Skip to content
2000
image of The Role of PGE2 in Age-related Diseases

Abstract

In the past several years, human life expectancy has increased dramatically, and the global aging process is accelerating at an unprecedented rate. Impaired organ functions and systemic inflammation increase the risk of aging-related diseases. It seriously affects the quality of life in older adults and places a heavy burden on the global economy and public health. Inflammation is the cornerstone of many age-related diseases, and among various inflammatory mediators, Prostaglandin E2 (PGE2) has emerged as a key player. For example, PGE2 could participate in the progression of Alzheimer's disease (AD) by modulating neuroinflammation. Plasma PGE2 is regarded as a potential and specific diagnostic biomarker, and higher initial PGE2 levels are positively correlated with longer survival in AD. PGE2 also mediates bone and muscle metabolism to affect age-related musculoskeletal diseases, including sarcopenia, osteoporosis, and osteoarthritis. It activates the EP4 receptor on sensory nerves to inhibit sympathetic nerve activity and modulate bone formation. Moreover, the PGE2/EP4 axis positively regulates muscle mass and strength. In diabetes, increased Cox-2 and m-PGES2 promote PGE2 production. The activated PGE2/EP3 axis exacerbates the progression of type 2 diabetes (T2D) by impairing glucose metabolism and accelerating β-cell senescence. Therefore, the role of PGE2 in age-related diseases deserves greater attention. Its involvement is driven by the dysregulation of its biosynthesis, metabolism, and receptor-mediated signaling. Regulating the concentration of PGE2 or modulating receptor activity represents a promising therapeutic strategy for managing age-related diseases.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501383329250616070727
2025-06-24
2025-11-07
Loading full text...

Full text loading...

References

  1. World social report 2023: Leaving no one behind in an ageing world. 2023 Available from: https://desapublications.un.org/publications/world-social-report-2023-leaving-no-one-behind-ageing- world
  2. López-Otín C. Blasco M.A. Partridge L. Serrano M. Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023 186 2 243 278 10.1016/j.cell.2022.11.001 36599349
    [Google Scholar]
  3. Tuttle C.S.L. Waaijer M.E.C. Slee-Valentijn M.S. Stijnen T. Westendorp R. Maier A.B. Cellular senescence and chronological age in various human tissues: A systematic review and meta-analysis. Aging Cell 2020 19 2 e13083 10.1111/acel.13083 31808308
    [Google Scholar]
  4. Zdanov S. Bernard D. Debacqchainiaux F. Martien S. Gosselin K. Vercamer C. Chelli F. Toussaint O. Abbadie C. Normal or stress-induced fibroblast senescence involves COX-2 activity. Exp. Cell Res. 2007 313 14 3046 3056 10.1016/j.yexcr.2007.04.033 17560572
    [Google Scholar]
  5. Dagouassat M. Gagliolo J.M. Chrusciel S. Bourin M.C. Duprez C. Caramelle P. Boyer L. Hue S. Stern J.B. Validire P. Longrois D. Norel X. Dubois-Randé J.L. Le Gouvello S. Adnot S. Boczkowski J. The cyclooxygenase-2-prostaglandin E2 pathway maintains senescence of chronic obstructive pulmonary disease fibroblasts. Am. J. Respir. Crit. Care Med. 2013 187 7 703 714 10.1164/rccm.201208‑1361OC 23328527
    [Google Scholar]
  6. Morrison S.J. Wandycz A.M. Akashi K. Globerson A. Weissman I.L. The aging of hematopoietic stem cells. Nat. Med. 1996 2 9 1011 1016 10.1038/nm0996‑1011 8782459
    [Google Scholar]
  7. Hoggatt J. Singh P. Sampath J. Pelus L.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009 113 22 5444 5455 10.1182/blood‑2009‑01‑201335 19324903
    [Google Scholar]
  8. Patterson A.M. Plett P.A. Sampson C.H. Simpson E. Liu Y. Pelus L.M. Orschell C.M. Prostaglandin E2 enhances aged hematopoietic stem cell function. Stem Cell Rev. Rep. 2021 17 5 1840 1854 10.1007/s12015‑021‑10177‑z 33974233
    [Google Scholar]
  9. Wang D. DuBois R.N. Eicosanoids and cancer. Nat. Rev. Cancer 2010 10 3 181 193 10.1038/nrc2809 20168319
