Skip to content
2000
Volume 26, Issue 11
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Lipidomics, a cutting-edge branch of metabolomics provides a comprehensive understanding of the lipidome and its alterations in cellular and systemic processes. In Breast Cancer (BC), a highly heterogeneous disease, lipidomics has emerged as a pivotal tool for exploring metabolic reprogramming, tumor progression, and therapeutic resistance. This review highlights the intricate relationship between lipid metabolism and breast cancer, with a focus on subtype-specific lipid dependencies, oxidative stress, and ferroptosis. Technological advancements, such as mass spectrometry and chromatography, have enabled precise profiling of lipid alterations, revealing distinct lipid signatures across breast cancer subtypes. Key enzymes like acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN), along with lipid regulators like PPARγ, have been identified as central players in lipid-driven tumorigenesis. Lipidomic studies offer the potential for biomarker discovery and the development of lipid-targeted therapies. Despite challenges in standardization and integration with other omics approaches, lipidomics is poised to revolutionize breast cancer diagnostics and therapeutics, providing novel insights into the metabolic underpinnings of this complex disease.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501387287250611095023
2025-06-24
2026-01-26
Loading full text...

Full text loading...

References

  1. WardA.V. AndersonS.M. SartoriusC.A. Advances in analyzing the breast cancer lipidome and its relevance to disease progression and treatment.J. Mammary Gland Biol. Neoplasia202126439941710.1007/s10911‑021‑09505‑334914014
    [Google Scholar]
  2. SuriG.S. KaurG. CarboneG.M. ShindeD. Metabolomics in oncology.Cancer Rep.202363179510.1002/cnr2.179536811317
    [Google Scholar]
  3. StarodubtsevaN.L. TokarevaA.O. RodionovV.V. BrzhozovskiyA.G. BugrovaA.E. ChagovetsV.V. KometovaV.V. KukaevE.N. SoaresN.C. KovalevG.I. KononikhinA.S. FrankevichV.E. NikolaevE.N. SukhikhG.T. Integrating proteomics and lipidomics for evaluating the risk of breast cancer progression: A pilot study.Biomedicines2023117178610.3390/biomedicines1107178637509426
    [Google Scholar]
  4. QianX. JinX. HeJ. ZhangJ. HuS. Exploring lipidomic profiles and their correlation with hormone receptor and HER2 status in breast cancer.Oncol. Lett.20242913410.3892/ol.2024.1478139512509
    [Google Scholar]
  5. ShenL. HuangH. LiJ. ChenW. YaoY. HuJ. ZhouJ. HuangF. NiC. Exploration of prognosis and immunometabolism landscapes in ER+ breast cancer based on a novel lipid metabolism-related signature.Front. Immunol.202314119946510.3389/fimmu.2023.119946537469520
    [Google Scholar]
  6. YangL. CuiX. ZhangN. LiM. BaiY. HanX. ShiY. LiuH. Comprehensive lipid profiling of plasma in patients with benign breast tumor and breast cancer reveals novel biomarkers.Anal. Bioanal. Chem.2015407175065507710.1007/s00216‑015‑8484‑x25651902
    [Google Scholar]
  7. LiM. ZhouZ. NieH. BaiY. LiuH. Recent advances of chromatography and mass spectrometry in lipidomics.Anal. Bioanal. Chem.2011399124324910.1007/s00216‑010‑4327‑y21052649
    [Google Scholar]
  8. SwinnenJ.V. DehairsJ. A beginner’s guide to lipidomics.Biochemist2022441202410.1042/bio_2021_181
    [Google Scholar]
  9. ChenX. ChenH. DaiM. AiJ. LiY. MahonB. DaiS. DengY. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions.Oncotarget2016724366223663110.18632/oncotarget.912427153558
    [Google Scholar]
