Skip to content
2000
image of Antioxidant and Molecular Docking Insights of Bioactive Compounds Isolated from Ficus palmata: Targeting H+K+-ATPase Enzyme and H2 Receptor

Abstract

Introduction

is a herbaceous perennial plant belonging to the family Moraceae. It is used in various diseases, e.g., gastrointestinal disorders, tumours, hypoglycaemia, ulcers, hyperlipidaemia, diabetes, and fungal infections.

Methods

The fruit of the plant was extracted. The total phenolic and total flavonoid content were determined. Following column chromatography, phytoconstituents were isolated and identified by mass spectroscopy, FTIR, and NMR. The antioxidant activity of phytoconstituents was evaluated, and molecular docking studies were performed against the H+K+-ATPase enzyme and H Receptor.

Results

The extract from yielded rich in flavonoids and phenolic content. Isolation of compounds was done and characterized to be rutin and luteolin. The further evaluation of the antioxidant activity of compounds demonstrated significant activity with an IC value indicating strong free radical scavenging activity. Molecular docking studies were performed against the H+K+-ATPase enzyme and H Receptor, revealing that both compounds exhibit high binding affinity and favourable interactions with key sites.

Discussion

The study revealed that fruit extract is a rich source of flavonoids and phenolics, notably rutin and luteolin. These compounds demonstrated strong antioxidant activity through various free radical scavenging assays. Molecular docking suggested their potential as inhibitors of the H+K+-ATPase enzyme and H receptor, indicating antiulcer potential. These findings support the therapeutic relevance of in oxidative stress-related gastric disorders.

Conclusion

The findings suggest that the isolated compounds rutin and luteolin possess potential antioxidant activity and could be a therapeutic target for the H+K+-ATPase enzyme and H Receptor.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080373426250509073139
2025-05-26
2025-08-16
Loading full text...

Full text loading...