    [Google Scholar]
  10. Xiao C.Y. Yuhki K. Hara A. Fujino T. Kuriyama S. Yamada T. Takayama K. Takahata O. Karibe H. Taniguchi T. Narumiya S. Ushikubi F. Prostaglandin E2 protects the heart from ischemia-reperfusion injury via its receptor subtype EP4. Circulation 2004 109 20 2462 2468 10.1161/01.CIR.0000128046.54681.97 15123528
    [Google Scholar]
  11. Harridge S.D.R. Lazarus N.R. Physical activity, aging, and physiological function. Physiology 2017 32 2 152 161 10.1152/physiol.00029.2016 28228482
    [Google Scholar]
  12. Santiso A. Heinemann A. Kargl J. Prostaglandin E2 in the tumor microenvironment, a convoluted affair mediated by EP receptors 2 and 4. Pharmacol. Rev. 2024 76 3 388 413 10.1124/pharmrev.123.000901 38697857
    [Google Scholar]
  13. DuBois R.N. Abramson S.B. Crofford L. Gupta R.A. Simon L.S. Putte L.B.A. Lipsky P.E. Cyclooxygenase in biology and disease. FASEB J. 1998 12 12 1063 1073 10.1096/fasebj.12.12.1063 9737710
    [Google Scholar]
  14. Cheng H. Huang H. Guo Z. Chang Y. Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 2021 11 18 8836 8854 10.7150/thno.63396 34522214
    [Google Scholar]
  15. Funk C.D. Furci L. FitzGerald G.A. Grygorczyk R. Rochette C. Bayne M.A. Abramovitz M. Adam M. Metters K.M. Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. J. Biol. Chem. 1993 268 35 26767 26772 10.1016/S0021‑9258(19)74379‑8 8253813
    [Google Scholar]
  16. Regan J.W. Bailey T.J. Pepperl D.J. Pierce K.L. Bogardus A.M. Donello J.E. Fairbairn C.E. Kedzie K.M. Woodward D.F. Gil D.W. Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP2 subtype. Mol. Pharmacol. 1994 46 2 213 220 10.1016/S0026‑895X(25)09674‑9 8078484
    [Google Scholar]
  17. Sugimoto Y. Namba T. Honda A. Hayashi Y. Negishi M. Ichikawa A. Narumiya S. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J. Biol. Chem. 1992 267 10 6463 6466 10.1016/S0021‑9258(19)50448‑3 1372606
    [Google Scholar]
  18. Nishigaki N. Negishi M. Honda A. Sugimoto Y. Namba T. Narumiya S. Ichikawa A. Identification of prostaglandin E receptor ‘EP2’ cloned from mastocytoma cells as EP4 subtype. FEBS Lett. 1995 364 3 339 341 10.1016/0014‑5793(95)00421‑5 7758593
    [Google Scholar]
  19. Woodward D.F. Jones R.L. Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: Classification of prostanoid receptors, updating 15 years of progress. Pharmacol. Rev. 2011 63 3 471 538 10.1124/pr.110.003517 21752876
    [Google Scholar]
  20. Sugimoto Y. Narumiya S. Prostaglandin E receptors. J. Biol. Chem. 2007 282 16 11613 11617 10.1074/jbc.R600038200 17329241
    [Google Scholar]
  21. Zhang S. Liu Y. Zhang X. Zhu D. Qi X. Cao X. Fang Y. Che Y. Han Z.C. He Z.X. Han Z. Li Z. Prostaglandin E 2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics 2018 8 19 5348 5361 10.7150/thno.27385 30555551
    [Google Scholar]
  22. Bao H. Cao J. Chen M. Chen M. Chen W. Chen X. Chen Y. Chen Y. Chen Y. Chen Z. Chhetri J.K. Ding Y. Feng J. Guo J. Guo M. He C. Jia Y. Jiang H. Jing Y. Li D. Li J. Li J. Liang Q. Liang R. Liu F. Liu X. Liu Z. Luo O.J. Lv J. Ma J. Mao K. Nie J. Qiao X. Sun X. Tang X. Wang J. Wang Q. Wang S. Wang X. Wang Y. Wang Y. Wu R. Xia K. Xiao F.H. Xu L. Xu Y. Yan H. Yang L. Yang R. Yang Y. Ying Y. Zhang L. Zhang W. Zhang W. Zhang X. Zhang Z. Zhou M. Zhou R. Zhu Q. Zhu Z. Cao F. Cao Z. Chan P. Chen C. Chen G. Chen H.Z. Chen J. Ci W. Ding B.S. Ding Q. Gao F. Han J.D.J. Huang K. Ju Z. Kong Q.P. Li J. Li J. Li X. Liu B. Liu F. Liu L. Liu Q. Liu Q. Liu X. Liu Y. Luo X. Ma S. Ma X. Mao Z. Nie J. Peng Y. Qu J. Ren J. Ren R. Song M. Songyang Z. Sun Y.E. Sun Y. Tian M. Wang S. Wang S. Wang X. Wang X. Wang Y.J. Wang Y. Wong C.C.L. Xiang A.P. Xiao Y. Xie Z. Xu D. Ye J. Yue R. Zhang C. Zhang H. Zhang L. Zhang W. Zhang Y. Zhang Y.W. Zhang Z. Zhao T. Zhao Y. Zhu D. Zou W. Pei G. Liu G.H. Biomarkers of aging. Sci. China Life Sci. 2023 66 5 893 1066 10.1007/s11427‑023‑2305‑0 37076725
    [Google Scholar]
  23. Johri A. Disentangling mitochondria in Alzheimer’s disease. Int. J. Mol. Sci. 2021 22 21 11520 10.3390/ijms222111520 34768950
