Skip to content
2000
image of Effectso Obeticholi Aci o Intestinal Barrier and Fecal Microbiota Diversity in Ovariectomized Mice

Abstract

Objective

Menopause causes various health problems and is related to changes in gut microbiota. Obeticholic acid can improve various postmenopausal diseases associated with increased risk by altering gut microbiota, but research on the impact of obeticholic acid on postmenopausal is still unclear.

Methods

Ovariectomy was performed on female C57BL/6J mice, and obeticholic acid intervention was administered by gavage. Plasma estradiol, diamine oxidase, and bacterial lipopolysaccharide levels were detected by ELISA, and fecal archaea, bacteria, fungi, and viruses’ diversity and relative abundance were detected by metagenomics.

Results

Ovariectomy significantly reduced plasma estradiol levels in mice and significantly increased plasma diamine oxidase and bacterial lipopolysaccharides. Obeticholic acid did not significantly alter plasma estradiol levels in ovariectomized mice, but significantly reduced plasma diamine oxidase and bacterial lipopolysaccharides, and significantly altered the diversity of fecal archaea, bacteria, and fungi in OVX mice, and changed the relative abundance of multiple microorganisms. It did not significantly alter microbial function but significantly altered microbial virulence factors.

Conclusion

Obeticholic acid improved the intestinal barrier and has a regulatory effect on the diversity of fecal microbiota in ovariectomized mice.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855379717250610083512
2025-06-23
2025-09-14
Loading full text...

Full text loading...

/deliver/fulltext/cdth/10.2174/0115748855379717250610083512/BMS-CDTH-2024-278.html?itemId=/content/journals/cdth/10.2174/0115748855379717250610083512&mimeType=html&fmt=ahah

