Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

In the past several years, human life expectancy has increased dramatically, and the global aging process is accelerating at an unprecedented rate. Impaired organ functions and systemic inflammation increase the risk of aging-related diseases. It seriously affects the quality of life in older adults and places a heavy burden on the global economy and public health. Inflammation is the cornerstone of many age-related diseases, and among various inflammatory mediators, Prostaglandin E2 (PGE2) has emerged as a key player. For example, PGE2 could participate in the progression of Alzheimer's disease (AD) by modulating neuroinflammation. Plasma PGE2 is regarded as a potential and specific diagnostic biomarker, and higher initial PGE2 levels are positively correlated with longer survival in AD. PGE2 also mediates bone and muscle metabolism to affect age-related musculoskeletal diseases, including sarcopenia, osteoporosis, and osteoarthritis. It activates the EP4 receptor on sensory nerves to inhibit sympathetic nerve activity and modulate bone formation. Moreover, the PGE2/EP4 axis positively regulates muscle mass and strength. In diabetes, increased Cox-2 and m-PGES2 promote PGE2 production. The activated PGE2/EP3 axis exacerbates the progression of type 2 diabetes (T2D) by impairing glucose metabolism and accelerating β-cell senescence. Therefore, the role of PGE2 in age-related diseases deserves greater attention. Its involvement is driven by the dysregulation of its biosynthesis, metabolism, and receptor-mediated signaling. Regulating the concentration of PGE2 or modulating receptor activity represents a promising therapeutic strategy for managing age-related diseases.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501383329250616070727
2025-06-24
2025-12-08
Loading full text...

Full text loading...

References

  1. World social report 2023: Leaving no one behind in an ageing world.2023Available from: https://desapublications.un.org/publications/world-social-report-2023-leaving-no-one-behind-ageing-world
  2. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. Hallmarks of aging: An expanding universe.Cell2023186224327810.1016/j.cell.2022.11.00136599349
    [Google Scholar]
  3. TuttleC.S.L. WaaijerM.E.C. Slee-ValentijnM.S. StijnenT. WestendorpR. MaierA.B. Cellular senescence and chronological age in various human tissues: A systematic review and meta-analysis.Aging Cell2020192e1308310.1111/acel.1308331808308
    [Google Scholar]
  4. ZdanovS. BernardD. DebacqchainiauxF. MartienS. GosselinK. VercamerC. ChelliF. ToussaintO. AbbadieC. Normal or stress-induced fibroblast senescence involves COX-2 activity.Exp. Cell Res.2007313143046305610.1016/j.yexcr.2007.04.03317560572
    [Google Scholar]
  5. DagouassatM. GaglioloJ.M. ChruscielS. BourinM.C. DuprezC. CaramelleP. BoyerL. HueS. SternJ.B. ValidireP. LongroisD. NorelX. Dubois-RandéJ.L. Le GouvelloS. AdnotS. BoczkowskiJ. The cyclooxygenase-2-prostaglandin E2 pathway maintains senescence of chronic obstructive pulmonary disease fibroblasts.Am. J. Respir. Crit. Care Med.2013187770371410.1164/rccm.201208‑1361OC23328527
    [Google Scholar]
  6. MorrisonS.J. WandyczA.M. AkashiK. GlobersonA. WeissmanI.L. The aging of hematopoietic stem cells.Nat. Med.1996291011101610.1038/nm0996‑10118782459
    [Google Scholar]
  7. HoggattJ. SinghP. SampathJ. PelusL.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation.Blood2009113225444545510.1182/blood‑2009‑01‑20133519324903
    [Google Scholar]
  8. PattersonA.M. PlettP.A. SampsonC.H. SimpsonE. LiuY. PelusL.M. OrschellC.M. Prostaglandin E2 enhances aged hematopoietic stem cell function.Stem Cell Rev. Rep.20211751840185410.1007/s12015‑021‑10177‑z33974233
    [Google Scholar]
