method to screen for potential inhibitors.Anal. Biochem.1991196243944210.1016/0003‑2697(91)90491‑B 1663710
    [Google Scholar]
  21. EllmanG.L. CourtneyK.D. AndresV.Jr FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  22. RheeI.K. van RijnR.M. VerpoorteR. Qualitative determination of false‐positive effects in the acetylcholinesterase assay using thin layer chromatography.Phytochem. Anal.200314312713110.1002/pca.675 12793457
    [Google Scholar]
  23. CarpinellaM.C. AndrioneD.G. RuizG. PalaciosS.M. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina.Phytother. Res.201024225926310.1002/ptr.2923 19585484
    [Google Scholar]
  24. DeepikaK.A. KumariA. PrajapatiP. Pharmacological and therapeutic potential of Cucumis callosus: A novel nutritional powerhouse for the management of non-communicable diseases.Plant Foods Hum. Nutr.202378463064210.1007/s11130‑023‑01098‑y 37698772
    [Google Scholar]
  25. AttarU.A. GhaneS.G. Proximate composition, ionomics, phytochemical, antioxidant, anti-diabetic and acetylcholinesterase inhibitory activity of Cucumis species from Western Ghats of India.Indian J. Pharm. Sci.2021834
    [Google Scholar]
  26. KaulM.L.H. MangalP.D. Phenology and germination of crownbeard (Verbesina encelioides).Weed Sci.198735451351810.1017/S0043174500060471
    [Google Scholar]
  27. SteppJ.R. MoermanD.E. The importance of weeds in ethnopharmacology.J. Ethnopharmacol.2001751192310.1016/S0378‑8741(00)00385‑8 11282438
    [Google Scholar]
  28. FarshoriN.N. Verbesina encelioides-induced cytotoxicity and mitochondria-mediated apoptosis in human colon cancer cells through ROS generation.Biologia20217692711272010.1007/s11756‑021‑00781‑2
    [Google Scholar]
  29. Al-OqailM.M. SiddiquiM.A. Al-SheddiE.S. Verbesina encelioides: Cytotoxicity, cell cycle arrest, and oxidative DNA damage in human liver cancer (HepG2) cell line.BMC Complement. Altern. Med.201616112610.1186/s12906‑016‑1106‑0 27161012
    [Google Scholar]
  30. KnakeE.L. Giant foxtail: Setaria faberi Herrm. Agricultural Experiment Station.College of Agriculture1990803
    [Google Scholar]
  31. SireeshaY. KasettiR.B. NabiS.A. SwapnaS. ApparaoC. Antihyperglycemic and hypolipidemic activities of Setaria italica seeds in STZ diabetic rats.Pathophysiology201118215916410.1016/j.pathophys.2010.08.003 20869855
    [Google Scholar]
  32. DasguptaT. PoddarS. GangulyA. QaisN. Anti-inflammatory and Neuropharmacological activities of the seed extract of Setaria italica.J. Appl. Pharm. Sci.20166519319710.7324/JAPS.2016.60530
    [Google Scholar]
  33. IjazS. IqbalJ. Ahsan AbbasiB. Investigation of bioactive constituents and evaluation of in vitro bioactivities of different Setaria glauca extracts.J. King Saud Univ. Sci.202436810332110.1016/j.jksus.2024.103321
    [Google Scholar]
  34. OsmanE.E.A. ShemisM.A. Abdel-HameedE.S.S. Phytoconstituent analysis, anti-inflammatory, antimicrobial and anticancer effects of nano encapsulated Convolvulus arvensis L. extracts.BMC Complementary Medicine and Therapies202424112210.1186/s12906‑024‑04420‑6 38486187
    [Google Scholar]
  35. TousifM.I. NazirM. SaleemM. Total bioactive contents, metabolic profiling, docking studies, antioxidant and enzyme inhibition activities of Convolvulus Arvensis L. and multivariate analysis to unravel a potential herb as natural resource for pharmaceutical industry.Chem. Biodivers.20221911e20220052110.1002/cbdv.202200521 36149393
    [Google Scholar]
  36. ShendgeP.N. BelemkarS. Therapeutic potential of Luffa acutangula: A review on its traditional uses, phytochemistry, pharmacology and toxicological aspects.Front. Pharmacol.20189117710.3389/fphar.2018.01177 30459601
    [Google Scholar]
  37. SinghS.A. VellapandianC. The promising guide to LC-MS analysis and cholinesterase activity of Luffa cylindrica (L.) fruit using in vitro and in-silico analyses.Future J Pharm Sci2023913310.1186/s43094‑023‑00478‑0
    [Google Scholar]
