Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Creatine kinases (CKs) are a family of vital enzymes implicated in the domain of cellular bioenergy, fulfilling a pivotal role in facilitating the reversible transfer of phosphoryl groups between adenosine triphosphate (ATP) and creatine. This process plays a crucial role in maintaining optimal ATP levels during energy-demanding processes, a requirement that is amplified in rapidly proliferating cells, including cancerous cells. CKs are pivotal in supporting cancer growth and metastasis, making their inhibition a promising therapeutic strategy. The present review discusses a few ways of disrupting the creatine energy production cycle with emphasis on three main areas of research: First, we consider the different strategies that attack the Creatine Transporter (SLC6A8). Since this transporter facilitates the entry of creatine into the cell, it is expected that inhibiting this transporter may lead to reduced availability of creatine for CK-mediated energy production. Second, strategies aimed at directly inhibiting the enzyme carrying out the creatine phosphorylation are described. Lastly, we consider approaches targeting the backward reaction, i.e., the re-conversion of phosphocreatine to creatine and, thereby, the equilibrium of the CK reaction. The current review gives an overview of the structure-activity and structure-property relationships of the currently available CK inhibitors. Understanding these relations in depth is a prerequisite for developing new and more potent and selective CK inhibitors. This review focuses on an in-depth analysis to create better CK inhibitors with possible applications in oncology.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501373936250609114913
2025-06-24
2025-12-06
Loading full text...

Full text loading...

References

  1. KreiderR.B. KalmanD.S. AntonioJ. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine.J. Int. Soc. Sports Nutr.20171411810.1186/s12970‑017‑0173‑z 28615996
    [Google Scholar]
  2. EshraghiM. AhmadiM. AfsharS. Enhancing autophagy in Alzheimer’s disease through drug repositioning.Pharmacol. Ther.202223710817110.1016/j.pharmthera.2022.108171 35304223
    [Google Scholar]
  3. WyssM. Kaddurah-DaoukR. Creatine and creatinine metabolism.Physiol. Rev.20008031107121310.1152/physrev.2000.80.3.1107 10893433
    [Google Scholar]
  4. KazakL. CohenP. Creatine metabolism: Energy homeostasis, immunity and cancer biology.Nat. Rev. Endocrinol.202016842143610.1038/s41574‑020‑0365‑5 32493980
    [Google Scholar]
  5. EggletonP. EggletonG.P. Further observations on phosphagen.J. Physiol.1928651152410.1113/jphysiol.1928.sp002457 16993934
    [Google Scholar]
  6. LohmanM.L. Lophiosphaera (Glonium) velata, with a critical study of its Septonema multiplex stage.Am. J. Bot.193421631432710.1002/j.1537‑2197.1934.tb04965.x
    [Google Scholar]
  7. HowellA.H. LehmannV.W. BaileyV. Revision of the North American Ground Squirrels: With a Classification of the North American Sciuridae.WashingtonU.S. Fish and Wildlife Service1938
    [Google Scholar]
  8. ZiterF.A. Creatine kinase in developing skeletal and cardiac muscle of the rat.Exp. Neurol.197443353954610.1016/0014‑4886(74)90193‑9 4275070
    [Google Scholar]
  9. DawsonD.M. EppenbergerH.M. KaplanN.O. The comparative enzymology of creatine kinases. II. Physical and chemical properties.J. Biol. Chem.1967242221021710.1016/S0021‑9258(19)81450‑3 6016605