References

  1. Dawoodi S. Dawoodi I. Dixit P. Gastrointestinal problem among Indian adults: Evidence from longitudinal aging study in India 2017–18. Front. Public Health 2022 10 911354 10.3389/fpubh.2022.911354 36225774
    [Google Scholar]
  2. Dumic I. Nordin T. Jecmenica M. Stojkovic Lalosevic M. Milosavljevic T. Milovanovic T. Gastrointestinal tract disorders in older age. Can. J. Gastroenterol. Hepatol. 2019 2019 1 19 10.1155/2019/6757524 30792972
    [Google Scholar]
  3. Liu J. Luo B. Zhou Y. Ma X. Liang J. Sang X. Lyu L. Chen W. Fu P. Liu H. Zhen S. Wang C. Wu Y. Huang Q. Liang X. Bai G. Lan Z. Zhang S. Wu Y. Li N. Guo Y. Prevalence and distribution of acute gastrointestinal illness in the community of China: A population-based face-to-face survey, 2014–2015. BMC Public Health 2023 23 1 836 10.1186/s12889‑023‑15337‑z 37158857
    [Google Scholar]
  4. Goriacko P. Veltri K.T. Pitchumoni C.S. Dharmarajan T.S. Adverse drug effects involving the gastrointestinal system (pharmacist perspective). Geriatric Gastroenterology. Springer International Publishing Cham 2021 297 339 10.1007/978‑3‑030‑30192‑7_10
    [Google Scholar]
  5. Atanasov A.G. Zotchev S.B. Dirsch V.M. Orhan I.E. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  6. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  7. Chaachouay N. Zidane L. Plant-derived natural products: A source for drug discovery and development. DDC 2024 3 1 184 207 10.3390/ddc3010011
    [Google Scholar]
  8. Foss S.R. Nakamura C.V. Ueda-Nakamura T. Cortez D.A.G. Endo E.H. Dias Filho B.P. Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Ann. Clin. Microbiol. Antimicrob. 2014 13 1 32 10.1186/s12941‑014‑0032‑6 25260038
    [Google Scholar]
  9. Lourenço S.C. Moldão-Martins M. Alves V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019 24 22 4132 10.3390/molecules24224132 31731614
    [Google Scholar]
  10. Pathak R. Chandra P. Bioactive compounds from myrica esculenta: antioxidant insights and docking studies on H+K+-ATPase and H2 receptor targets. Med Chem 2025 10.2174/0115734064366819250125070619 39917935
    [Google Scholar]
  11. Negi A Dobhal K Ghildiyal P Semwal A. Antioxidant potential and effect of extraction solvent on total phenol content, flavonoids content and tannin content of ficus palmata forssk. Int. J. Pharm. Sci. Rev. Res. 2022 49 2 19 24
    [Google Scholar]
  12. Kothiyal S.C. Saklani S. Isolation and identification of ficus palmata leaves and their antimicrobial activities. JSR 2017 9 2 193 200 10.3329/jsr.v9i2.27806
    [Google Scholar]
  13. Riaz M.B. Khan A. Qazi N.G. Pharmacological and computational evaluation of fig for therapeutic potential in hyperactive gastrointestinal disorders. BMC Complement. Altern. Med. 2019 19 1 348 10.1186/s12906‑019‑2759‑2 31796063
    [Google Scholar]
  14. Khare CP Indian Medicinal Plants: An Illustrated Dictionary. Springer New York 2008
    [Google Scholar]
  15. Joshi Y. Joshi A.K. Prasad N. Juyal D. A review on Ficus palmata (Wild Himalayan Fig). Journal of Phytopharmacology 2014 3 5 374 377 10.31254/phyto.2014.3511
    [Google Scholar]
  16. Al-Qahtani J. Abbasi A. Aati H.Y. Al-Taweel A. Al-Abdali A. Aati S. Yanbawi A.N. Abbas Khan M. Ahmad Ghalloo B. Anwar M. Khan K-R. Phytochemical, antimicrobial, antidiabetic, thrombolytic, anticancer activities, and in silico studies of Ficus palmata Forssk. Arab. J. Chem. 2023 16 2 104455 10.1016/j.arabjc.2022.104455
    [Google Scholar]
  17. Tewari D. Gupta P. Bawari S. Sah A.N. Barreca D. Khayatkashani M. Khayat Kashani H.R. Himalayan Ficus palmata L. fruit extract showed in vivo central and peripheral analgesic activity involving COX-2 and Mu opioid receptors. Plants 2021 10 8 1685 10.3390/plants10081685 34451731
    [Google Scholar]
  18. Anand U. Jacobo-Herrera N. Altemimi A. Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019 9 11 258 10.3390/metabo9110258 31683833
    [Google Scholar]
  19. Khadim S. Malik K. Kazmi A. Sultana T. Ali A. Mehmood K. Hassan R.U. Bashir M.N. Ali M.M. Folklore use of medicinal plants for the treatment of gynecological diseases in Pakistan-A review. Heliyon 2024 10 15 e34869 10.1016/j.heliyon.2024.e34869 39144941