  9. WangD. DuBoisR.N. Eicosanoids and cancer.Nat. Rev. Cancer201010318119310.1038/nrc280920168319
    [Google Scholar]
  10. XiaoC.Y. YuhkiK. HaraA. FujinoT. KuriyamaS. YamadaT. TakayamaK. TakahataO. KaribeH. TaniguchiT. NarumiyaS. UshikubiF. Prostaglandin E2 protects the heart from ischemia-reperfusion injury via its receptor subtype EP4.Circulation2004109202462246810.1161/01.CIR.0000128046.54681.9715123528
    [Google Scholar]
  11. HarridgeS.D.R. LazarusN.R. Physical activity, aging, and physiological function.Physiology201732215216110.1152/physiol.00029.201628228482
    [Google Scholar]
  12. SantisoA. HeinemannA. KarglJ. Prostaglandin E2 in the tumor microenvironment, a convoluted affair mediated by EP receptors 2 and 4.Pharmacol. Rev.202476338841310.1124/pharmrev.123.00090138697857
    [Google Scholar]
  13. DuBoisR.N. AbramsonS.B. CroffordL. GuptaR.A. SimonL.S. PutteL.B.A. LipskyP.E. Cyclooxygenase in biology and disease.FASEB J.199812121063107310.1096/fasebj.12.12.10639737710
    [Google Scholar]
  14. ChengH. HuangH. GuoZ. ChangY. LiZ. Role of prostaglandin E2 in tissue repair and regeneration.Theranostics202111188836885410.7150/thno.6339634522214
    [Google Scholar]
  15. FunkC.D. FurciL. FitzGeraldG.A. GrygorczykR. RochetteC. BayneM.A. AbramovitzM. AdamM. MettersK.M. Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype.J. Biol. Chem.199326835267672677210.1016/S0021‑9258(19)74379‑88253813
    [Google Scholar]
  16. ReganJ.W. BaileyT.J. PepperlD.J. PierceK.L. BogardusA.M. DonelloJ.E. FairbairnC.E. KedzieK.M. WoodwardD.F. GilD.W. Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP2 subtype.Mol. Pharmacol.199446221322010.1016/S0026‑895X(25)09674‑98078484
    [Google Scholar]
  17. SugimotoY. NambaT. HondaA. HayashiY. NegishiM. IchikawaA. NarumiyaS. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype.J. Biol. Chem.1992267106463646610.1016/S0021‑9258(19)50448‑31372606
    [Google Scholar]
  18. NishigakiN. NegishiM. HondaA. SugimotoY. NambaT. NarumiyaS. IchikawaA. Identification of prostaglandin E receptor ‘EP2’ cloned from mastocytoma cells as EP4 subtype.FEBS Lett.1995364333934110.1016/0014‑5793(95)00421‑57758593
    [Google Scholar]
  19. WoodwardD.F. JonesR.L. NarumiyaS. International Union of Basic and Clinical Pharmacology. LXXXIII: Classification of prostanoid receptors, updating 15 years of progress.Pharmacol. Rev.201163347153810.1124/pr.110.00351721752876
    [Google Scholar]
  20. SugimotoY. NarumiyaS. Prostaglandin E receptors.J. Biol. Chem.200728216116131161710.1074/jbc.R60003820017329241
    [Google Scholar]
  21. ZhangS. LiuY. ZhangX. ZhuD. QiX. CaoX. FangY. CheY. HanZ.C. HeZ.X. HanZ. LiZ. Prostaglandin E 2 hydrogel improves cutaneous wound healing via M2 macrophages polarization.Theranostics20188195348536110.7150/thno.2738530555551
    [Google Scholar]
  22. BaoH. CaoJ. ChenM. ChenM. ChenW. ChenX. ChenY. ChenY. ChenY. ChenZ. ChhetriJ.K. DingY. FengJ. GuoJ. GuoM. HeC. JiaY. JiangH. JingY. LiD. LiJ. LiJ. LiangQ. LiangR. LiuF. LiuX. LiuZ. LuoO.J. LvJ. MaJ. MaoK. NieJ. QiaoX. SunX. TangX. WangJ. WangQ. WangS. WangX. WangY. WangY. WuR. XiaK. XiaoF.H. XuL. XuY. YanH. YangL. YangR. YangY. YingY. ZhangL. ZhangW. ZhangW. ZhangX. ZhangZ. ZhouM. ZhouR. ZhuQ. ZhuZ. CaoF. CaoZ. ChanP. ChenC. ChenG. ChenH.Z. ChenJ. CiW. DingB.S. DingQ. GaoF. HanJ.D.J. HuangK. JuZ. KongQ.P. LiJ. LiJ. LiX. LiuB. LiuF. LiuL. LiuQ. LiuQ. LiuX. LiuY. LuoX. MaS. MaX. MaoZ. NieJ. PengY. QuJ. RenJ. RenR. SongM. SongyangZ. SunY.E. SunY. TianM. WangS. WangS. WangX. WangX. WangY.J. WangY. WongC.C.L. XiangA.P. XiaoY. XieZ. XuD. YeJ. YueR. ZhangC. ZhangH. ZhangL. ZhangW. ZhangY. ZhangY.W. ZhangZ. ZhaoT. ZhaoY. ZhuD. ZouW. PeiG. LiuG.H. Biomarkers of aging.Sci. China Life Sci.2023665893106610.1007/s11427‑023‑2305‑037076725
    [Google Scholar]