  38. PatelS.B. GhaneS.G. Phyto-constituents profiling of Luffa echinata and in vitro assessment of antioxidant, anti-diabetic, anticancer and anti-acetylcholine esterase activities.Saudi J. Biol. Sci.20212873835384610.1016/j.sjbs.2021.03.050 34220238
    [Google Scholar]
  39. KumarM. GuptaS. KaliaK. KumarD. Role of phytoconstituents in cancer treatment: A review.Recent Adv Food Nutr Agric202415211513710.2174/012772574X274566231220051254 38369892
    [Google Scholar]
  40. TiwariA. TyagiC.K. PandeyH. ShahS.K. Pharmacological modeling and study for antidiabetic activity of Praecitrullus fistulosus leaves extracts.J. Drug Deliv. Ther.2020104-s131610.22270/jddt.v10i4‑s.4276
    [Google Scholar]
  41. KendreN. WakteP. A review on Phytochemicals and biological attributes of Madhuca longifolia.Asian J. Pharm. Pharmacol.202172748410.31024/ajpp.2021.7.2.2
    [Google Scholar]
  42. Rivas-GastelumM.F. Garcia-AmezquitaL.E. Garcia-VarelaR. Sánchez-LópezA.L. Manilkara zapota “chicozapote” as a fruit source of health-beneficial bioactive compounds and its effects on chronic degenerative and infectious diseases, a review.Front. Nutr.202310119428310.3389/fnut.2023.1194283 37469550
    [Google Scholar]
  43. FernandesC.P. CorreaA.L. CruzR.A. BotasG.D. Silva-FilhoM.V. SantosM.G. Anticholinesterasic activity of Manilkara subsericea (Mart.) Dubard triterpenes.Lat. Am. J. Pharm.201130816311634
    [Google Scholar]
  44. AbdouH.M. Abd ElkaderH.T.A.E. The potential therapeutic effects of Trifolium alexandrinum extract, hesperetin and quercetin against diabetic nephropathy via attenuation of oxidative stress, inflammation, GSK-3β and apoptosis in male rats.Chem. Biol. Interact.202235210978110.1016/j.cbi.2021.109781 34922902
    [Google Scholar]
  45. AhmadS. ZebA. AyazM. MurkovicM. Characterization of phenolic compounds using UPLC-HRMS and HPLC-DAD and anti-cholinesterase and anti-oxidant activities of Trifolium repens L. leaves.Eur. Food Res. Technol.2020246348549610.1007/s00217‑019‑03416‑8
    [Google Scholar]
  46. DanaiP. PatelS. PandeyV. Antiulcerogenic activity of Anogeissus pendula hydroalcoholic extract on pylorus ligated induced gastric ulcers in Albino Wistar rats.Phytomedicine Plus20211410012710.1016/j.phyplu.2021.100127
    [Google Scholar]
  47. YadavR. SinghD. BaghelU.S. PannuM.S. Ethnopharmacological based evaluation of Anogeissus pendula Edgew extracts for antioxidant and hepatoprotective potential.Anc. Sci. Life201736313614010.4103/asl.ASL_219_16 28867857
    [Google Scholar]
  48. BansalP. PaulP. MudgalJ. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice.Exp. Toxicol. Pathol.201264665165810.1016/j.etp.2010.12.009 21208790
    [Google Scholar]
  49. ChahardehiA.M. IbrahimD. AbolhassaniF. SulaimanS.F. Antidepressant-like effects of selected crude extracts of Pilea microphylla in mice model of depression.Am. J. Agric. Biol. Sci.201381758110.3844/ajabssp.2013.75.81
    [Google Scholar]
  50. MesulamMM The cholinergic innervation of the human cerebral cortex.Prog Brain Res2004145677810.1016/S0079‑6123(03)45004‑814650907
    [Google Scholar]
  51. InestrosaN.C. AlvarezA. PérezC.A. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme.Neuron199616488189110.1016/S0896‑6273(00)80108‑7 8608006
    [Google Scholar]
  52. AlvarezA. AlarcónR. OpazoC. Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils.J. Neurosci.19981893213322310.1523/JNEUROSCI.18‑09‑03213.1998 9547230
    [Google Scholar]
  53. FrancisP.T. PalmerA.M. SnapeM. WilcockG.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress.J. Neurol. Neurosurg. Psychiatry199966213714710.1136/jnnp.66.2.137 10071091
    [Google Scholar]
  54. BirksJ. Cholinesterase inhibitors for Alzheimer’s disease.Cochrane Database Syst. Rev.200620061CD005593 16437532
    [Google Scholar]
/content/journals/cei/10.2174/0115734080356410250407092844
Loading
/content/journals/cei/10.2174/0115734080356410250407092844
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test