Skip to content
2000
image of Unraveling the Structural and Functional Insights of Bacterial HCN Synthase Enzyme

Abstract

Introduction

The present study investigates the structural and functional attributes of HCN synthase, known for its role in metals recovery from natural and secondary sources and gaining attention in the field of biohydrometallurgy.

Methods

The nucleotide sequences of 23 bacterial strains in reference to Pseudomonas aeruginosa were procured from the UniPROT and were subjected to analyses using SWISS-MODEL, PDBsum, ESBRI, MEME, InterProScan, and MEGA X.

Results

Multiple sequence alignment showed a total of sixteen 100% conserved positions in the aligned region. The physico-chemical characteristics showed molecular weight between 39.24–46.79 kDa, pI range of 4.99–10.43, instability index from 26.69–50.66, and aliphatic index ranging from 83.07-101.59. The amino acid contents - Leucine (10.3%), Alanine (9.8%), Glycine (9.3%), Valine (6.8%), and Glutamic acid (6.3%) were found predominantly. The secondary structure revealed that the enzyme is dominated by 37.44% of amino acid residues in random coils, 36.97% in alpha-helices and 17.50% in extended sheets.

Discussion

The secondary structure prediction revealed that the enzyme consists of twelve α-helices that interact through nineteen helix-helix interactions along with twenty-three beta strands and three gamma turns. Moreover, the tertiary structure prediction showed the structural stability, consistency, and reliability of the HCN synthase protein. In addition, functional analysis unveiled the transmembrane regions, protein-protein interactions, post-translational modifications, and phosphorylation sites of the protein.

Conclusion

Fundamentally, the study uncovered valuable perspectives on a stable and consistent structure of HCN synthase, providing significant insights into its characteristics.

Thus, the present study improves the understanding of HCN synthase and offers a foundation for future research.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080349454250326070943
2025-04-24
2025-09-26
Loading full text...

Full text loading...