References

  1. Singh P. Beyl R.A. Stephens J.M. Noland R.C. Richard A.J. Boudreau A. Hebert R.C. Ravussin E. Broussard J.L. St-Onge M.P. Marlatt K.L. Effect of sleep restriction on insulin sensitivity and energy metabolism in postmenopausal women: A randomized crossover trial. Obesity 2023 31 5 1204 1215 10.1002/oby.23739 36998155
    [Google Scholar]
  2. Chen Y. Huang Q. Ai P. Liu H. Chen X. Xu X. Ding G. Li Y. Feng X. Wang X. Ji L. Li D. Zhou Y. Association between serum uric acid and non-alcoholic fatty liver disease according to different menstrual status groups. Can. J. Gastroenterol. Hepatol. 2019 2019 2763093 31871925
    [Google Scholar]
  3. Greendale G.A. Jackson N.J. Shieh A. Cauley J.A. Karvonen-Gutierrez C. Ylitalo K.R. me physical activity and bone mineral density preservation during the menopause transition and postmenopause: A longitudinal cohort analysis from the study of women’s health across the nation (swan). Lancet Reg Health Am 2023 21 100481
    [Google Scholar]
  4. Williams J.A.E. Chester-Jones M. Minns Lowe C. Goff M.V. Francis A. Brewer G. Marian I. Morris S.L. Warwick D. Eldridge L. Julier P. Gulati M. Barker K.L. Barber V.S. Black J. Woollacott S. Mackworth-Young C. Glover V. Lamb S.E. Vincent T.L. Vincent K. Dutton S.J. Watt F.E. Hormone replacement therapy (conjugated oestrogens plus bazedoxifene) for post-menopausal women with symptomatic hand osteoarthritis: primary report from the HOPE-e randomised, placebo-controlled, feasibility study. Lancet Rheumatol. 2022 4 10 e725 e737 10.1016/S2665‑9913(22)00218‑1 36341025
    [Google Scholar]
  5. Murakami R. Natsume M. Ito K. Ebihara S. Terauchi M. Effect of flavanol-rich cacao extract on the profile of mood state in healthy middle-aged japanese women: A randomized, double-blind, placebo-controlled pilot study. Nutrients 2023 15 17 3843 10.3390/nu15173843 37686875
    [Google Scholar]
  6. Thongchumnum W. Vallibhakara S.A.O. Sophonsritsuk A. Vallibhakara O. Effect of vitamin e supplementation on chronic insomnia disorder in postmenopausal women: A prospective, double-blinded randomized controlled trial. Nutrients 2023 15 5 1187 10.3390/nu15051187 36904186
    [Google Scholar]
  7. Zhou Y. Xu B. Yu H. Zhao W. Song X. Liu Y. Wang K. Peacher N. Zhao X. Zhang H.T. Biochanin a attenuates ovariectomy-induced cognition deficit via antioxidant effects in female rats. Front. Pharmacol. 2021 12 603316 10.3389/fphar.2021.603316 33815102
    [Google Scholar]
  8. Baumgartner N.E. Daniel J.M. Estrogen receptor α: a critical role in successful female cognitive aging. Climacteric 2021 24 4 333 339 10.1080/13697137.2021.1875426 33522313
    [Google Scholar]
  9. Yoon K. Kim N. Roles of sex hormones and gender in the gut microbiota. J. Neurogastroenterol. Motil. 2021 27 3 314 325 10.5056/jnm20208 33762473
    [Google Scholar]
  10. Cao S. Guo D. Yin H. Ding X. Bai S. Zeng Q. Liu J. Zhang K. Mao X. Wang J. Improvement in ovarian function following fecal microbiota transplantation from high-laying rate breeders. Poult. Sci. 2023 102 3 102467 10.1016/j.psj.2022.102467 36682132
    [Google Scholar]
  11. Rafii F. The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites 2015 5 1 56 73 10.3390/metabo5010056 25594250
    [Google Scholar]
  12. Zhang W. Zhang Y. Li Y. Ma D. Zhang H. Kwok L.Y. Lacticaseibacillus rhamnosus probio-m9-driven mouse mammary tumor-inhibitory effect is accompanied by modulation of host gut microbiota, immunity, and serum metabolome. Nutrients 2022 15 1 5 10.3390/nu15010005 36615662