    [Google Scholar]
  20. Atanasov A.G. Waltenberger B. Pferschy-Wenzig E.M. Linder T. Wawrosch C. Uhrin P. Temml V. Wang L. Schwaiger S. Heiss E.H. Rollinger J.M. Schuster D. Breuss J.M. Bochkov V. Mihovilovic M.D. Kopp B. Bauer R. Dirsch V.M. Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015 33 8 1582 1614 10.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  21. Onyambu M.O. Nicholas K.G. Hudson N.N. Grace N.T. Macroscopic and microscopic features of diagnostic value for Warburgia ugandensis Sprague leaf and stem-bark herbal materials. J. Pharmacogn. Phytother. 2020 12 2 36 43 10.5897/JPP2019.0569
    [Google Scholar]
  22. Sharma V. Comparative pharmacognostical and phytochemical evaluation of different species of ocimum. IJPh 2012 1 2 43 49
    [Google Scholar]
  23. Kassaw S. Tamir A. Yimam B.B. Phytochemical investigation and determination of antibacterial activities of the fruit and leaf crude extract of ficus palmata. SIJCMS 2022 5 4 61 66 10.36348/sijcms.2022.v05i04.002
    [Google Scholar]
  24. Evans WC Trease and Evans' pharmacognosy. Elsevier Health Sciences 2009
    [Google Scholar]
  25. Heinrich M Barnes J Prieto-Garcia J Gibbons S Williamson EM Fundamentals of Pharmacognosy and Phytotherapy. Elsevier Health Sciences 2023
    [Google Scholar]
  26. Kalpoutzakis E. Chatzimitakos T. Athanasiadis V. Mitakou S. Aligiannis N. Bozinou E. Gortzi O. Skaltsounis L.A. Lalas S.I. Determination of the total phenolics content and antioxidant activity of extracts from parts of plants from the greek island of crete. Plants 2023 12 5 1092 10.3390/plants12051092 36903954
    [Google Scholar]
  27. Martins G.R. Monteiro A.F. do Amaral F.R.L. da Silva A.S.A. A validated Folin-Ciocalteu method for total phenolics quantification of condensed tannin-rich açaí (Euterpe oleracea Mart.) seeds extract. J. Food Sci. Technol. 2021 58 12 4693 4702 10.1007/s13197‑020‑04959‑5 34629533
    [Google Scholar]
  28. Yimer A. Forsido S.F. Addis G. Ayelign A. Phytochemical profile and antioxidant capacity of some wild edible plants consumed in Southwest Ethiopia. Heliyon 2023 9 4 e15331 10.1016/j.heliyon.2023.e15331 37089323
    [Google Scholar]
  29. Orsavová J. Juríková T. Bednaříková R. Mlček J. Total phenolic and total flavonoid content, individual phenolic compounds and antioxidant activity in sweet rowanberry cultivars. Antioxidants 2023 12 4 913 10.3390/antiox12040913 37107288
    [Google Scholar]
  30. Sulastri E. Zubair M.S. Anas N.I. Abidin S. Hardani R. Yulianti R. Aliyah A A. Total phenolic, total flavonoid, quercetin content and antioxidant activity of standardized extract of moringa oleifera leaf from regions with different elevation. Pharmacogn. J. 2018 10 6s s104 s108 10.5530/pj.2018.6s.20
    [Google Scholar]
  31. Coskun O. Separation techniques: Chromatography. North Clin Istanb 2016 3 2 156 160 10.14744/nci.2016.32757 28058406
    [Google Scholar]
  32. Pathak R. Sachan N. Kabra A. Alanazi A.S. Alanazi M.M. Alsaif N.A. Chandra P. Isolation, characterization, development and evaluation of phytoconstituent based formulation for diabetic neuropathy. Saudi Pharm. J. 2023 31 8 101687 10.1016/j.jsps.2023.06.020 37448840
    [Google Scholar]
  33. Minh T.N. Xuan T.D. Tran H.D. Van T.M. Andriana Y. Khanh T.D. Quan N.V. Ahmad A. Isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica. Molecules 2019 24 5 889 10.3390/molecules24050889 30832436
    [Google Scholar]
  34. Eberhardt TL Li X Shupe TF Hse CYJW Chinese Tallow Tree (Sapium Sebiferum) utilization: Characterization of extractives and cell-wall chemistry. WFS 2007 39 2 319 324
    [Google Scholar]
  35. Younis U. Rahi A.A. Danish S. Ali M.A. Ahmed N. Datta R. Fahad S. Holatko J. Hammerschmiedt T. Brtnicky M. Zarei T. Baazeem A. Sabagh A.E.L. Glick B.R. Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil. PLoS One 2021 16 6 e0253390 10.1371/journal.pone.0253390 34191839
    [Google Scholar]
  36. Baliyan S. Mukherjee R. Priyadarshini A. Vibhuti A. Gupta A. Pandey R.P. Chang C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022 27 4 1326 10.3390/molecules27041326 35209118