References

  1. Pradhan J.K. Kumar S. Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag. Res. 2012 30 11 1151 1159 10.1177/0734242X12437565 22452961
    [Google Scholar]
  2. Gurung N. Ray S. Bose S. Rai V. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int. 2013 2013 1 18 10.1155/2013/329121 24106701
    [Google Scholar]
  3. Robinson P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015 59 1 41 10.1042/bse0590001 26504249
    [Google Scholar]
  4. Jadhav U. Hocheng H. Enzymatic bioleaching of metals from printed circuit board. Clean Technol. Environ. Policy 2015 17 4 947 956 10.1007/s10098‑014‑0847‑z
    [Google Scholar]
  5. Glycine dehydrogenase (cyanide-forming) 2023 Available from: https://en.wikipedia.org/wiki/Glycine_dehydrogenase_(cyanide-forming)
  6. Sahni A. Kumar A. Kumar S. Chemo-biohydrometallurgy—A hybrid technology to recover metals from obsolete mobile SIM cards. Environ. Nanotechnol. Monit. Manag. 2016 6 130 133 10.1016/j.enmm.2016.09.003
    [Google Scholar]
  7. Laville J. Blumer C. Von Schroetter C. Gaia V. Défago G. Keel C. Haas D. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J. Bacteriol. 1998 180 12 3187 3196 10.1128/JB.180.12.3187‑3196.1998 9620970
    [Google Scholar]
  8. Blumer C. Haas D. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol. 2000 173 3 170 177 10.1007/s002039900127 10763748
    [Google Scholar]
  9. Castric P.A. Hydrogen cyanide production by Pseudomonas aeruginosa at reduced oxygen levels. Can. J. Microbiol. 1983 29 10 1344 1349 10.1139/m83‑209 6318940
    [Google Scholar]
  10. Castric P. Influence of oxygen on thePseudomonas aeruginosa hydrogen cyanide synthase. Curr. Microbiol. 1994 29 1 19 21 10.1007/BF01570186 6318940
    [Google Scholar]
  11. Wissing F. Cyanide production from glycine by a homogenate from a Pseudomonas species. J. Bacteriol. 1975 121 2 695 699 10.1128/jb.121.2.695‑699.1975 234422
    [Google Scholar]
  12. Castric P.A. Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can. J. Microbiol. 1975 21 5 613 618 10.1139/m75‑088 164997
    [Google Scholar]
  13. Liang C. J. Li J. Y. Ma C. J. Review on cyanogenic bacteria for gold recovery from e-waste. AMR 2014 878 355 367 10.4028/www.scientific.net/AMR.878.355
    [Google Scholar]
  14. Desmarais M. Pirade F. Zhang J. Rene E.R. Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. Bioresour. Technol. Rep. 2020 11 100526 10.1016/j.biteb.2020.100526
    [Google Scholar]
  15. Castric P.A. Glycine metabolism by Pseudomonas aeruginosa: Hydrogen cyanide biosynthesis. J. Bacteriol. 1977 130 2 826 831 10.1128/jb.130.2.826‑831.1977 233722
    [Google Scholar]
  16. Figueroa G. Valenzuela J.L. Parga J.R. Vazquez V. Valenzuela A. Recovery of gold and silver and removal of copper, zinc and lead ions in pregnant and barren cyanide solutions. Mater. Sci. Appl. 2015 6 2 171 182 10.4236/msa.2015.62020
    [Google Scholar]
  17. Kumar A. Saini H.S. Kumar S. Bioleaching of gold and silver from waste printed circuit boards by pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr. Microbiol. 2018 75 2 194 201 10.1007/s00284‑017‑1365‑0 29027582
    [Google Scholar]
  18. Liu R. Li J. Ge Z. Review on chromobacteriumviolaceum for gold bioleaching from e-waste. Procedia Environ. Sci. 2016 31 947 953 10.1016/j.proenv.2016.02.119
    [Google Scholar]
  19. Manila P. Hydrogen cyanide: Risk assessment, environmental, and health hazard Hazardous Gases Academic Press Cambridge, Massachusetts 2021 183 195 10.1016/B978‑0‑323‑89857‑7.00010‑4
    [Google Scholar]
  20. Dutta B. Banerjee A. Chakraborty P. Bandopadhyay R. In silico studies on bacterial xylanase enzyme: Structural and functional insight. J. Genet. Eng. Biotechnol. 2018 16 2 749 756 10.1016/j.jgeb.2018.05.003 30733796
    [Google Scholar]
  21. Hoogstrate Y. Jenster G.W. van de Werken H.J.G. FASTAFS: File system virtualisation of random access compressed FASTA files. BMC Bioinformatics 2021 22 1 535 10.1186/s12859‑021‑04455‑3 34724897
    [Google Scholar]
  22. Hasan R. Rony M.N.H. Ahmed R. In silico characterization and structural modeling of bacterial metalloprotease of family M4. J. Genet. Eng. Biotechnol. 2021 19 1 25 10.1186/s43141‑020‑00105‑y 33528696
    [Google Scholar]