    [Google Scholar]
  10. ChenL.H. WhiteC.B. BabbittP.C. McLeishM.J. KenyonG.L. A comparative study of human muscle and brain creatine kinases expressed in Escherichia coli.J. Protein Chem.2000191596610.1023/A:1007047026691 10882173
    [Google Scholar]
  11. WyssM. SmeitinkJ. WeversR.A. WallimannT. Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism.Biochim. Biophys. Acta Bioenerg.19921102211916610.1016/0005‑2728(92)90096‑K 1390823
    [Google Scholar]
  12. WallimannT. HemmerW. Creatine kinase in non-muscle tissues and cells. SaksV.A. Ventura-ClapierR. Cellular Bioenergetics: Role of Coupled Creatine Kinases.Boston, MA: Springer199419322010.1007/978‑1‑4615‑2612‑4_13
    [Google Scholar]
  13. WallimannT. WyssM. BrdiczkaD. NicolayK. EppenbergerH.M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis.Biochem. J.19922811214010.1042/bj2810021 1731757
    [Google Scholar]
  14. RossiA.M. EppenbergerH.M. VolpeP. CotrufoR. WallimannT. Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios.J. Biol. Chem.199026595258526610.1016/S0021‑9258(19)34115‑8 2318892
    [Google Scholar]
  15. WallimannT. SchlösserT. EppenbergerH.M. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle.J. Biol. Chem.198425985238524610.1016/S0021‑9258(17)42981‑4 6143755
    [Google Scholar]
  16. Ventura-ClapierR. VekslerV. Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness.Circ. Res.199474592092910.1161/01.RES.74.5.920 8156639
    [Google Scholar]
  17. ZhouG. SomasundaramT. BlancE. ParthasarathyG. EllingtonW.R. ChapmanM.S. Transition state structure of arginine kinase: Implications for catalysis of bimolecular reactions.Proc. Natl. Acad. Sci. USA199895158449845410.1073/pnas.95.15.8449 9671698
    [Google Scholar]
  18. Fritz-WolfK. SchnyderT. WallimannT. KabschW. Structure of mitochondrial creatine kinase.Nature1996381658034134510.1038/381341a0 8692275
    [Google Scholar]
  19. PfannerN. GeisslerA. Versatility of the mitochondrial protein import machinery.Nat. Rev. Mol. Cell Biol.20012533934910.1038/35073006 11331908
    [Google Scholar]
  20. MühlebachS. GrossM. WirzT. WallimannT. PerriardJ-C. WyssM. Sequence homology and structure predictions of the creatine kinase isoenzymes.Mol. Cell. Biochem.199413324526210.1007/978‑1‑4615‑2612‑4_16
    [Google Scholar]
  21. QinW. KhuchuaZ. ChengJ. BoeroJ. PayneR.M. StraussA.W. Molecular characterization of the creatine kinases and some historical perspectives.Bioenergetics of the Cell: Quantitative Aspects.Boston, MASpringer199815316310.1007/978‑1‑4615‑5653‑4_12
    [Google Scholar]
  22. KabschW. Fritz-WolfK. Mitochondrial creatine kinase - A square protein.Curr. Opin. Struct. Biol.19977681181810.1016/S0959‑440X(97)80151‑0 9434900
    [Google Scholar]
  23. SchlattnerU. GehringF. VernouxN. C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase.J. Biol. Chem.200427923243342434210.1074/jbc.M314158200 15044463
    [Google Scholar]
  24. KaldisP. FurterR. WallimannT. The N-terminal heptapeptide of mitochondrial creatine kinase is important for octamerization.Biochemistry199433495295910.1021/bi00170a014 8305443
    [Google Scholar]
  25. KaldisP. EppenbergerH.M. WallimannT. A short N-terminal domain of mitochondrial creatine kinase is involved in octamer formation but not in membrane binding.New Developments in Lipid-Protein Interactions and Receptor Function.Boston, MASpringer199319921110.1007/978‑1‑4615‑2860‑9_19
    [Google Scholar]