    [Google Scholar]
  13. Łoniewski I. Szulińska M. Kaczmarczyk M. Podsiadło K. Styburski D. Skonieczna-Żydecka K. Bogdański P. Analysis of correlations between gut microbiota, stool short chain fatty acids, calprotectin and cardiometabolic risk factors in postmenopausal women with obesity: a cross-sectional study. J. Transl. Med. 2022 20 1 585 10.1186/s12967‑022‑03801‑0 36503483
    [Google Scholar]
  14. Wang Y. Du W. Lei K. Wang B. Wang Y. Zhou Y. Li W. Effects of dietary bacillus licheniformis on gut physical barrier, immunity, and reproductive hormones of laying hens. Probiotics Antimicrob. Proteins 2017 9 3 292 299 10.1007/s12602‑017‑9252‑3 28083809
    [Google Scholar]
  15. Lv W.Q. Lin X. Shen H. Liu H.M. Qiu X. Li B.Y. Shen W.D. Ge C.L. Lv F.Y. Shen J. Xiao H.M. Deng H.W. Human gut microbiome impacts skeletal muscle mass via gut microbial synthesis of the short‐chain fatty acid butyrate among healthy menopausal women. J. Cachexia Sarcopenia Muscle 2021 12 6 1860 1870 10.1002/jcsm.12788 34472211
    [Google Scholar]
  16. Chen Q. Wang B. Wang S. Qian X. Li X. Zhao J. Zhang H. Chen W. Wang G. Modulation of the gut microbiota structure with probiotics and isoflavone alleviates metabolic disorder in ovariectomized mice. Nutrients 2021 13 6 1793 10.3390/nu13061793 34070274
    [Google Scholar]
  17. Resciniti S.M. Biesiekierski J.R. Ghasem-Zadeh A. Moschonis G. The effectiveness of a lactobacilli-based probiotic food supplement on bone mineral density and bone metabolism in australian early postmenopausal women: Protocol for a double-blind randomized placebo-controlled trial. Nutrients 2024 16 8 1150 10.3390/nu16081150 38674841
    [Google Scholar]
  18. Qian L. Gao R. Huang J. Qin H. Supplementation of triple viable probiotics combined with dietary intervention is associated with gut microbial improvement in humans on a high‑fat diet. Exp. Ther. Med. 2019 18 3 2262 2270 10.3892/etm.2019.7801 31452713
    [Google Scholar]
  19. Weersma R.K. Zhernakova A. Fu J. Interaction between drugs and the gut microbiome. Gut 2020 69 8 1510 1519 10.1136/gutjnl‑2019‑320204 32409589
    [Google Scholar]
  20. Kumar S. Raj V.S. Ahmad A. Saini V. Amoxicillin modulates gut microbiota to improve short-term high-fat diet induced pathophysiology in mice. Gut Pathog. 2022 14 1 40 10.1186/s13099‑022‑00513‑0 36229889
    [Google Scholar]
  21. Wang P. Gao J. Ke W. Wang J. Li D. Liu R. Jia Y. Wang X. Chen X. Chen F. Hu X. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic. Biol. Med. 2020 156 83 98 10.1016/j.freeradbiomed.2020.04.013 32305646
    [Google Scholar]
  22. Sun D. Bai R. Zhou W. Yao Z. Liu Y. Tang S. Ge X. Luo L. Luo C. Hu G. Sheng J. Xu Z. Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae. Gut 2021 70 4 666 676 10.1136/gutjnl‑2019‑320135 32843357
    [Google Scholar]
  23. Al Mahtab M. Akbar S.M.F. Roy P.P. Rahim M.A. Yesmin S.M.S. Islam S.B. Treatment of Nonalcoholic Steatohepatitis by Obeticholic Acid: Current Status. Euroasian J. Hepatogastroenterol. 2022 12 S1 Suppl. 1 S46 S50 10.5005/jp‑journals‑10018‑1360 36466097
    [Google Scholar]
  24. Wang Y. Matye D. Nguyen N. Zhang Y. Li T. Hnf4α regulates csad to couple hepatic taurine production to bile acid synthesis in mice. Gene Expr. 2018 18 3 187 196 10.3727/105221618X15277685544442 29871716
    [Google Scholar]