  23. Perjibelski A.D. Korobeynikov A.I. Lapidus A.L. Sequence Analysis Encyclopedia of Bioinformatics and Computational Biology. 2019 Elsevier 10.1016/B978‑0‑12‑809633‑8.20106‑4
    [Google Scholar]
  24. Gasteiger E. Hoogland C. Gattiker A. Duvaud S. Wilkins M.R. Appel R.D. Bairoch A. Protein Identification and analysis tools on the ExPASy server. Proteomics Protocols Handbook Humana Press 2005 571 607 10.1385/1‑59259‑890‑0:571
    [Google Scholar]
  25. Gasteiger E. Gattiker A. Hoogland C. Ivanyi I. Appel R.D. Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003 31 13 3784 3788 10.1093/nar/gkg563 12824418
    [Google Scholar]
  26. Kumar S. Stecher G. Li M. Knyaz C. Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018 35 6 1547 1549 10.1093/molbev/msy096 29722887
    [Google Scholar]
  27. Tamura K. Nei M. Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004 101 30 11030 11035 10.1073/pnas.0404206101 15258291
    [Google Scholar]
  28. Yang Z. Rannala B. Molecular phylogenetics: Principles and practice. Nat. Rev. Genet. 2012 13 5 303 314 10.1038/nrg3186 22456349
    [Google Scholar]
  29. Mistry J. Chuguransky S. Williams L. Qureshi M. Salazar G.A. Sonnhammer E.L.L. Tosatto S.C.E. Paladin L. Raj S. Richardson L.J. Finn R.D. Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021 49 D1 D412 D419 10.1093/nar/gkaa913 33125078
    [Google Scholar]
  30. Bailey T.L. Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994 28 36 7584402
    [Google Scholar]
  31. Bailey T.L. Johnson J. Grant C.E. Noble W.S. The MEME Suite. Nucleic Acids Res. 2015 43 W1 W39 W49 10.1093/nar/gkv416 25953851
    [Google Scholar]
  32. McGinnis S. Madden T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004 32 Web Server W20 W25 10.1093/nar/gkh435 15215342
    [Google Scholar]
  33. Pradeep N.V. Anupama S. Ankitha K. Pooja J. Categorizing phenomenal features of α-Amylase (Bacillus species) using bioinformatic tools. Adv Life Sci Technol. 2012 4 27 34
    [Google Scholar]
  34. Laskowski R. A. Chistyakov V. V. Thornton J. M. New summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 2005 33 D266 D268 10.1093/nar/gki001
    [Google Scholar]
  35. Eisenberg D. Lüthy R. Bowie J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997 277 396 404 10.1016/S0076‑6879(97)77022‑8 9379925
    [Google Scholar]
  36. MacArthur M.W. Laskowski R.A. Thornton J.M. Knowledge-based validation of protein structure coordinates derived by X-ray crystallography and NMR spectroscopy. Curr. Opin. Struct. Biol. 1994 4 5 731 737 10.1016/S0959‑440X(94)90172‑4
    [Google Scholar]
  37. Krogh A. Larsson B. Heijne G.V. Sonnhammer E.L. Application to complete genomes. J. Mol. Biol. 2001 305 3 567 580 10.1006/jmbi.2000.4315 11152613
    [Google Scholar]
  38. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C.V. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  39. Blom N. Gammeltoft S. Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 1999 294 5 1351 1362 10.1006/jmbi.1999.3310 10600390
    [Google Scholar]
  40. Alderson R.G. De Ferrari L. Mavridis L. McDonagh J.L. Mitchell J.B.O. Nath N. Enzyme informatics. Curr. Top. Med. Chem. 2012 12 17 1911 1923 10.2174/156802612804547353 23116471
    [Google Scholar]
  41. Suplatov D. Voevodin V. Švedas V. Robust enzyme design: Bioinformatic tools for improved protein stability. Biotechnol. J. 2015 10 3 344 355 10.1002/biot.201400150 25524647
    [Google Scholar]
  42. Mohammed A. Guda C. Computational approaches for Automated classification of enzyme sequences. J. Proteomics Bioinform. 2011 4 8 147 152 10.4172/jpb.1000183 22114367
    [Google Scholar]
  43. Claverie J.M. Notredame C. Bioinformatics for dummies. Wiley Publishing New York 2nd ed 2007
    [Google Scholar]
  44. Sraphet S. Javadi B. Computational characterizations of GDP-mannose 4,6-dehydratase (NoeL) Rhizobial proteins. Curr. Genet. 2021 67 5 769 784 10.1007/s00294‑021‑01184‑1 33837815
    [Google Scholar]
  45. Guruprasad K Reddy BB Pandit MW A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990 4 2 155 161 10.1093/protein/4.2.155
    [Google Scholar]
  46. Rogers S Wells R Rechsteiner M Amino acid sequences common to rapidly degraded proteins. The PEST hypothesis Science 1986 234 4774 364 368 10.1126/science.2876518
    [Google Scholar]