    [Google Scholar]
  24. Breijyeh Z. Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  25. De-Paula V.J. Radanovic M. Diniz B.S. Forlenza O.V. Alzheimer’s disease. Subcell. Biochem. 2012 65 329 352 10.1007/978‑94‑007‑5416‑4_14 23225010
    [Google Scholar]
  26. Cuello A.C. Early and late CNS inflammation in Alzheimer’s disease: Two extremes of a continuum? Trends Pharmacol. Sci. 2017 38 11 956 966 10.1016/j.tips.2017.07.005 28867259
    [Google Scholar]
  27. Thomas M.H. Pelleieux S. Vitale N. Olivier J.L. Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms. Biochimie 2016 130 168 177 10.1016/j.biochi.2016.07.013 27473185
    [Google Scholar]
  28. Yasojima K. Schwab C. McGeer eg McGeer P.L. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. 1999 830 2 226 236 10.1016/S0006‑8993(99)01389‑X 10366679
    [Google Scholar]
  29. Thal L.J. Ferris S.H. Kirby L. Block G.A. Lines C.R. Yuen E. Assaid C. Nessly M.L. Norman B.A. Baranak C.C. Reines S.A. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 2005 30 6 1204 1215 10.1038/sj.npp.1300690 15742005
    [Google Scholar]
  30. Breitner J.C. Baker L.D. Montine T.J. Meinert C.L. Lyketsos C.G. Ashe K.H. Brandt J. Craft S. Evans D.E. Green R.C. Ismail M.S. Martin B.K. Mullan M.J. Sabbagh M. Tariot P.N. ADAPT Research Group Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement. 2011 7 4 402 411 10.1016/j.jalz.2010.12.014 21784351
    [Google Scholar]
  31. Combrinck M. Williams J. De Berardinis M.A. Warden D. Puopolo M. Smith A.D. Minghetti L. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2006 77 1 85 88 10.1136/jnnp.2005.063131 15944180
    [Google Scholar]
  32. Do K.V. Hjorth E. Wang Y. Jun B. Kautzmann M.A.I. Ohshima M. Eriksdotter M. Schultzberg M. Bazan N.G. Cerebrospinal fluid profile of lipid mediators in Alzheimer’s disease. Cell. Mol. Neurobiol. 2023 43 2 797 811 10.1007/s10571‑022‑01216‑5 35362880
    [Google Scholar]
  33. Shateri S. Plasma cytokines profile in patients with Alzheimer’s and Parkinson’s Disease: A comparative study in terms of inflammation. Int. J. Neurosci. 2023 ••• 1 10 38064237
    [Google Scholar]
  34. Tarkowski E. Andreasen N. Tarkowski A. Blennow K. Intrathecal inflammation precedes development of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2003 74 9 1200 1205 10.1136/jnnp.74.9.1200 12933918
    [Google Scholar]
  35. Yermakova A. O’Banion M.K. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer’s disease. Neurobiol. Aging 2001 22 6 823 836 10.1016/S0197‑4580(01)00303‑7 11754989
    [Google Scholar]
  36. Peña-Bautista C. Álvarez-Sánchez L. Ferrer I. López-Nogueroles M. Cañada-Martínez A.J. Oger C. Galano J.M. Durand T. Baquero M. Cháfer-Pericás C. Lipid peroxidation assessment in preclinical Alzheimer disease diagnosis. Antioxidants 2021 10 7 1043 10.3390/antiox10071043 34209667
    [Google Scholar]
  37. Forte A. Lara S. Peña-Bautista C. Baquero M. Cháfer-Pericás C. New approach for early and specific Alzheimer disease diagnosis from different plasma biomarkers. Clin. Chim. Acta 2024 556 117842 10.1016/j.cca.2024.117842 38417780
    [Google Scholar]
  38. Do Carmo S. Kautzmann M.A.I. Bhattacharjee S. Jun B. Steinberg C. Emmerson J.T. Malcolm J.C. Bonomo Q. Bazan N.G. Cuello A.C. Differential effect of an evolving amyloid and tau pathology on brain phospholipids and bioactive lipid mediators in rat models of Alzheimer- like pathology. J. Neuroinflammation 2024 21 1 185 10.1186/s12974‑024‑03184‑7 39080670
    [Google Scholar]
  39. Maingret V. Barthet G. Deforges S. Jiang N. Mulle C. Amédée T. PGE 2 -EP3 signaling pathway impairs hippocampal presynaptic long-term plasticity in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2017 50 13 24 10.1016/j.neurobiolaging.2016.10.012 27837675
    [Google Scholar]
  40. Cao L.L. Guan P.P. Liang Y.Y. Huang X.S. Wang P. Calcium ions stimulate the hyperphosphorylation of Tau by activating microsomal prostaglandin E synthase 1. Front. Aging Neurosci. 2019 11 108 10.3389/fnagi.2019.00108 31143112