  23. JohriA. Disentangling mitochondria in Alzheimer’s disease.Int. J. Mol. Sci.202122211152010.3390/ijms22211152034768950
    [Google Scholar]
  24. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  25. De-PaulaV.J. RadanovicM. DinizB.S. ForlenzaO.V. Alzheimer’s disease.Subcell. Biochem.20126532935210.1007/978‑94‑007‑5416‑4_1423225010
    [Google Scholar]
  26. CuelloA.C. Early and late CNS inflammation in Alzheimer’s disease: Two extremes of a continuum?Trends Pharmacol. Sci.2017381195696610.1016/j.tips.2017.07.00528867259
    [Google Scholar]
  27. ThomasM.H. PelleieuxS. VitaleN. OlivierJ.L. Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms.Biochimie201613016817710.1016/j.biochi.2016.07.01327473185
    [Google Scholar]
  28. YasojimaK. SchwabC. McGeere.g. McGeerP.L. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs.Brain Res.1999830222623610.1016/S0006‑8993(99)01389‑X10366679
    [Google Scholar]
  29. ThalL.J. FerrisS.H. KirbyL. BlockG.A. LinesC.R. YuenE. AssaidC. NesslyM.L. NormanB.A. BaranakC.C. ReinesS.A. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment.Neuropsychopharmacology20053061204121510.1038/sj.npp.130069015742005
    [Google Scholar]
  30. BreitnerJ.C. BakerL.D. MontineT.J. MeinertC.L. LyketsosC.G. AsheK.H. BrandtJ. CraftS. EvansD.E. GreenR.C. IsmailM.S. MartinB.K. MullanM.J. SabbaghM. TariotP.N. ADAPT Research Group Extended results of the Alzheimer’s disease anti-inflammatory prevention trial.Alzheimers Dement.20117440241110.1016/j.jalz.2010.12.01421784351
    [Google Scholar]
  31. CombrinckM. WilliamsJ. De BerardinisM.A. WardenD. PuopoloM. SmithA.D. MinghettiL. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry2006771858810.1136/jnnp.2005.06313115944180
    [Google Scholar]
  32. DoK.V. HjorthE. WangY. JunB. KautzmannM.A.I. OhshimaM. EriksdotterM. SchultzbergM. BazanN.G. Cerebrospinal fluid profile of lipid mediators in Alzheimer’s disease.Cell. Mol. Neurobiol.202343279781110.1007/s10571‑022‑01216‑535362880
    [Google Scholar]
  33. ShateriS. Plasma cytokines profile in patients with Alzheimer’s and Parkinson’s Disease: A comparative study in terms of inflammation.Int. J. Neurosci.2025135215816738064237
    [Google Scholar]
  34. TarkowskiE. AndreasenN. TarkowskiA. BlennowK. Intrathecal inflammation precedes development of Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry20037491200120510.1136/jnnp.74.9.120012933918
    [Google Scholar]
  35. YermakovaA. O’BanionM.K. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer’s disease.Neurobiol. Aging200122682383610.1016/S0197‑4580(01)00303‑711754989
    [Google Scholar]
  36. Peña-BautistaC. Álvarez-SánchezL. FerrerI. López-NoguerolesM. Cañada-MartínezA.J. OgerC. GalanoJ.M. DurandT. BaqueroM. Cháfer-PericásC. Lipid peroxidation assessment in preclinical Alzheimer disease diagnosis.Antioxidants2021107104310.3390/antiox1007104334209667
    [Google Scholar]
  37. ForteA. LaraS. Peña-BautistaC. BaqueroM. Cháfer-PericásC. New approach for early and specific Alzheimer disease diagnosis from different plasma biomarkers.Clin. Chim. Acta202455611784210.1016/j.cca.2024.11784238417780
    [Google Scholar]
  38. Do CarmoS. KautzmannM.A.I. BhattacharjeeS. JunB. SteinbergC. EmmersonJ.T. MalcolmJ.C. BonomoQ. BazanN.G. CuelloA.C. Differential effect of an evolving amyloid and tau pathology on brain phospholipids and bioactive lipid mediators in rat models of Alzheimer- like pathology.J. Neuroinflammation202421118510.1186/s12974‑024‑03184‑739080670
    [Google Scholar]
  39. MaingretV. BarthetG. DeforgesS. JiangN. MulleC. AmédéeT. PGE 2 -EP3 signaling pathway impairs hippocampal presynaptic long-term plasticity in a mouse model of Alzheimer’s disease.Neurobiol. Aging201750132410.1016/j.neurobiolaging.2016.10.01227837675
    [Google Scholar]