  25. Romeo M. Cipullo M. Iadanza G. Olivieri S. Gravina A.G. Pellegrino R. Panarese I. Dallio M. Federico A. A 60-year-old woman with primary biliary cholangitis and crohn’s ileitis following the suspension of ursodeoxycholic acid. Am. J. Case Rep. 2022 23 e936387 10.12659/AJCR.936387 36273261
    [Google Scholar]
  26. Ceulemans L.J. Verbeke L. Decuypere J.P. Farré R. De Hertogh G. Lenaerts K. Jochmans I. Monbaliu D. Nevens F. Tack J. Laleman W. Pirenne J. Farnesoid x receptor activation attenuates intestinal ischemia reperfusion injury in rats. PLoS One 2017 12 1 e0169331 10.1371/journal.pone.0169331 28060943
    [Google Scholar]
  27. Jing D. Liu J. Qin D. Lin J. Li T. Li Y. Duan M. Obeticholic acid ameliorates sepsis-induced renal mitochondrial damage by inhibiting the NF-κb signaling pathway. Ren. Fail. 2024 46 2 2368090 10.1080/0886022X.2024.2368090
    [Google Scholar]
  28. Meadows V. Kennedy L. Kundu D. Alpini G. Francis H. Bile acid receptor therapeutics effects on chronic liver diseases. Front. Med. 2020 7 15 10.3389/fmed.2020.00015 32064266
    [Google Scholar]
  29. Yan K. Hung A. Parmer C. Yang H. Jain D. Lim B. Goodman A.L. Garcia-Tsao G. Obeticholic acid decreases intestinal content of enterococcus in rats with cirrhosis and ascites. Hepatol. Commun. 2021 5 9 1507 1517 10.1002/hep4.1740 34510838
    [Google Scholar]
  30. Liu S.Y. Huang C.C. Yang Y.Y. Huang S.F. Lee T.Y. Li T.H. Hou M.C. Lin H.C. Obeticholic acid treatment ameliorates the cardiac dysfunction in NASH mice. PLoS One 2022 17 12 e0276717 10.1371/journal.pone.0276717 36490253
    [Google Scholar]
  31. Gou H. Liu S. Liu L. Luo M. Qin S. He K. Yang X. Obeticholic acid and 5β-cholanic acid 3 exhibit anti-tumor effects on liver cancer through CXCL16/CXCR6 pathway. Front. Immunol. 2022 13 1095915 10.3389/fimmu.2022.1095915
    [Google Scholar]
  32. Baumeister T Proaño-Vasco A Metwaly A Kleigrewe K Kuznetsov A Schömig L Microbiota metabolized bile acids accelerate gastroesophageal adenocarcinoma via FXR inhibition. bioRxiv 2024 10.1101/2024.06.11.598405
    [Google Scholar]
  33. Yan M. Hou L. Cai Y. Wang H. Ma Y. Geng Q. Jiang W. Tang W. Effects of intestinal fxr-related molecules on intestinal mucosal barriers in biliary tract obstruction. Front. Pharmacol. 2022 13 906452 10.3389/fphar.2022.906452 35770078
    [Google Scholar]
  34. Vieira A.T. Castelo P.M. Ribeiro D.A. Ferreira C.M. Influence of oral and gut microbiota in the health of menopausal women. Front. Microbiol. 2017 8 1884 10.3389/fmicb.2017.01884 29033921
    [Google Scholar]
  35. Rettedal E.A. Ilesanmi-Oyelere B.L. Roy N.C. Coad J. Kruger M.C. The gut microbiome is altered in postmenopausal women with osteoporosis and osteopenia. JBMR Plus 2021 5 3 e10452 10.1002/jbm4.10452 33778322
    [Google Scholar]
  36. Mei Z. Li D. The role of probiotics in vaginal health. Front. Cell. Infect. Microbiol. 2022 12 963868 10.3389/fcimb.2022.963868 35967876
    [Google Scholar]
  37. Friedman ES Li Y Shen T-CD Jiang J Chau L Adorini L FXR-Dependent Modulation of the Human Small Intestinal Microbiome by the Bile Acid Derivative Obeticholic Acid. Gastroenterology 2018 155 6 1741 1752 10.1053/j.gastro.2018.08.022
    [Google Scholar]
  38. Mouries J. Brescia P. Silvestri A. Spadoni I. Sorribas M. Wiest R. Mileti E. Galbiati M. Invernizzi P. Adorini L. Penna G. Rescigno M. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J. Hepatol. 2019 71 6 1216 1228 10.1016/j.jhep.2019.08.005 31419514
    [Google Scholar]