    [Google Scholar]
  41. Akitake Y. Nakatani Y. Kamei D. Hosokawa M. Akatsu H. Uematsu S. Akira S. Kudo I. Hara S. Takahashi M. Microsomal prostaglandin E synthase-1 is induced in alzheimer’s disease and its deletion mitigates alzheimer’s disease-like pathology in a mouse model. J. Neurosci. Res. 2013 91 7 909 919 10.1002/jnr.23217 23553915
    [Google Scholar]
  42. Dai L. Wang Q. Lv X. Gao F. Chen Z. Shen Y. Elevated β-secretase 1 expression mediates CD4+ T cell dysfunction via PGE2 signalling in Alzheimer’s disease. Brain Behav. Immun. 2021 98 337 348 10.1016/j.bbi.2021.08.234 34500034
    [Google Scholar]
  43. Xia Y. Xiao Y. Wang Z.H. Liu X. Alam A.M. Haran J.P. McCormick B.A. Shu X. Wang X. Ye K. Bacteroides Fragilis in the gut microbiomes of Alzheimer’s disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice. Nat. Commun. 2023 14 1 5471 10.1038/s41467‑023‑41283‑w 37673907
    [Google Scholar]
  44. Zhen G. Kim Y.T. Li R. Yocum J. Kapoor N. Langer J. Dobrowolski P. Maruyama T. Narumiya S. Doré S. PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer’s disease. Neurobiol. Aging 2012 33 9 2215 2219 10.1016/j.neurobiolaging.2011.09.017 22015313
    [Google Scholar]
  45. Minhas P.S. Latif-Hernandez A. McReynolds M.R. Durairaj A.S. Wang Q. Rubin A. Joshi A.U. He J.Q. Gauba E. Liu L. Wang C. Linde M. Sugiura Y. Moon P.K. Majeti R. Suematsu M. Mochly-Rosen D. Weissman I.L. Longo F.M. Rabinowitz J.D. Andreasson K.I. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 2021 590 7844 122 128 10.1038/s41586‑020‑03160‑0 33473210
    [Google Scholar]
  46. Johansson J.U. Woodling N.S. Wang Q. Panchal M. Liang X. Trueba-Saiz A. Brown H.D. Mhatre S.D. Loui T. Andreasson K.I. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models. J. Clin. Invest. 2015 125 1 350 364 10.1172/JCI77487 25485684
    [Google Scholar]
  47. Liang X. Wang Q. Hand T. Wu L. Breyer R.M. Montine T.J. Andreasson K. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J. Neurosci. 2005 25 44 10180 10187 10.1523/JNEUROSCI.3591‑05.2005 16267225
    [Google Scholar]
  48. Johansson J. Woodling N. Shi J. Andreasson K. Inflammatory cyclooxygenase activity and PGE2 signaling in models of Alzheimer’s disease. Curr. Immunol. Rev. 2015 11 2 125 131 10.2174/1573395511666150707181414 28413375
    [Google Scholar]
  49. Woodling N.S. Wang Q. Priyam P.G. Larkin P. Shi J. Johansson J.U. Zagol-Ikapitte I. Boutaud O. Andreasson K.I. Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling. J. Neurosci. 2014 34 17 5882 5894 10.1523/JNEUROSCI.0410‑14.2014 24760848
    [Google Scholar]
  50. Reeve A. Simcox E. Turnbull D. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Res. Rev. 2014 14 100 19 30 10.1016/j.arr.2014.01.004 24503004
    [Google Scholar]
  51. Kumari N. Anand S. Shah K. Chauhan N.S. Sethiya N.K. Singhal M. Emerging role of plant-based bioactive compounds as therapeutics in Parkinson’s disease. Molecules 2023 28 22 7588 10.3390/molecules28227588 38005310
    [Google Scholar]
  52. Teismann P. Tieu K. Choi D.K. Wu D.C. Naini A. Hunot S. Vila M. Jackson-Lewis V. Przedborski S. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc. Natl. Acad. Sci. USA 2003 100 9 5473 5478 10.1073/pnas.0837397100 12702778
    [Google Scholar]
  53. de Meira Santos Lima M. Braga Reksidler A. Marques Zanata S. Bueno Machado H. Tufik S. Vital M.A.B.F. Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res. 2006 1101 1 117 125 10.1016/j.brainres.2006.05.016 16781689
    [Google Scholar]
  54. Ikeda-Matsuo Y. Miyata H. Mizoguchi T. Ohama E. Naito Y. Uematsu S. Akira S. Sasaki Y. Tanabe M. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson’s disease. Neurobiol. Dis. 2019 124 81 92 10.1016/j.nbd.2018.11.004 30423474
    [Google Scholar]
  55. Ahmad A.S. Maruyama T. Narumiya S. Doré S. PGE2 EP1 receptor deletion attenuates 6-OHDA-induced Parkinsonism in mice: Old switch, new target. Neurotox. Res. 2013 23 3 260 266 10.1007/s12640‑013‑9381‑8 23385625