  40. CaoL.L. GuanP.P. LiangY.Y. HuangX.S. WangP. Calcium ions stimulate the hyperphosphorylation of Tau by activating microsomal prostaglandin E synthase 1.Front. Aging Neurosci.20191110810.3389/fnagi.2019.0010831143112
    [Google Scholar]
  41. AkitakeY. NakataniY. KameiD. HosokawaM. AkatsuH. UematsuS. AkiraS. KudoI. HaraS. TakahashiM. Microsomal prostaglandin E synthase-1 is induced in alzheimer’s disease and its deletion mitigates alzheimer’s disease-like pathology in a mouse model.J. Neurosci. Res.201391790991910.1002/jnr.2321723553915
    [Google Scholar]
  42. DaiL. WangQ. LvX. GaoF. ChenZ. ShenY. Elevated β-secretase 1 expression mediates CD4+ T cell dysfunction via PGE2 signalling in Alzheimer’s disease.Brain Behav. Immun.20219833734810.1016/j.bbi.2021.08.23434500034
    [Google Scholar]
  43. XiaY. XiaoY. WangZ.H. LiuX. AlamA.M. HaranJ.P. McCormickB.A. ShuX. WangX. YeK. Bacteroides Fragilis in the gut microbiomes of Alzheimer’s disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice.Nat. Commun.2023141547110.1038/s41467‑023‑41283‑w37673907
    [Google Scholar]
  44. ZhenG. KimY.T. LiR. YocumJ. KapoorN. LangerJ. DobrowolskiP. MaruyamaT. NarumiyaS. DoréS. PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer’s disease.Neurobiol. Aging20123392215221910.1016/j.neurobiolaging.2011.09.01722015313
    [Google Scholar]
  45. MinhasP.S. Latif-HernandezA. McReynoldsM.R. DurairajA.S. WangQ. RubinA. JoshiA.U. HeJ.Q. GaubaE. LiuL. WangC. LindeM. SugiuraY. MoonP.K. MajetiR. SuematsuM. Mochly-RosenD. WeissmanI.L. LongoF.M. RabinowitzJ.D. AndreassonK.I. Restoring metabolism of myeloid cells reverses cognitive decline in ageing.Nature2021590784412212810.1038/s41586‑020‑03160‑033473210
    [Google Scholar]
  46. JohanssonJ.U. WoodlingN.S. WangQ. PanchalM. LiangX. Trueba-SaizA. BrownH.D. MhatreS.D. LouiT. AndreassonK.I. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models.J. Clin. Invest.2015125135036410.1172/JCI7748725485684
    [Google Scholar]
  47. LiangX. WangQ. HandT. WuL. BreyerR.M. MontineT.J. AndreassonK. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease.J. Neurosci.20052544101801018710.1523/JNEUROSCI.3591‑05.200516267225
    [Google Scholar]
  48. JohanssonJ. WoodlingN. ShiJ. AndreassonK. Inflammatory cyclooxygenase activity and PGE2 signaling in models of Alzheimer’s disease.Curr. Immunol. Rev.201511212513110.2174/157339551166615070718141428413375
    [Google Scholar]
  49. WoodlingN.S. WangQ. PriyamP.G. LarkinP. ShiJ. JohanssonJ.U. Zagol-IkapitteI. BoutaudO. AndreassonK.I. Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling.J. Neurosci.201434175882589410.1523/JNEUROSCI.0410‑14.201424760848
    [Google Scholar]
  50. ReeveA. SimcoxE. TurnbullD. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?Ageing Res. Rev.201414100193010.1016/j.arr.2014.01.00424503004
    [Google Scholar]
  51. KumariN. AnandS. ShahK. ChauhanN.S. SethiyaN.K. SinghalM. Emerging role of plant-based bioactive compounds as therapeutics in Parkinson’s disease.Molecules20232822758810.3390/molecules2822758838005310
    [Google Scholar]
  52. TeismannP. TieuK. ChoiD.K. WuD.C. NainiA. HunotS. VilaM. Jackson-LewisV. PrzedborskiS. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration.Proc. Natl. Acad. Sci. USA200310095473547810.1073/pnas.083739710012702778
    [Google Scholar]
  53. de Meira Santos LimaM. Braga ReksidlerA. Marques ZanataS. Bueno MachadoH. TufikS. VitalM.A.B.F. Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats.Brain Res.20061101111712510.1016/j.brainres.2006.05.01616781689
    [Google Scholar]
  54. Ikeda-MatsuoY. MiyataH. MizoguchiT. OhamaE. NaitoY. UematsuS. AkiraS. SasakiY. TanabeM. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson’s disease.Neurobiol. Dis.2019124819210.1016/j.nbd.2018.11.00430423474
    [Google Scholar]