  39. Zhang L. Liu S. Ding K. Zeng B. Li B. Zhou J. Li J. Wang J. Su X. Sun R. Yanghe decoction inhibits inflammation-induced lung metastasis of colorectal cancer. J. Ethnopharmacol. 2025 340 119257 39694428
    [Google Scholar]
  40. Jiang H. Shi L. Deng T. Hou G. Xun W. Effects of cardamonin on the growth performance, intestinal barrier function and intestinal microbiota of Danzhou chickens under heat stress. Poult. Sci. 2024 103 12 104362 10.1016/j.psj.2024.104362 39426223
    [Google Scholar]
  41. Li P. Zhao S. Teng Y. Han S. Yang Y. Wu M. Guo S. Ding B. Xiao L. Yi D. Dietary supplementary with ellagic acid improves the intestinal barrier function and flora structure of broiler chicken challenged with E. coli K88. Poult. Sci. 2024 103 12 104429 10.1016/j.psj.2024.104429 39461273
    [Google Scholar]
  42. Yang Q. Wan Q. Wang Z. Curcumin mitigates polycystic ovary syndrome in mice by suppressing TLR4/MyD88/NF-κB signaling pathway activation and reducing intestinal mucosal permeability. Sci. Rep. 2024 14 1 29848 10.1038/s41598‑024‑81034‑5
    [Google Scholar]
  43. Deng L. Zhong G. Wang Q. Zhu Z. Peng Y. Mulberry leaf and konjac flour compound dietary fiber improves digestion and metabolism in elderly mice with high-fish-protein diet by regulating gut microbiota structure and intestinal tissue repair. Food Chem. X 2024 22 101295 10.1016/j.fochx.2024.101295 38550885
    [Google Scholar]
  44. Ahmed N.R. Kulkarni V.V. Pokhrel S. Akram H. Abdelgadir A. Chatterjee A. Khan S. Comparing the efficacy and safety of obeticholic acid and semaglutide in patients with non-alcoholic fatty liver disease: A systematic review. Cureus 2022 14 5 e24829 10.7759/cureus.24829 35693370
    [Google Scholar]
  45. Jin S. Li S. Fang P. Pan C. Huang S. Association of hysterectomy with nonalcoholic fatty liver disease among US women. Lipids Health Dis. 2024 23 1 34 10.1186/s12944‑024‑02020‑4 38297360
    [Google Scholar]
  46. Lonardo A. Nascimbeni F. Ballestri S. Fairweather D. Win S. Than T.A. Abdelmalek M.F. Suzuki A. Sex differences in nonalcoholic fatty liver disease: State of the art and identification of research gaps. Hepatology 2019 70 4 1457 1469 10.1002/hep.30626 30924946
    [Google Scholar]
  47. Liu J Sun J Yu J Chen H Zhang D Zhang T Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism. npj Biofilms Microbiomes 2023 9 29 10.1038/s41522‑023‑00399‑z
    [Google Scholar]
  48. da Silva T.C.A. dos Santos Gonçalves J.A. Souza LACe, Lima AA, Guerra-Sá R. The correlation of the fecal microbiome with the biochemical profile during menopause: A brazilian cohort study. BMC Womens Health 2022 ••• 22
    [Google Scholar]
  49. Liang Y. Chen Y. Lin Y. Huang W. Qiu Q. Sun C. Yuan J. Xu N. Chen X. Xu F. Shang X. Deng Y. Liu Y. Tan F. He C. Li J. Deng Q. Zhang X. Guan H. Liang Y. Fang X. Jiang X. Han L. Huang L. Yang Z. The increased tendency for anemia in traditional Chinese medicine deficient body constitution is associated with the gut microbiome. Front. Nutr. 2024 11 1359644 10.3389/fnut.2024.1359644 39360281
    [Google Scholar]
  50. Jing Y. Yuan Y. Monson M. Wang P. Mu F. Zhang Q. Na W. Zhang K. Wang Y. Leng L. Li Y. Luan P. Wang N. Guo R. Lamont S.J. Li H. Yuan H. Multi-omics association reveals the effects of intestinal microbiome–host interactions on fat deposition in broilers. Front. Microbiol. 2022 12 815538 35250914
    [Google Scholar]