  26. HornemannT. StolzM. WallimannT. Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH(2)-terminal lysine charge-clamps.J. Cell Biol.200014961225123410.1083/jcb.149.6.1225 10851020
    [Google Scholar]
  27. EderM. StolzM. WallimannT. SchlattnerU. A conserved negatively charged cluster in the active site of creatine kinase is critical for enzymatic activity.J. Biol. Chem.200027535270942709910.1016/S0021‑9258(19)61484‑5 10829032
    [Google Scholar]
  28. CantwellJ.S. NovakW.R. WangP.F. McLeishM.J. KenyonG.L. BabbittP.C. Mutagenesis of two acidic active site residues in human muscle creatine kinase: Implications for the catalytic mechanism.Biochemistry200140103056306110.1021/bi0020980 11258919
    [Google Scholar]
  29. KenyonG.L. ReedG.H. Creatine kinase: structure-activity relationships.Adv. Enzymol. Relat. Areas Mol. Biol.198354367426 6342340
    [Google Scholar]
  30. FurterR. Furter-GravesE.M. WallimannT. Creatine kinase: The reactive cysteine is required for synergism but is nonessential for catalysis.Biochemistry199332277022702910.1021/bi00078a030 8334132
    [Google Scholar]
  31. TiwariS. JoshiP. HazarikaK.P. Comprehensive in-vitro and magnetic hyperthermia investigation of biocompatible non-stoichiometric Zn0.5Ca0.5Fe2O4 and Mg0.5Ca0.5Fe2O4 nanoferrites on lung cancer cell lines.J. Alloys Compd.202497217258810.1016/j.jallcom.2023.172588
    [Google Scholar]
  32. NasulewiczA. WietrzykJ. WolfF.I. Magnesium deficiency inhibits primary tumor growth but favors metastasis in mice.Biochim. Biophys. Acta Mol. Basis Dis.200417391263210.1016/j.bbadis.2004.08.003 15607114
    [Google Scholar]
  33. VoloshinT. AlishekevitzD. KanetiL. Blocking IL1β pathway following paclitaxel chemotherapy slightly inhibits primary tumor growth but promotes spontaneous metastasis.Mol. Cancer Ther.20151461385139410.1158/1535‑7163.MCT‑14‑0969 25887886
    [Google Scholar]
  34. PlantureuxL. MègeD. CrescenceL. The interaction of platelets with colorectal cancer cells inhibits tumor growth but promotes metastasis.Cancer Res.202080229130310.1158/0008‑5472.CAN‑19‑1181 31727628
    [Google Scholar]
  35. MassaguéJ. TGFβ in Cancer.Cell2008134221523010.1016/j.cell.2008.07.001 18662538
    [Google Scholar]
  36. SunX. WangS.C. WeiY. LuoX. JiaY. LiL. Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer.Cancer Cell2017325574589.e610.1016/j.ccell.2017.10.007
    [Google Scholar]
  37. LillieJ.W. O’KeefeM. ValinskiH. HamlinH.A. VarbanM.L. Kaddurah-DaoukR. Cyclocreatine (1-carboxymethyl-2-iminoimidazo-] lidine) inhibits growth of a broad spectrum of cancer cells derived from solid tumors.Cancer Res.1993531331723178 8319226
    [Google Scholar]
  38. MillerE.E. EvansA.E. CohnM. Inhibition of rate of tumor growth by creatine and cyclocreatine.Proc. Natl. Acad. Sci. USA19939083304330810.1073/pnas.90.8.3304 8475072
    [Google Scholar]
  39. KristensenC.A. AskenasyN. JainR.K. KoretskyA.P. Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies.Br. J. Cancer199979227828510.1038/sj.bjc.6690045 9888469
    [Google Scholar]
  40. MaguireO.A. AckermanS.E. SzwedS.K. MagantiA.V. MarchildonF. HuangX. Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer.Cell Metab.2021333499512.e610.1016/j.cmet.2021.01.018
    [Google Scholar]
  41. ZhangL. ZhuZ. YanH. WangW. WuZ. ZhangF. Creatine promotes cancer metastasis through activation of Smad2/3.Cell Metab.202133611111123.e4
    [Google Scholar]