  47. Morya V.K. Yadav S. Kim E.K. Yadav D. In silico characterization of alkaline proteases from different species of Aspergillus. Appl. Biochem. Biotechnol. 2012 166 1 243 257 10.1007/s12010‑011‑9420‑y 22072140
    [Google Scholar]
  48. Mahmoud A. Kotb E. Alqosaibi A.I. Al-Karmalawy A.A. Al-Dhuayan I.S. Alabkari H. In vitro and in silico characterization of alkaline serine protease from Bacillus subtilis D9 recovered from Saudi Arabia. Heliyon 2021 7 10 e08148 10.1016/j.heliyon.2021.e08148 34703922
    [Google Scholar]
  49. Sraphet S. Javadi B. In silico analysis of pseudomonas cellulose synthase 2020 https://repository.li.mahidol.ac.th/handle/123456789/59823
    [Google Scholar]
  50. Hasan A. Mazumder H.H. Khan A. Hossain M.U. Chowdhury H.K. Molecular characterization of Legionellosis drug target candidate enzyme phosphoglucosamine mutase from Legionella pneumophila (strain Paris): An in silico approach. Genomics Inform. 2014 12 4 268 275 10.5808/GI.2014.12.4.268 25705169
    [Google Scholar]
  51. Geourjon C. Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 1995 11 6 681 684 10.1093/bioinformatics/11.6.681 8808585
    [Google Scholar]
  52. Benkert P. Künzli M. Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009 37 Web Server issue Suppl. 2 W510 W514 10.1093/nar/gkp322 19429685
    [Google Scholar]
  53. Benkert P. Biasini M. Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011 27 3 343 350 10.1093/bioinformatics/btq662 21134891
    [Google Scholar]
  54. Yadav P.K. Singh G. Gautam B. Singh S. Yadav M. Srivastav U. Singh B. Molecular modeling, dynamics studies and virtual screening of Fructose 1, 6 biphosphate aldolase-II in community acquired- methicillin resistant Staphylococcus aureus (CA-MRSA). Bioinformation 2013 9 3 158 164 10.6026/97320630009158 23423142
    [Google Scholar]
  55. Wright P.E. Dyson H.J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol. 1999 293 2 321 331 10.1006/jmbi.1999.3110 10550212
    [Google Scholar]
  56. Singh S. Biswas S. Srivastava A. Mishra Y. Chaturvedi T.P. In silico characterization and structural modeling of a homeobox protein MSX1 from Homo sapiens. Inform. Med. Unlocked 2021 22 100497 10.1016/j.imu.2020.100497
    [Google Scholar]
  57. Ni J. Liu Y. Shen C. Chen D. Xin Y. Liu Q. Bioinformatics, bacterial expression and enzyme activity analyses of dichloromethane dehalogenase from Methylbacteriumrhodesianum H13 Biotechnol Biotechnol Equip. 2020 34 1 1065 1076 10.1080/13102818.2020.1818622
    [Google Scholar]
  58. Sraphet S. Javadi B. Application of hierarchial clustering to analyze solvent-accessible surface area patterns in Amycolatopsis lipases. Biology 2022 11 5 652 10.3390/biology11050652 35625380
    [Google Scholar]
  59. Javadi B. In silico characterization of lipase architectural structure in Rhizobium leguminosarum. Plant Cell Biotechnol. Mol. Biol. 2020 21 13-14 14
    [Google Scholar]
  60. Karalia S. Meena V.K. Kumar V. Deciphering structural variation upon biotinylation of biotin carboxyl carrier protein domain in Streptococcus pneumoniae. Int. J. Biol. Macromol. 2024 275 Pt 1 133580 10.1016/j.ijbiomac.2024.133580 38960227
    [Google Scholar]
  61. Susan C. Colonna G. Angelo M. ESBRI: A web server for evaluating salt bridges in proteins. Bioinformation 2008 3 3 137 138
    [Google Scholar]
  62. Ferruz N. Schmidt S. Höcker B. ProteinTools: A toolkit to analyze protein structures. Nucleic Acids Res. 2021 49 W1 W559 W566 10.1093/nar/gkab375 34019657
    [Google Scholar]
  63. Cazals F. Dreyfus T. The structural bioinformatics library: Modeling in biomolecular science and beyond. Bioinformatics 2017 33 7 997 1004 10.1093/bioinformatics/btw752 28062450
    [Google Scholar]
  64. Karshikoff A. Jelesarov I. Salt bridges and conformational flexibility: Effect on protein stability. Biotechnol. Biotechnol. Equip. 2008 22 1 606 611 10.1080/13102818.2008.10817520
    [Google Scholar]
  65. Basu S. Mukharjee D. Salt-bridge networks within globular and disordered proteins: Characterizing trends for designable interactions. J. Mol. Model. 2017 23 7 206 10.1007/s00894‑017‑3376‑y 28626846
    [Google Scholar]
/content/journals/cei/10.2174/0115734080349454250326070943
Loading
/content/journals/cei/10.2174/0115734080349454250326070943
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test