  55. AhmadA.S. MaruyamaT. NarumiyaS. DoréS. PGE2 EP1 receptor deletion attenuates 6-OHDA-induced Parkinsonism in mice: Old switch, new target.Neurotox. Res.201323326026610.1007/s12640‑013‑9381‑823385625
    [Google Scholar]
  56. CarrascoE. CasperD. WernerP. PGE 2 receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE 2 neurotoxicity.J. Neurosci. Res.200785143109311710.1002/jnr.2142517868147
    [Google Scholar]
  57. KangX. QiuJ. LiQ. BellK.A. DuY. JungD.W. LeeJ.Y. HaoJ. JiangJ. Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype.Sci. Rep.201771945910.1038/s41598‑017‑09528‑z28842681
    [Google Scholar]
  58. CarrascoE. WernerP. CasperD. Prostaglandin receptor EP2 protects dopaminergic neurons against 6-OHDA-mediated low oxidative stress.Neurosci. Lett.20084411444910.1016/j.neulet.2008.05.11118597941
    [Google Scholar]
  59. PradhanS.S. SalinasK. GardunoA.C. JohanssonJ.U. WangQ. Manning-BogA. AndreassonK.I. Anti-inflammatory and neuroprotective effects of PGE2 EP4 signaling in models of Parkinson’s disease.J. Neuroimmune Pharmacol.201712229230410.1007/s11481‑016‑9713‑627734267
    [Google Scholar]
  60. MarzettiE. CalvaniR. TosatoM. CesariM. Di BariM. CherubiniA. CollamatiA. D’AngeloE. PahorM. BernabeiR. LandiF. Sarcopenia: An overview.Aging Clin. Exp. Res.2017291111710.1007/s40520‑016‑0704‑528155183
    [Google Scholar]
  61. Martel-PelletierJ. BarrA.J. CicuttiniF.M. ConaghanP.G. CooperC. GoldringM.B. GoldringS.R. JonesG. TeichtahlA.J. PelletierJ.P. Osteoarthritis.Nat. Rev. Dis. Primers2016211607210.1038/nrdp.2016.7227734845
    [Google Scholar]
  62. Klein-NulendJ. BurgerE.H. SemeinsC.M. RaiszL.G. PilbeamC.C. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells.J. Bone Miner. Res.1997121455110.1359/jbmr.1997.12.1.459240724
    [Google Scholar]
  63. CivitelliR. Cell–cell communication in the osteoblast/osteocyte lineage.Arch. Biochem. Biophys.2008473218819210.1016/j.abb.2008.04.00518424255
    [Google Scholar]
  64. JiangJ.X. CherianP.P. Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain.Cell Commun. Adhes.2003104-625926410.1080/cac.10.4‑6.259.26414681026
    [Google Scholar]
  65. KondoH. NifujiA. TakedaS. EzuraY. RittlingS.R. DenhardtD.T. NakashimaK. KarsentyG. NodaM. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system.J. Biol. Chem.200528034301923020010.1074/jbc.M50417920015961387
    [Google Scholar]
  66. ChenH. HuB. LvX. ZhuS. ZhenG. WanM. JainA. GaoB. ChaiY. YangM. WangX. DengR. WangL. CaoY. NiS. LiuS. YuanW. ChenH. DongX. GuanY. YangH. CaoX. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis.Nat. Commun.201910118110.1038/s41467‑018‑08097‑730643142
    [Google Scholar]
  67. BaylinkT.M. MohanS. FitzsimmonsR.J. BaylinkD.J. Evaluation of signal transduction mechanisms for the mitogenic effects of prostaglandin E2 in normal human bone cells in vitro .J. Bone Miner. Res.199611101413141810.1002/jbmr.56501110078889840
    [Google Scholar]
  68. ZhaoD. RiquelmeM.A. GudaT. TuC. XuH. GuS. JiangJ.X. Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading.eLife202211e7436510.7554/eLife.7436535132953
    [Google Scholar]
  69. YoshidaK. OidaH. KobayashiT. MaruyamaT. TanakaM. KatayamaT. YamaguchiK. SegiE. TsuboyamaT. MatsushitaM. ItoK. ItoY. SugimotoY. UshikubiF. OhuchidaS. KondoK. NakamuraT. NarumiyaS. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation.Proc. Natl. Acad. Sci. USA20029974580458510.1073/pnas.06205339911917107
    [Google Scholar]
  70. LiM. HealyD.R. LiY. SimmonsH.A. CrawfordD.T. KeH.Z. PanL.C. BrownT.A. ThompsonD.D. Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice.Bone2005371465410.1016/j.bone.2005.03.01615869929
    [Google Scholar]
  71. HaartmansM.J.J. TimurU.T. EmanuelK.S. CaronM.M.J. JeukenR.M. WeltingT.J.M. van OschG.J.V.M. HeerenR.M.A. Cillero-PastorB. EmansP.J. Evaluation of the anti-inflammatory and chondroprotective effect of celecoxib on cartilage ex-vivo and in a rat osteoarthritis model.Cartilage202213310.1177/1947603522111554135932105