  42. SchwameisR. PostlM. BekosC. Prognostic value of serum creatine level in patients with vulvar cancer.Sci. Rep.2019911112910.1038/s41598‑019‑47560‑3 31366905
    [Google Scholar]
  43. KimJ.U. ShariffM.I.F. CrosseyM.M.E. Hepatocellular carcinoma: Review of disease and tumor biomarkers.World J. Hepatol.201681047148410.4254/wjh.v8.i10.471 27057305
    [Google Scholar]
  44. ZhangA. SunH. YanG. WangP. WangX. Metabolomics for biomarker discovery: Moving to the clinic.BioMed Res. Int.2015201535467110.1155/2015/354671
    [Google Scholar]
  45. LadepN.G. DonaA.C. LewisM.R. Discovery and validation of urinary metabotypes for the diagnosis of hepatocellular carcinoma in West Africans.Hepatology20146041291130110.1002/hep.27264 24923488
    [Google Scholar]
  46. LécuyerL. Victor BalaA. DeschasauxM. NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer.Int. J. Epidemiol.201847248449410.1093/ije/dyx271 29365091
    [Google Scholar]
  47. KamphorstJ.J. NofalM. CommissoC. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein.Cancer Res.201575354455310.1158/0008‑5472.CAN‑14‑2211 25644265
    [Google Scholar]
  48. KurmiK. HitosugiS. YuJ. Boakye-AgyemanF. WieseE.K. LarsonT.R. Tyrosine phosphorylation of mitochondrial creatine kinase 1 enhances a druggable tumor energy shuttle pathway.Cell Metab.2018286833847.e810.1016/j.cmet.2018.08.008
    [Google Scholar]
  49. CiminoD. FusoL. SfiligoiC. Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues.Int. J. Cancer200812361327133810.1002/ijc.23660 18561318
    [Google Scholar]
  50. QianX.L. LiY.Q. GuF. Overexpression of ubiquitous mitochondrial creatine kinase (uMtCK) accelerates tumor growth by inhibiting apoptosis of breast cancer cells and is associated with a poor prognosis in breast cancer patients.Biochem. Biophys. Res. Commun.20124271606610.1016/j.bbrc.2012.08.147 22982673
    [Google Scholar]
  51. LiQ. LiuM. SunY. SLC6A8-mediated intracellular creatine accumulation enhances hypoxic breast cancer cell survival via ameliorating oxidative stress.J. Exp. Clin. Cancer Res.202140116810.1186/s13046‑021‑01933‑7 33990217
    [Google Scholar]
  52. LooJ.M. ScherlA. NguyenA. Extracellular metabolic energetics can promote cancer progression.Cell2015160339340610.1016/j.cell.2014.12.018 25601461
    [Google Scholar]
  53. LiM. LiuH. LiJ. GuoS. LvY. Mitochondrial creatine kinase 1 in non-small cell lung cancer progression and hypoxia adaptation.Respir. Res.202122119010.1186/s12931‑021‑01765‑1 34210337
    [Google Scholar]
  54. OndaT. UzawaK. EndoY. Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma.Br. J. Cancer200694569870910.1038/sj.bjc.6602986 16479256
    [Google Scholar]
  55. AmamotoR. UchiumiT. YagiM. The expression of ubiquitous mitochondrial creatine kinase is downregulated as prostate cancer progression.J. Cancer201671505910.7150/jca.13207 26722360
    [Google Scholar]
  56. PramodA.B. FosterJ. CarvelliL. HenryL.K. SLC6 transporters: Structure, function, regulation, disease association and therapeutics.Mol. Aspects Med.2013342-319721910.1016/j.mam.2012.07.002 23506866
    [Google Scholar]
  57. ColasC. BanciG. MartiniR. EckerG.F. Studies of structural determinants of substrate binding in the Creatine Transporter (CreaT, SLC6A8) using molecular models.Sci. Rep.2020101624110.1038/s41598‑020‑63189‑z 32277128
    [Google Scholar]
  58. KurthI. YamaguchiN. Andreu-AgulloC. Therapeutic targeting of SLC6A8 creatine transporter suppresses colon cancer progression and modulates human creatine levels.Sci. Adv.2021741eabi751110.1126/sciadv.abi7511 34613776