    [Google Scholar]
  56. Carrasco E. Casper D. Werner P. PGE 2 receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE 2 neurotoxicity. J. Neurosci. Res. 2007 85 14 3109 3117 10.1002/jnr.21425 17868147
    [Google Scholar]
  57. Kang X. Qiu J. Li Q. Bell K.A. Du Y. Jung D.W. Lee J.Y. Hao J. Jiang J. Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype. Sci. Rep. 2017 7 1 9459 10.1038/s41598‑017‑09528‑z 28842681
    [Google Scholar]
  58. Carrasco E. Werner P. Casper D. Prostaglandin receptor EP2 protects dopaminergic neurons against 6-OHDA-mediated low oxidative stress. Neurosci. Lett. 2008 441 1 44 49 10.1016/j.neulet.2008.05.111 18597941
    [Google Scholar]
  59. Pradhan S.S. Salinas K. Garduno A.C. Johansson J.U. Wang Q. Manning-Bog A. Andreasson K.I. Anti-inflammatory and neuroprotective effects of PGE2 EP4 signaling in models of Parkinson’s disease. J. Neuroimmune Pharmacol. 2017 12 2 292 304 10.1007/s11481‑016‑9713‑6 27734267
    [Google Scholar]
  60. Marzetti E. Calvani R. Tosato M. Cesari M. Di Bari M. Cherubini A. Collamati A. D’Angelo E. Pahor M. Bernabei R. Landi F. Sarcopenia: An overview. Aging Clin. Exp. Res. 2017 29 1 11 17 10.1007/s40520‑016‑0704‑5 28155183
    [Google Scholar]
  61. Martel-Pelletier J. Barr A.J. Cicuttini F.M. Conaghan P.G. Cooper C. Goldring M.B. Goldring S.R. Jones G. Teichtahl A.J. Pelletier J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016 2 1 16072 10.1038/nrdp.2016.72 27734845
    [Google Scholar]
  62. Klein-Nulend J. Burger E.H. Semeins C.M. Raisz L.G. Pilbeam C.C. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J. Bone Miner. Res. 1997 12 1 45 51 10.1359/jbmr.1997.12.1.45 9240724
    [Google Scholar]
  63. Civitelli R. Cell–cell communication in the osteoblast/osteocyte lineage. Arch. Biochem. Biophys. 2008 473 2 188 192 10.1016/j.abb.2008.04.005 18424255
    [Google Scholar]
  64. Jiang J.X. Cherian P.P. Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain. Cell Commun. Adhes. 2003 10 4-6 259 264 10.1080/cac.10.4‑6.259.264 14681026
    [Google Scholar]
  65. Kondo H. Nifuji A. Takeda S. Ezura Y. Rittling S.R. Denhardt D.T. Nakashima K. Karsenty G. Noda M. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J. Biol. Chem. 2005 280 34 30192 30200 10.1074/jbc.M504179200 15961387
    [Google Scholar]
  66. Chen H. Hu B. Lv X. Zhu S. Zhen G. Wan M. Jain A. Gao B. Chai Y. Yang M. Wang X. Deng R. Wang L. Cao Y. Ni S. Liu S. Yuan W. Chen H. Dong X. Guan Y. Yang H. Cao X. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun. 2019 10 1 181 10.1038/s41467‑018‑08097‑7 30643142
    [Google Scholar]
  67. Baylink T.M. Mohan S. Fitzsimmons R.J. Baylink D.J. Evaluation of signal transduction mechanisms for the mitogenic effects of prostaglandin E2 in normal human bone cells in vitro. J. Bone Miner. Res. 1996 11 10 1413 1418 10.1002/jbmr.5650111007 8889840
    [Google Scholar]
  68. Zhao D. Riquelme M.A. Guda T. Tu C. Xu H. Gu S. Jiang J.X. Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading. eLife 2022 11 e74365 10.7554/eLife.74365 35132953
    [Google Scholar]
  69. Yoshida K. Oida H. Kobayashi T. Maruyama T. Tanaka M. Katayama T. Yamaguchi K. Segi E. Tsuboyama T. Matsushita M. Ito K. Ito Y. Sugimoto Y. Ushikubi F. Ohuchida S. Kondo K. Nakamura T. Narumiya S. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc. Natl. Acad. Sci. USA 2002 99 7 4580 4585 10.1073/pnas.062053399 11917107
    [Google Scholar]
  70. Li M. Healy D.R. Li Y. Simmons H.A. Crawford D.T. Ke H.Z. Pan L.C. Brown T.A. Thompson D.D. Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone 2005 37 1 46 54 10.1016/j.bone.2005.03.016 15869929
    [Google Scholar]
  71. Haartmans M.J.J. Timur U.T. Emanuel K.S. Caron M.M.J. Jeuken R.M. Welting T.J.M. van Osch G.J.V.M. Heeren R.M.A. Cillero-Pastor B. Emans P.J. Evaluation of the anti-inflammatory and chondroprotective effect of celecoxib on cartilage ex-vivo and in a rat osteoarthritis model. Cartilage 2022 13 3 10.1177/19476035221115541 35932105