    [Google Scholar]
  37. Gulcin İ. Alwasel S.H. DPPH radical scavenging assay. Processes 2023 11 8 2248 10.3390/pr11082248
    [Google Scholar]
  38. Patel A. Patel A. Patel A. Patel N.M. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Res. 2010 2 3 152 158 10.4103/0974‑8490.65509 21808558
    [Google Scholar]
  39. Habu J.B. Ibeh B.O. In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract. Biol. Res. 2015 48 1 16 10.1186/s40659‑015‑0007‑x 25849161
    [Google Scholar]
  40. Polu P.R. Nayanbhirama U. Khan S. Maheswari R. Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers (Willd). BMC Complement. Altern. Med. 2017 17 1 457 10.1186/s12906‑017‑1953‑3 28893230
    [Google Scholar]
  41. Lalhminghlui K. Jagetia G.C. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro. Future Sci. OA 2018 4 2 FSO272 10.4155/fsoa‑2017‑0086 29379645
    [Google Scholar]
  42. Dasgupta A. Klein K. Dasgupta A. Klein K. Methods for measuring oxidative stress in the laboratory. Antioxidants in Food, Vitamins and Supplements. Elsevier San Diego 2014 19 40 10.1016/B978‑0‑12‑405872‑9.00002‑1
    [Google Scholar]
  43. Ajjarapu S.M. Tiwari A. Taj G. Singh D.B. Singh S. Kumar S. Simulation studies, 3D QSAR and molecular docking on a point mutation of protein kinase B with flavonoids targeting ovarian Cancer. BMC Pharmacol. Toxicol. 2021 22 1 68 10.1186/s40360‑021‑00512‑y 34727985
    [Google Scholar]
  44. Massah M. Balmeh N. Goodarzi K. Allahyari Fard N. Molecular docking analysis of H1 and H2 antihistamines groups with l-asparaginase II for reducing allergenicity; an in silico approach. Inform. Med. Unlocked 2022 28 100865 10.1016/j.imu.2022.100865
    [Google Scholar]
  45. Laloo D. Sinha S.K. Prasad S.K. Hemalatha S. Gastric H. Gastric H+, K+-ATPase inhibitory effects of the active constituent isolated from Potentilla fulgens roots: An in vivo and in silico molecular docking studies. Phytomed. Plus 2021 1 3 100037 10.1016/j.phyplu.2021.100037
    [Google Scholar]
  46. Farias S.A.S. Rocha K.M.L. Nascimento É.C.M. de Jesus R.C.C. Neres P.R. Martins J.B.L. Docking and electronic structure of rutin, myricetin, and baicalein targeting 3CLpro. Int. J. Mol. Sci. 2023 24 20 15113 10.3390/ijms242015113 37894797
    [Google Scholar]
  47. Ansari P. Flatt P.R. Harriott P. Abdel-Wahab Y.H.A. Evaluation of the antidiabetic and insulin releasing effects of A. squamosa, including isolation and characterization of active phytochemicals. Plants 2020 9 10 1348 10.3390/plants9101348 33053901
    [Google Scholar]
  48. Tabaza Y.Z. Seong Z.K. Kim Y.M. Alshaer W. Aburjai T.A. Cytotoxicity of luteolin, a flavonoid compound isolated from Anthemis palestina. Trop. J. Pharm. Res. 2024 23 1 77 83 10.4314/tjpr.v23i1.10
    [Google Scholar]
  49. Tewari D Mocan A Parvanov ED Sah AN Nabavi SM Huminiecki L Ethnopharmacological approaches for therapy of jaundice: Part I. Front Pharmacol 2017 8 518 10.3389/fphar.2017.00518 28860989
    [Google Scholar]
  50. Sofowora A. Ogunbodede E. Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013 10 5 210 229 10.4314/ajtcam.v10i5.2 24311829
    [Google Scholar]
  51. Zia K. Siddiqui T. Ali S. Farooq I. Zafar M.S. Khurshid Z. Nuclear magnetic resonance spectroscopy for medical and dental applications: A comprehensive review. Eur. J. Dent. 2019 13 1 124 128 10.1055/s‑0039‑1688654 31170770
    [Google Scholar]
  52. Narayanan M. Reddy K.M. Marsicano E. Peptic ulcer disease and helicobacter pylori infection. Mo. Med. 2018 115 3 219 224 30228726
    [Google Scholar]
  53. Kuna L. Jakab J. Smolic R. Raguz-Lucic N. Vcev A. Smolic M. Peptic ulcer disease: A brief review of conventional therapy and herbal treatment options. J. Clin. Med. 2019 8 2 179 10.3390/jcm8020179 30717467
    [Google Scholar]
/content/journals/cei/10.2174/0115734080373426250509073139
Loading
/content/journals/cei/10.2174/0115734080373426250509073139
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Ficus palmata ; H+K+-ATPase enzyme ; H2 receptor ; rutin ; luteolin ; antioxidant activity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test