    [Google Scholar]
  59. HendifarA. SpigelD.R. Basu-MallickA. 646P Phase Ib/II study of ompenaclid (RGX-202-01), afirst-in-class oral inhibitor of the creatine transporter SLC6A8, in combination with FOLFIRI and bevacizumab (BEV) in RAS mutated (RASm) second-line (2L) advanced/metastatic colorectal cancer (mCRC).Ann. Oncol.202334S454S45510.1016/j.annonc.2023.09.1836
    [Google Scholar]
  60. DaiW. VinnakotaS. QianX. KunzeD.L. SarkarH.K. Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes.Arch. Biochem. Biophys.19993611758410.1006/abbi.1998.0959 9882430
    [Google Scholar]
  61. MartinezE.J. TavazoieS.F. Inhibitors of creatine transport and uses thereof.US Patent 10308597B22019
  62. DoddJ.R. BirchN.P. WaldvogelH.J. ChristieD.L. Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons.J. Neurochem.2010115368469310.1111/j.1471‑4159.2010.06957.x 20731764
    [Google Scholar]
  63. Al-KhawajaA. HaugaardA.S. MarekA. Pharmacological characterization of (3H) ATPCA as a substrate for studying the functional role of the betaine/GABA transporter 1 and the creatine transporter.ACS Chem. Neurosci.20189354555410.1021/acschemneuro.7b00351 29131576
    [Google Scholar]
  64. WeinsantoI. MouheicheJ. Laux-BiehlmannA. Morphine binds creatine kinase B and inhibits its activity.Front. Cell. Neurosci.20181246410.3389/fncel.2018.00464 30559651
    [Google Scholar]
  65. StreckE.L. ScainiG. RezinG.T. MoreiraJ. FochesatoC.M. RomãoP.R.T. Effects of the HIV treatment drugs nevirapine and efavirenz on brain creatine kinase activity.Metab. Brain Dis.200823448549210.1007/s11011‑008‑9109‑2 18815873
    [Google Scholar]
  66. ZhuJ. JinZ. YangL. Ginkgolide B targets and inhibits creatine kinase B to regulate the CCT/TRiC-SK1 axis and exerts pro-angiogenic activity in middle cerebral artery occlusion mice.Pharmacol. Res.202218010624010.1016/j.phrs.2022.106240 35513225
    [Google Scholar]
  67. YangM. WangX. YeZ. Mitochondrial creatine kinase 1 regulates the cell cycle in non-small cell lung cancer via activation of cyclin-dependent kinase 4.Respir. Res.202324111110.1186/s12931‑023‑02417‑2 37061730
    [Google Scholar]
  68. ZhuY. ZhuL. WangX. JinH. RNA-based therapeutics: An overview and prospectus.Cell Death Dis.202213764410.1038/s41419‑022‑05075‑2 35871216
    [Google Scholar]
  69. WinkleM. El-DalyS.M. FabbriM. CalinG.A. Noncoding RNA therapeutics — Challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z 34145432
    [Google Scholar]
  70. LenzH. SchmidtM. WelgeV. Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology.Mol. Cell. Biochem.20073061-215316210.1007/s11010‑007‑9565‑8 17660950
    [Google Scholar]
  71. EnjolrasN. GodinotC. Inhibition of ubiquitous mitochondrial creatine kinase expression in HeLa cells by an antisense oligodeoxynucleotide.Mol. Cell. Biochem.19971671/211312510.1023/B:MCBI.0000009692.67331.d3 9059988
    [Google Scholar]
  72. ReddyK.B. MicroRNA (miRNA) in cancer.Cancer Cell Int.20151513810.1186/s12935‑015‑0185‑1 25960691
    [Google Scholar]
  73. ZhangY. SunM. ChenY. LiB. MiR-519b-3p inhibits the proliferation and invasion in colorectal cancer via modulating the uMtCK/Wnt signaling pathway.Front. Pharmacol.20191074110.3389/fphar.2019.00741 31312141
    [Google Scholar]
  74. DarabedianN. JiW. FanM. Depletion of creatine phosphagen energetics with a covalent creatine kinase inhibitor.Nat. Chem. Biol.202319781582410.1038/s41589‑023‑01273‑x 36823351