    [Google Scholar]
  72. JänigW. GreenP.G. Acute inflammation in the joint: Its control by the sympathetic nervous system and by neuroendocrine systems.Auton. Neurosci.2014182425410.1016/j.autneu.2014.01.00124530113
    [Google Scholar]
  73. LinC.R. AmayaF. BarrettL. WangH. TakadaJ. SamadT.A. WoolfC.J. Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity.J. Pharmacol. Exp. Ther.200631931096110310.1124/jpet.106.10556916966471
    [Google Scholar]
  74. ZhuJ. ZhenG. AnS. WangX. WanM. LiY. ChenZ. GuanY. DongX. HuY. CaoX. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis.eLife20209e5765610.7554/eLife.5765632441256
    [Google Scholar]
  75. JiangW. JinY. ZhangS. DingY. HuoK. YangJ. ZhaoL. NianB. ZhongT.P. LuW. ZhangH. CaoX. ShahK.M. WangN. LiuM. LuoJ. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis.Bone Res.20221012710.1038/s41413‑022‑00201‑435260562
    [Google Scholar]
  76. SuW. LiuG. MohajerB. WangJ. ShenA. ZhangW. LiuB. GuermaziA. GaoP. CaoX. DemehriS. WanM. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2.eLife202211e7977310.7554/eLife.7977335881544
    [Google Scholar]
  77. OtsukaS. AoyamaT. FuruM. ItoK. JinY. NasuA. FukiageK. KohnoY. MaruyamaT. KanajiT. NishiuraA. SugiharaH. FujimuraS. OtsukaT. NakamuraT. ToguchidaJ. PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage.Osteoarthritis Cartilage200917452953810.1016/j.joca.2008.09.00318922704
    [Google Scholar]
  78. JinY. LiuQ. ChenP. ZhaoS. JiangW. WangF. LiP. ZhangY. LuW. ZhongT.P. MaX. WangX. GartlandA. WangN. ShahK.M. ZhangH. CaoX. YangL. LiuM. LuoJ. A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage regeneration.Cell Discov.2022812410.1038/s41421‑022‑00382‑635256606
    [Google Scholar]
  79. HoA.T.V. PallaA.R. BlakeM.R. YucelN.D. WangY.X. MagnussonK.e.g. HolbrookC.A. KraftP.E. DelpS.L. BlauH.M. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength.Proc. Natl. Acad. Sci. USA2017114266675668410.1073/pnas.170542011428607093
    [Google Scholar]
  80. PallaA.R. RavichandranM. WangY.X. AlexandrovaL. YangA.V. KraftP. HolbrookC.A. SchürchC.M. HoA.T.V. BlauH.M. Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength.Science20213716528eabc805910.1126/science.abc805933303683
    [Google Scholar]
  81. LiG. ZhangL. LuZ. YangB. YangH. ShangP. JiangJ.X. WangD. XuH. Connexin 43 channels in osteocytes are necessary for bone mass and skeletal muscle function in aged male mice.Int. J. Mol. Sci.202223211350610.3390/ijms23211350636362291
    [Google Scholar]
  82. BakooshliM.A. WangY.X. MontiE. SuS. KraftP. NalbandianM. AlexandrovaL. WheelerJ.R. VogelH. BlauH.M. Regeneration of neuromuscular synapses after acute and chronic denervation by inhibiting the gerozyme 15-prostaglandin dehydrogenase.Sci. Transl. Med.202315717eadg148510.1126/scitranslmed.adg148537820010
    [Google Scholar]
  83. GavazziG. KrauseK.H. Ageing and infection.Lancet Infect. Dis.200221165966610.1016/S1473‑3099(02)00437‑112409046
    [Google Scholar]
  84. FryA.M. ShayD.K. HolmanR.C. CurnsA.T. AndersonL.J. Trends in hospitalizations for pneumonia among persons aged 65 years or older in the United States, 1988-2002.JAMA2005294212712271910.1001/jama.294.21.271216333006
    [Google Scholar]
  85. ThompsonW.W. ShayD.K. WeintraubE. BrammerL. BridgesC.B. CoxN.J. FukudaK. Influenza-Associated Hospitalizations in the United States.JAMA2004292111333134010.1001/jama.292.11.133315367555
    [Google Scholar]
  86. Ricke-HochM. StellingE. LasswitzL. GuneschA.P. KastenM. Zapatero-BelinchónF.J. BrogdenG. GeroldG. PietschmannT. MontielV. BalligandJ.L. FacciottiF. HirschE. GausepohlT. ElbaheshH. RimmelzwaanG.F. HöferA. KühnelM.P. JonigkD. EigendorfJ. TegtburU. MinkL. ScherrM. IlligT. SchambachA. PfefferT.J. HilfikerA. HaverichA. Hilfiker-KleinerD. Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease.PLoS One2021168e025533510.1371/journal.pone.025533534347801