    [Google Scholar]
  72. Jänig W. Green P.G. Acute inflammation in the joint: Its control by the sympathetic nervous system and by neuroendocrine systems. Auton. Neurosci. 2014 182 42 54 10.1016/j.autneu.2014.01.001 24530113
    [Google Scholar]
  73. Lin C.R. Amaya F. Barrett L. Wang H. Takada J. Samad T.A. Woolf C.J. Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. J. Pharmacol. Exp. Ther. 2006 319 3 1096 1103 10.1124/jpet.106.105569 16966471
    [Google Scholar]
  74. Zhu J. Zhen G. An S. Wang X. Wan M. Li Y. Chen Z. Guan Y. Dong X. Hu Y. Cao X. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. eLife 2020 9 e57656 10.7554/eLife.57656 32441256
    [Google Scholar]
  75. Jiang W. Jin Y. Zhang S. Ding Y. Huo K. Yang J. Zhao L. Nian B. Zhong T.P. Lu W. Zhang H. Cao X. Shah K.M. Wang N. Liu M. Luo J. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res. 2022 10 1 27 10.1038/s41413‑022‑00201‑4 35260562
    [Google Scholar]
  76. Su W. Liu G. Mohajer B. Wang J. Shen A. Zhang W. Liu B. Guermazi A. Gao P. Cao X. Demehri S. Wan M. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. eLife 2022 11 e79773 10.7554/eLife.79773 35881544
    [Google Scholar]
  77. Otsuka S. Aoyama T. Furu M. Ito K. Jin Y. Nasu A. Fukiage K. Kohno Y. Maruyama T. Kanaji T. Nishiura A. Sugihara H. Fujimura S. Otsuka T. Nakamura T. Toguchida J. PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage. Osteoarthritis Cartilage 2009 17 4 529 538 10.1016/j.joca.2008.09.003 18922704
    [Google Scholar]
  78. Jin Y. Liu Q. Chen P. Zhao S. Jiang W. Wang F. Li P. Zhang Y. Lu W. Zhong T.P. Ma X. Wang X. Gartland A. Wang N. Shah K.M. Zhang H. Cao X. Yang L. Liu M. Luo J. A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage regeneration. Cell Discov. 2022 8 1 24 10.1038/s41421‑022‑00382‑6 35256606
    [Google Scholar]
  79. Ho A.T.V. Palla A.R. Blake M.R. Yucel N.D. Wang Y.X. Magnusson K.e.g. Holbrook C.A. Kraft P.E. Delp S.L. Blau H.M. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc. Natl. Acad. Sci. USA 2017 114 26 6675 6684 10.1073/pnas.1705420114 28607093
    [Google Scholar]
  80. Palla A.R. Ravichandran M. Wang Y.X. Alexandrova L. Yang A.V. Kraft P. Holbrook C.A. Schürch C.M. Ho A.T.V. Blau H.M. Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Science 2021 371 6528 eabc8059 10.1126/science.abc8059 33303683
    [Google Scholar]
  81. Li G. Zhang L. Lu Z. Yang B. Yang H. Shang P. Jiang J.X. Wang D. Xu H. Connexin 43 channels in osteocytes are necessary for bone mass and skeletal muscle function in aged male mice. Int. J. Mol. Sci. 2022 23 21 13506 10.3390/ijms232113506 36362291
    [Google Scholar]
  82. Bakooshli M.A. Wang Y.X. Monti E. Su S. Kraft P. Nalbandian M. Alexandrova L. Wheeler J.R. Vogel H. Blau H.M. Regeneration of neuromuscular synapses after acute and chronic denervation by inhibiting the gerozyme 15-prostaglandin dehydrogenase. Sci. Transl. Med. 2023 15 717 eadg1485 10.1126/scitranslmed.adg1485 37820010
    [Google Scholar]
  83. Gavazzi G. Krause K.H. Ageing and infection. Lancet Infect. Dis. 2002 2 11 659 666 10.1016/S1473‑3099(02)00437‑1 12409046
    [Google Scholar]
  84. Fry A.M. Shay D.K. Holman R.C. Curns A.T. Anderson L.J. Trends in hospitalizations for pneumonia among persons aged 65 years or older in the United States, 1988-2002. JAMA 2005 294 21 2712 2719 10.1001/jama.294.21.2712 16333006
    [Google Scholar]
  85. Thompson W.W. Shay D.K. Weintraub E. Brammer L. Bridges C.B. Cox N.J. Fukuda K. Influenza-Associated Hospitalizations in the United States. JAMA 2004 292 11 1333 1340 10.1001/jama.292.11.1333 15367555
    [Google Scholar]
  86. Ricke-Hoch M. Stelling E. Lasswitz L. Gunesch A.P. Kasten M. Zapatero-Belinchón F.J. Brogden G. Gerold G. Pietschmann T. Montiel V. Balligand J.L. Facciotti F. Hirsch E. Gausepohl T. Elbahesh H. Rimmelzwaan G.F. Höfer A. Kühnel M.P. Jonigk D. Eigendorf J. Tegtbur U. Mink L. Scherr M. Illig T. Schambach A. Pfeffer T.J. Hilfiker A. Haverich A. Hilfiker-Kleiner D. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS One 2021 16 8 e0255335 10.1371/journal.pone.0255335 34347801