    [Google Scholar]
  75. FenouilleN. BassilC.F. Ben-SahraI. The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia.Nat. Med.201723330131310.1038/nm.4283 28191887
    [Google Scholar]
  76. ZhangY. NewsomK.J. ZhangM. KelleyJ.S. StarostikP. GATM-mediated creatine biosynthesis enables maintenance of FLT3-ITD-mutant acute myeloid leukemia.Mol. Cancer Res.202220229330410.1158/1541‑7786.MCR‑21‑0314 34635505
    [Google Scholar]
  77. PanH. XiaK. ZhouW. Low serum creatine kinase levels in breast cancer patients: A case-control study.PLoS One201384e6211210.1371/journal.pone.0062112 23614022
    [Google Scholar]
  78. PapalazarouV. ZhangT. PaulN.R. The creatine-phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis.Nat. Metab.202021628010.1038/s42255‑019‑0159‑z 32694686
    [Google Scholar]
  79. StreijgerF. PlukH. OerlemansF. Mice lacking brain-type creatine kinase activity show defective thermoregulation.Physiol. Behav.2009971768610.1016/j.physbeh.2009.02.003 19419668
    [Google Scholar]
  80. Van der ZeeC.E.E.M. Hypothalamic plasticity of neuropeptide Y is lacking in brain-type creatine kinase double knockout mice with defective thermoregulation.Eur. J. Pharmacol.20137191-313714410.1016/j.ejphar.2013.07.027 23891845
    [Google Scholar]
  81. XiaoH. JedrychowskiM.P. SchweppeD.K. HuttlinE.L. YuQ. HeppnerD.E. A quantitative tissue-specific landscape of protein redox regulation during aging.Cell20201805968983.e2410.1016/j.cell.2020.02.012
    [Google Scholar]
  82. LuW. KosticM. ZhangT. Fragment-based covalent ligand discovery.RSC Chem. Biol.20212235436710.1039/D0CB00222D 34458789
    [Google Scholar]
  83. BackusK.M. CorreiaB.E. LumK.M. Proteome-wide covalent ligand discovery in native biological systems.Nature2016534760857057410.1038/nature18002 27309814
    [Google Scholar]
  84. BongS.M. MoonJ.H. NamK.H. LeeK.S. ChiY.M. HwangK.Y. Structural studies of human brain‐type creatine kinase complexed with the ADP-Mg2+-NO3− -creatine transition‐state analogue complex.FEBS Lett.2008582283959396510.1016/j.febslet.2008.10.039 18977227
    [Google Scholar]
  85. LahiriS.D. WangP.F. BabbittP.C. McLeishM.J. KenyonG.L. AllenK.N. The 2.1 A structure of Torpedo californica creatine kinase complexed with the ADP-Mg(2+)-NO(3)(-)-creatine transition-state analogue complex.Biochemistry20024147138611386710.1021/bi026655p 12437342
    [Google Scholar]
  86. LiQ. FanS. LiX. Insights into the phosphoryl transfer mechanism of human ubiquitous mitochondrial creatine kinase.Sci. Rep.2016613808810.1038/srep38088 27909311
    [Google Scholar]
  87. KimuraA. TyackeR.J. RobinsonJ.J. Identification of an imidazoline binding protein: Creatine kinase and an imidazoline-2 binding site.Brain Res.20091279212810.1016/j.brainres.2009.04.044 19410564
    [Google Scholar]
  88. A creatine kinase inhibitor targeting a redox-regulated cysteine.Nat. Chem. Biol.202319780180210.1038/s41589‑023‑01274‑w 36823352
    [Google Scholar]
  89. BarchH. KrutilinaR. BrooksD. ParkeD. SeagrovesT. Abstract P2-02-01: Inhibition of creatine kinase metabolism represses invasion and sensitizes estrogen-receptor negative breast cancer cells to standard chemotherapies.Cancer Res.2019794_Supplement10.1158/1538‑7445.SABCS18‑P2‑02‑01
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501373936250609114913
Loading
/content/journals/cdt/10.2174/0113894501373936250609114913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test