  51. Song L. Ji W. Cao X. Integrated analysis of gut microbiome and its metabolites in ACE2-knockout and ACE2-overexpressed mice. Front. Cell. Infect. Microbiol. 2024 14 1404678 39086603
    [Google Scholar]
  52. Liu Y. Chang J. Bai L-D. Intestinal flora: New perspective of type 2 diabetes. World J. Clin. Cases 2024 12 11 1996 1999 38660554
    [Google Scholar]
  53. Zhang J. Microbial stars: shedding light on gut microbes’ role in insulin resistance and innovative diabetes therapies. Gut Microbes 2024 16 1 2307581 38277136
    [Google Scholar]
  54. Sepp E. Kolk H. Lõivukene K. Mikelsaar M. Higher blood glucose level associated with body mass index and gut microbiota in elderly people. Microb. Ecol. Health Dis. 2014 25 25 24936169
    [Google Scholar]
  55. Wang B. Chen K. Zhang P. Long L. Ding S. Comparison of the biochemical properties and roles in the xyloglucan-rich biomass degradation of a gh74 xyloglucanase and its cbm-deleted variant from thielavia terrestris. Int. J. Mol. Sci. 2022 23 9 23 35563667
    [Google Scholar]
  56. Tõlgo M. Hegnar O.A. Larsbrink J. Vilaplana F. Eijsink V.G.H. Olsson L. Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases. Biotechnol Biofuels Bioprod 2023 16 1 2 10.1186/s13068‑022‑02255‑2
    [Google Scholar]
  57. Caputo F. Siaperas R. Dias C. Nikolaivits E. Olsson L. Elucidating thermothielavioides terrestris secretome changes for improved saccharification of mild steam-pretreated spruce. Biotechnol Biofuels Bioprod 2024 17 1 127
    [Google Scholar]
  58. Antonelli M.A. Gaglioti A.L. Silva P.R.D. Knob A. Thermophilic fungi in araucaria forest, atlantic forest biome, brazil. An. Acad. Bras. Cienc. 2021 93 Suppl. 4 e20210714 34706012
    [Google Scholar]
  59. Dementiev A. Lillington S.P. Jin S. Kim Y. Jedrzejczak R. Michalska K. Joachimiak A. O’Malley M.A. Structure and enzymatic characterization of CelD endoglucanase from the anaerobic fungus Piromyces finnis. Appl. Microbiol. Biotechnol. 2023 107 19 5999 6011 37548665
    [Google Scholar]
  60. Perli T. Vos A.M. Bouwknegt J. Dekker W.J.C. Wiersma S.J. Mooiman C. Ortiz-Merino R.A. Daran J.M. Pronk J.T. Identification of oxygen-independent pathways for pyridine nucleotide and coenzyme a synthesis in anaerobic fungi by expression of candidate genes in yeast. MBio 2021 12 3 e00967-21 10.1128/mBio.00967‑21 34154398
    [Google Scholar]
  61. Yan M. Yin W. Fang X. Guo J. Shi H. Characteristics of a water-forming NADH oxidase from Methanobrevibacter smithii, an archaeon in the human gut. Biosci. Rep. 2016 36 6 36 27737924
    [Google Scholar]
  62. Borrel G. McCann A. Deane J. Neto M.C. Lynch D.B. Brugère J-F. O’Toole P.W. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 2017 11 9 2059 2074 28585938
    [Google Scholar]
  63. Summer E.J. Liu M. Gill J.J. Grant M. Chan-Cortes T.N. Ferguson L. Janes C. Lange K. Bertoli M. Moore C. Orchard R.C. Cohen N.D. Young R. Genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7. Appl. Environ. Microbiol. 2011 77 2 669 683 21097585
    [Google Scholar]
  64. Culbertson E.K. Bari S.M.N. Dandu V.S. Kriznik J.M. Scopel S.E. Stanley S.P. Lackey K. Hernandez A.C. Hatoum-Aslan A. Draft genome sequences of staphylococcus podophages jbug18, pike, pontiff, and pabna. Microbiol. Resour. Announc. 2019 8 8 8 30834363
    [Google Scholar]
  65. Bobrovskyy M. Oh S.Y. Missiakas D. Contribution of the EssC ATPase to the assembly of the type 7b secretion system in Staphylococcus aureus. J. Biol. Chem. 2022 298 9 102318 35921891
    [Google Scholar]