    [Google Scholar]
  87. Srivastava S. Ernst J.D. Desvignes L. Beyond macrophages: The diversity of mononuclear cells in tuberculosis. Immunol. Rev. 2014 262 1 179 192 10.1111/imr.12217 25319335
    [Google Scholar]
  88. Hussell T. Bell T.J. Alveolar macrophages: Plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014 14 2 81 93 10.1038/nri3600 24445666
    [Google Scholar]
  89. Penke L.R. Speth J.M. Draijer C. Zaslona Z. Chen J. Mancuso P. Freeman C.M. Curtis J.L. Goldstein D.R. Peters-Golden M. PGE 2 accounts for bidirectional changes in alveolar macrophage self-renewal with aging and smoking. Life Sci. Alliance 2020 3 11 e202000800 10.26508/lsa.202000800 32820026
    [Google Scholar]
  90. Vijay R. Hua X. Meyerholz D.K. Miki Y. Yamamoto K. Gelb M. Murakami M. Perlman S. Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome–CoV infection. J. Exp. Med. 2015 212 11 1851 1868 10.1084/jem.20150632 26392224
    [Google Scholar]
  91. Chen J. Deng J.C. Zemans R.L. Bahmed K. Kosmider B. Zhang M. Peters-Golden M. Goldstein D.R. Age-induced prostaglandin E2 impairs mitochondrial fitness and increases mortality to influenza infection. Nat. Commun. 2022 13 1 6759 10.1038/s41467‑022‑34593‑y 36351902
    [Google Scholar]
  92. Wong C.K. Smith C.A. Sakamoto K. Kaminski N. Koff J.L. Goldstein D.R. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. J. Immunol. 2017 199 3 1060 1068 10.4049/jimmunol.1700397 28646038
    [Google Scholar]
  93. Degraaf A.J. Zasłona Z. Bourdonnay E. Peters-Golden M. Prostaglandin E2 reduces Toll-like receptor 4 expression in alveolar macrophages by inhibition of translation. Am. J. Respir. Cell Mol. Biol. 2014 51 2 242 250 10.1165/rcmb.2013‑0495OC 24601788
    [Google Scholar]
  94. Aronoff D.M. Canetti C. Peters-Golden M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J. Immunol. 2004 173 1 559 565 10.4049/jimmunol.173.1.559 15210817
    [Google Scholar]
  95. Pernet E. Sun S. Sarden N. Gona S. Nguyen A. Khan N. Mawhinney M. Tran K.A. Chronopoulos J. Amberkar D. Sadeghi M. Grant A. Wali S. Prevel R. Ding J. Martin J.G. Thanabalasuriar A. Yipp B.G. Barreiro L.B. Divangahi M. Neonatal imprinting of alveolar macrophages via neutrophil-derived 12-HETE. Nature 2023 614 7948 530 538 10.1038/s41586‑022‑05660‑7 36599368
    [Google Scholar]
  96. Aguayo-Mazzucato C. Andle J. Lee T.B. Jr Midha A. Talemal L. Chipashvili V. Hollister-Lock J. van Deursen J. Weir G. Bonner-Weir S. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 2019 30 1 129 142.e4 10.1016/j.cmet.2019.05.006 31155496
    [Google Scholar]
  97. Tans R. Bande R. van Rooij A. Molloy B.J. Stienstra R. Tack C.J. Wevers R.A. Wessels H.J.C.T. Gloerich J. van Gool A.J. Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry. Prostaglandins Leukot. Essent. Fatty Acids 2020 160 102157 10.1016/j.plefa.2020.102157 32629236
    [Google Scholar]
  98. Xia F. He C. Ren M. Xu F.G. Wan J.B. Quantitative profiling of eicosanoids derived from n-6 and n-3 polyunsaturated fatty acids by twin derivatization strategy combined with LC-MS/MS in patients with type 2 diabetes mellitus. Anal. Chim. Acta 2020 1120 24 35 10.1016/j.aca.2020.04.064 32475388
    [Google Scholar]
  99. Fenske R. Prostaglandin E2 (PGE2) levels as a predictor of type 2 diabetes control in human subjects: A cross-sectional view of initial cohort study data. FASEB J 2017 31 S1 675.6 675.6 10.1096/fasebj.31.1_supplement.675.6
    [Google Scholar]
  100. Amior L. Srivastava R. Nano R. Bertuzzi F. Melloul D. The role of Cox-2 and prostaglandin E 2 receptor EP3 in pancreatic β-cell death. FASEB J. 2019 33 4 4975 4986 10.1096/fj.201801823R 30629897
    [Google Scholar]
  101. Hundal R.S. Petersen K.F. Mayerson A.B. Randhawa P.S. Inzucchi S. Shoelson S.E. Shulman G.I. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 2002 109 10 1321 1326 10.1172/JCI0214955 12021247
    [Google Scholar]