    [Google Scholar]
  87. SrivastavaS. ErnstJ.D. DesvignesL. Beyond macrophages: The diversity of mononuclear cells in tuberculosis.Immunol. Rev.2014262117919210.1111/imr.1221725319335
    [Google Scholar]
  88. HussellT. BellT.J. Alveolar macrophages: Plasticity in a tissue-specific context.Nat. Rev. Immunol.2014142819310.1038/nri360024445666
    [Google Scholar]
  89. PenkeL.R. SpethJ.M. DraijerC. ZaslonaZ. ChenJ. MancusoP. FreemanC.M. CurtisJ.L. GoldsteinD.R. Peters-GoldenM. PGE 2 accounts for bidirectional changes in alveolar macrophage self-renewal with aging and smoking.Life Sci. Alliance2020311e20200080010.26508/lsa.20200080032820026
    [Google Scholar]
  90. VijayR. HuaX. MeyerholzD.K. MikiY. YamamotoK. GelbM. MurakamiM. PerlmanS. Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome–CoV infection.J. Exp. Med.2015212111851186810.1084/jem.2015063226392224
    [Google Scholar]
  91. ChenJ. DengJ.C. ZemansR.L. BahmedK. KosmiderB. ZhangM. Peters-GoldenM. GoldsteinD.R. Age-induced prostaglandin E2 impairs mitochondrial fitness and increases mortality to influenza infection.Nat. Commun.2022131675910.1038/s41467‑022‑34593‑y36351902
    [Google Scholar]
  92. WongC.K. SmithC.A. SakamotoK. KaminskiN. KoffJ.L. GoldsteinD.R. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice.J. Immunol.201719931060106810.4049/jimmunol.170039728646038
    [Google Scholar]
  93. DegraafA.J. ZasłonaZ. BourdonnayE. Peters-GoldenM. Prostaglandin E2 reduces Toll-like receptor 4 expression in alveolar macrophages by inhibition of translation.Am. J. Respir. Cell Mol. Biol.201451224225010.1165/rcmb.2013‑0495OC24601788
    [Google Scholar]
  94. AronoffD.M. CanettiC. Peters-GoldenM. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP.J. Immunol.2004173155956510.4049/jimmunol.173.1.55915210817
    [Google Scholar]
  95. PernetE. SunS. SardenN. GonaS. NguyenA. KhanN. MawhinneyM. TranK.A. ChronopoulosJ. AmberkarD. SadeghiM. GrantA. WaliS. PrevelR. DingJ. MartinJ.G. ThanabalasuriarA. YippB.G. BarreiroL.B. DivangahiM. Neonatal imprinting of alveolar macrophages via neutrophil-derived 12-HETE.Nature2023614794853053810.1038/s41586‑022‑05660‑736599368
    [Google Scholar]
  96. Aguayo-MazzucatoC. AndleJ. LeeT.B.Jr MidhaA. TalemalL. ChipashviliV. Hollister-LockJ. van DeursenJ. WeirG. Bonner-WeirS. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes.Cell Metab.2019301129142.e410.1016/j.cmet.2019.05.00631155496
    [Google Scholar]
  97. TansR. BandeR. van RooijA. MolloyB.J. StienstraR. TackC.J. WeversR.A. WesselsH.J.C.T. GloerichJ. van GoolA.J. Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry.Prostaglandins Leukot. Essent. Fatty Acids202016010215710.1016/j.plefa.2020.10215732629236
    [Google Scholar]
  98. XiaF. HeC. RenM. XuF.G. WanJ.B. Quantitative profiling of eicosanoids derived from n-6 and n-3 polyunsaturated fatty acids by twin derivatization strategy combined with LC-MS/MS in patients with type 2 diabetes mellitus.Anal. Chim. Acta20201120243510.1016/j.aca.2020.04.06432475388
    [Google Scholar]
  99. FenskeR. Prostaglandin E2 (PGE2) levels as a predictor of type 2 diabetes control in human subjects: A cross-sectional view of initial cohort study data.FASEB J201731S1675.6675.610.1096/fasebj.31.1_supplement.675.6
    [Google Scholar]
  100. AmiorL. SrivastavaR. NanoR. BertuzziF. MelloulD. The role of Cox-2 and prostaglandin E 2 receptor EP3 in pancreatic β-cell death.FASEB J.20193344975498610.1096/fj.201801823R30629897
    [Google Scholar]
  101. HundalR.S. PetersenK.F. MayersonA.B. RandhawaP.S. InzucchiS. ShoelsonS.E. ShulmanG.I. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes.J. Clin. Invest.2002109101321132610.1172/JCI021495512021247