  66. Burts M.L. DeDent A.C. Missiakas D.M. EsaC substrate for the ESAT‐6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol. Microbiol. 2008 69 3 736 746 10.1111/j.1365‑2958.2008.06324.x 18554323
    [Google Scholar]
  67. Wu C. Xiong L. Liao Q. Zhang W. Xiao Y. Xie Y. Clinical manifestations, antimicrobial resistance and genomic feature analysis of multidrug-resistant Elizabethkingia strains. Ann. Clin. Microbiol. Antimicrob. 2024 23 1 32 10.1186/s12941‑024‑00691‑6 38600542
    [Google Scholar]
  68. Rymut H.E. Rund L.A. Southey B.R. Johnson R.W. Rodriguez-Zas S.L. Terpenoid backbone biosynthesis among pig hippocampal pathways impacted by stressors. Genes 2022 13 5 814 10.3390/genes13050814 35627199
    [Google Scholar]
  69. Fuhrman B.J. Feigelson H.S. Flores R. Gail M.H. Xu X. Ravel J. Goedert J.J. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 2014 99 12 4632 4640 10.1210/jc.2014‑2222 25211668
    [Google Scholar]
  70. Diebel M.E. Diebel L.N. Manke C.W. Liberati D.M. Estrogen modulates intestinal mucus physiochemical properties and protects against oxidant injury. J. Trauma Acute Care Surg. 2015 78 1 94 99 10.1097/TA.0000000000000499 25539208
    [Google Scholar]
  71. Sharawy N. Pavlovic D. Wendt M. Cerny V. Lehmann C. Evaluation of the effects of gender and estradiol treatment on the intestinal microcirculation during experimental sepsis. Microvasc. Res. 2011 82 3 397 403 10.1016/j.mvr.2011.06.010 21756921
    [Google Scholar]
  72. Leite G. Barlow G.M. Parodi G. Pimentel M.L. Chang C. Hosseini A. Wang J. Pimentel M. Mathur R. Duodenal microbiome changes in postmenopausal women: effects of hormone therapy and implications for cardiovascular risk. Menopause 2022 29 3 264 275 10.1097/GME.0000000000001917 35213514
    [Google Scholar]
  73. Guadamuro L. Azcárate-Peril M.A. Tojo R. Mayo B. Delgado S. Impact of dietary isoflavone supplementation on the fecal microbiota and its metabolites in postmenopausal women. Int. J. Environ. Res. Public Health 2021 18 15 7939 10.3390/ijerph18157939 34360231
    [Google Scholar]
  74. Sanyal A.J. Williams S.A. Lavine J.E. Neuschwander-Tetri B.A. Alexander L. Ostroff R. Biegel H. Kowdley K.V. Chalasani N. Dasarathy S. Diehl A.M. Loomba R. Hameed B. Behling C. Kleiner D.E. Karpen S.J. Williams J. Jia Y. Yates K.P. Tonascia J. Defining the serum proteomic signature of hepatic steatosis, inflammation, ballooning and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 2023 78 4 693 703 10.1016/j.jhep.2022.11.029 36528237
    [Google Scholar]
  75. Liu X. Song M. Chen X. Sun Y. Fan R. Wang L. Lin W. Hu Z. Zhao H. Activation of estrogen receptor β in the lateral habenula improves ovariectomy-induced anxiety-like behavior in rats. Front. Behav. Neurosci. 2022 16 817859 10.3389/fnbeh.2022.817859 35615566
    [Google Scholar]
  76. Wu L. Han Y. Zheng Z. Zhu S. Chen J. Yao Y. Yue S. Teufel A. Weng H. Li L. Wang B. Obeticholic acid inhibits anxiety via alleviating gut microbiota-mediated microglia accumulation in the brain of high-fat high-sugar diet mice. Nutrients 2021 13 3 940 10.3390/nu13030940 33803974
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855379717250610083512
Loading
/content/journals/cdth/10.2174/0115748855379717250610083512
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: oophorectomy ; feces ; menopause ; microbial diversity ; Obeticholic acid ; intestinal barrier
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test