  102. Parazzoli S. Harmon J.S. Vallerie S.N. Zhang T. Zhou H. Robertson R.P. Cyclooxygenase-2, not microsomal prostaglandin E synthase-1, is the mechanism for interleukin-1β-induced prostaglandin E2 production and inhibition of insulin secretion in pancreatic islets. J. Biol. Chem. 2012 287 38 32246 32253 10.1074/jbc.M112.364612 22822059
    [Google Scholar]
  103. Zhong D. Wan Z. Cai J. Quan L. Zhang R. Teng T. Gao H. Fan C. Wang M. Guo D. Zhang H. Jia Z. Sun Y. mPGES-2 blockade antagonizes β- cell senescence to ameliorate diabetes by acting on NR4A1. Nat. Metab. 2022 4 2 269 283 10.1038/s42255‑022‑00536‑6 35228744
    [Google Scholar]
  104. Bosma K.J. Andrei S.R. Katz L.S. Smith A.A. Dunn J.C. Ricciardi V.F. Ramirez M.A. Baumel-Alterzon S. Pace W.A. Carroll D.T. Overway E.M. Wolf E.M. Kimple M.E. Sheng Q. Scott D.K. Breyer R.M. Gannon M. Pharmacological blockade of the EP3 prostaglandin E2 receptor in the setting of type 2 diabetes enhances β-cell proliferation and identity and relieves oxidative damage. Mol. Metab. 2021 54 101347 10.1016/j.molmet.2021.101347 34626853
    [Google Scholar]
  105. Kimple M.E. Keller M.P. Rabaglia M.R. Pasker R.L. Neuman J.C. Truchan N.A. Brar H.K. Attie A.D. Prostaglandin E2 receptor, EP3, is induced in diabetic islets and negatively regulates glucose- and hormone-stimulated insulin secretion. Diabetes 2013 62 6 1904 1912 10.2337/db12‑0769 23349487
    [Google Scholar]
  106. Fisher G.J. Varani J. Voorhees J.J. Looking Older. Arch. Dermatol. 2008 144 5 666 672 10.1001/archderm.144.5.666 18490597
    [Google Scholar]
  107. Li Y. Lei D. Swindell W.R. Xia W. Weng S. Fu J. Worthen C.A. Okubo T. Johnston A. Gudjonsson J.E. Voorhees J.J. Fisher G.J. Age-associated increase in skin fibroblast–derived prostaglandin E 2 contributes to reduced collagen levels in elderly human skin. J. Invest. Dermatol. 2015 135 9 2181 2188 10.1038/jid.2015.157 25905589
    [Google Scholar]
  108. Oh J. Lee Y.D. Wagers A.J. Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat. Med. 2014 20 8 870 880 10.1038/nm.3651 25100532
    [Google Scholar]
  109. Pelus L.M. Hoggatt J. Singh P. Pulse exposure of haematopoietic grafts to prostaglandin E2 in vitro facilitates engraftment and recovery. Cell Prolif 2011 44 Suppl 1 22 29 10.1111/j.1365‑2184.2010.00726.x 21481039
    [Google Scholar]
  110. Guo J. Huang X. Dou L. Yan M. Shen T. Tang W. Li J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022 7 1 391 10.1038/s41392‑022‑01251‑0 36522308
    [Google Scholar]
  111. Sanchez-Mejia R.O. Newman J.W. Toh S. Yu G.Q. Zhou Y. Halabisky B. Cissé M. Scearce-Levie K. Cheng I.H. Gan L. Palop J.J. Bonventre J.V. Mucke L. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat. Neurosci. 2008 11 11 1311 1318 10.1038/nn.2213 18931664
    [Google Scholar]
  112. He Y. Liu Y. Zhang M. The beneficial effects of curcumin on aging and age-related diseases: From oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front. Aging Neurosci. 2025 17 1533963 10.3389/fnagi.2025.1533963 39906716
    [Google Scholar]
  113. Bhat M. Saha P. Narasimhan M. Shelar A. Hole A. Murali Krishna C. Govekar R. Analysis of lipids by Raman spectroscopy and mass spectrometry provides a detection tool and mechanistic insight into imatinib resistance in CML-BC. Biochim. Biophys. Acta, Gen. Subj. 2025 1869 4 130771 10.1016/j.bbagen.2025.130771 39938699
    [Google Scholar]
  114. Bartram H.P. Gostner A. Scheppach W. Reddy B.S. Rao C.V. Dusel G. Richter F. Richter A. Kasper H. Effects of fish oil on rectal cell proliferation, mucosal fatty acids, and prostaglandin E2 release in healthy subjects. Gastroenterology 1993 105 5 1317 1322 10.1016/0016‑5085(93)90135‑Y 8224635
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501383329250616070727
Loading
/content/journals/cdt/10.2174/0113894501383329250616070727
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: prostaglandin E receptors ; Prostaglandin E2 ; inflammation ; aging
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test