    [Google Scholar]
  102. ParazzoliS. HarmonJ.S. VallerieS.N. ZhangT. ZhouH. RobertsonR.P. Cyclooxygenase-2, not microsomal prostaglandin E synthase-1, is the mechanism for interleukin-1β-induced prostaglandin E2 production and inhibition of insulin secretion in pancreatic islets.J. Biol. Chem.201228738322463225310.1074/jbc.M112.36461222822059
    [Google Scholar]
  103. ZhongD. WanZ. CaiJ. QuanL. ZhangR. TengT. GaoH. FanC. WangM. GuoD. ZhangH. JiaZ. SunY. mPGES-2 blockade antagonizes β- cell senescence to ameliorate diabetes by acting on NR4A1.Nat. Metab.20224226928310.1038/s42255‑022‑00536‑635228744
    [Google Scholar]
  104. BosmaK.J. AndreiS.R. KatzL.S. SmithA.A. DunnJ.C. RicciardiV.F. RamirezM.A. Baumel-AlterzonS. PaceW.A. CarrollD.T. OverwayE.M. WolfE.M. KimpleM.E. ShengQ. ScottD.K. BreyerR.M. GannonM. Pharmacological blockade of the EP3 prostaglandin E2 receptor in the setting of type 2 diabetes enhances β-cell proliferation and identity and relieves oxidative damage.Mol. Metab.20215410134710.1016/j.molmet.2021.10134734626853
    [Google Scholar]
  105. KimpleM.E. KellerM.P. RabagliaM.R. PaskerR.L. NeumanJ.C. TruchanN.A. BrarH.K. AttieA.D. Prostaglandin E2 receptor, EP3, is induced in diabetic islets and negatively regulates glucose- and hormone-stimulated insulin secretion.Diabetes20136261904191210.2337/db12‑076923349487
    [Google Scholar]
  106. FisherG.J. VaraniJ. VoorheesJ.J. Looking Older.Arch. Dermatol.2008144566667210.1001/archderm.144.5.66618490597
    [Google Scholar]
  107. LiY. LeiD. SwindellW.R. XiaW. WengS. FuJ. WorthenC.A. OkuboT. JohnstonA. GudjonssonJ.E. VoorheesJ.J. FisherG.J. Age-associated increase in skin fibroblast–derived prostaglandin E 2 contributes to reduced collagen levels in elderly human skin.J. Invest. Dermatol.201513592181218810.1038/jid.2015.15725905589
    [Google Scholar]
  108. OhJ. LeeY.D. WagersA.J. Stem cell aging: Mechanisms, regulators and therapeutic opportunities.Nat. Med.201420887088010.1038/nm.365125100532
    [Google Scholar]
  109. PelusL.M. HoggattJ. SinghP. Pulse exposure of haematopoietic grafts to prostaglandin E2 in vitro facilitates engraftment and recovery.Cell Prolif201144Suppl 1222910.1111/j.1365‑2184.2010.00726.x21481039
    [Google Scholar]
  110. GuoJ. HuangX. DouL. YanM. ShenT. TangW. LiJ. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments.Signal Transduct. Target. Ther.20227139110.1038/s41392‑022‑01251‑036522308
    [Google Scholar]
  111. Sanchez-MejiaR.O. NewmanJ.W. TohS. YuG.Q. ZhouY. HalabiskyB. CisséM. Scearce-LevieK. ChengI.H. GanL. PalopJ.J. BonventreJ.V. MuckeL. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease.Nat. Neurosci.200811111311131810.1038/nn.221318931664
    [Google Scholar]
  112. HeY. LiuY. ZhangM. The beneficial effects of curcumin on aging and age-related diseases: From oxidative stress to antioxidant mechanisms, brain health and apoptosis.Front. Aging Neurosci.202517153396310.3389/fnagi.2025.153396339906716
    [Google Scholar]
  113. BhatM. SahaP. NarasimhanM. ShelarA. HoleA. Murali KrishnaC. GovekarR. Analysis of lipids by Raman spectroscopy and mass spectrometry provides a detection tool and mechanistic insight into imatinib resistance in CML-BC.Biochim. Biophys. Acta, Gen. Subj.20251869413077110.1016/j.bbagen.2025.13077139938699
    [Google Scholar]
  114. BartramH.P. GostnerA. ScheppachW. ReddyB.S. RaoC.V. DuselG. RichterF. RichterA. KasperH. Effects of fish oil on rectal cell proliferation, mucosal fatty acids, and prostaglandin E2 release in healthy subjects.Gastroenterology199310551317132210.1016/0016‑5085(93)90135‑Y8224635
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501383329250616070727
Loading
/content/journals/cdt/10.2174/0113894501383329250616070727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test