  10. PatraS. ElahiN. ArmorerA. ArunachalamS. OmalaJ. HamidI. AshtonA.W. JoyceD. JiaoX. PestellR.G. Mechanisms governing metabolic heterogeneity in breast cancer and other tumors.Front. Oncol.20211170062910.3389/fonc.2021.70062934631530
    [Google Scholar]
  11. BorettoC. MuzioG. AutelliR. PPARγ antagonism as a new tool for preventing or overcoming endocrine resistance in luminal A breast cancers.Biomed. Pharmacother.202418011746110.1016/j.biopha.2024.11746139326102
    [Google Scholar]
  12. ButlerL.M. PeroneY. DehairsJ. LupienL.E. de LaatV. TalebiA. LodaM. KinlawW.B. SwinnenJ.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention.Adv. Drug Deliv. Rev.202015924529310.1016/j.addr.2020.07.01332711004
    [Google Scholar]
  13. GiudettiA.M. De DomenicoS. RagusaA. LunettiP. GaballoA. FranckJ. SimeoneP. NicolardiG. De NuccioF. SantinoA. CapobiancoL. LanutiP. FournierI. SalzetM. MaffiaM. VergaraD. A specific lipid metabolic profile is associated with the epithelial mesenchymal transition program.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20191864334435710.1016/j.bbalip.2018.12.01130578966
    [Google Scholar]
  14. LiD. HeffernanK. KochF.C. PeakeD.A. PascoviciD. DavidM. KehelpannalaC. MannG.B. SpeakmanD. HurrellJ. PrestonS. VafaeeF. BatarsehA. Discovery of plasma lipids as potential biomarkers distinguishing breast cancer patients from healthy controls.Int. J. Mol. Sci.202425211155910.3390/ijms25211155939519111
    [Google Scholar]
  15. ManikishoreM. MauryaS.K. RatheeS. PatilU.K. Genome editing approaches using zinc finger nucleases (ZFNs) for the treatment of motor neuron diseases.Curr. Pharm. Biotechnol.2024251810.2174/011389201030728824052607181038847163
    [Google Scholar]
  16. DoradoE. DoriaM.L. NagelkerkeA. McKenzieJ.S. Maneta-StavrakakiS. WhittakerT.E. NicholsonJ.K. CoombesR.C. StevensM.M. TakatsZ. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma.J. Extracell. Vesicles20241331241910.1002/jev2.1241938443328
    [Google Scholar]
  17. AnhN.K. LeeA. PhatN.K. YenN.T.H. ThuN.Q. TienN.T.N. KimH.S. KimT.H. KimD.H. KimH.Y. Phuoc LongN. Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis.PLoS One20241910031181010.1371/journal.pone.031181039432469
    [Google Scholar]
  18. HeB. YeF. FengJ. ZhouT. Enhanced lipidomics analysis of breast cancer cells using three-phase liquid extraction and ultra high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.J. Sep. Sci.202447217001410.1002/jssc.7001439494761
    [Google Scholar]
  19. YadavDK RatheeS SharmaV PatilUK A comprehensive review on insect repellent agents: Medicinal plants and synthetic compounds.Antiinf. Antiall. Agents Med. Chem .20241510.2174/0118715230322355240903072704
    [Google Scholar]
  20. RatheeS. PatilU.K. JainS.K. Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review.J. Explor. Res. Pharmacol.202491516410.14218/JERP.2023.00050
    [Google Scholar]
  21. SahuA. RatheeS. JainS.K. PatilU.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in- -depth analysis.Curr. Rheumatol. Rev.202420546948710.2174/011573397128098424010111520338284718
    [Google Scholar]
  22. SenD. RatheeS. PandeyV. JainS.K. PatilU.K. Comprehensive insights into pathophysiology of Alzheimer’s Disease: Herbal approaches for mitigating neurodegeneration.Curr. Alzheimer Res.20242024500310.2174/011567205030905724040407500338623983
    [Google Scholar]
  23. SinghaiH. RatheeS. JainS.K. PatilU.K. The potential of natural products in the management of cardiovascular disease.Curr. Pharm. Des.202430862463810.2174/011381612829505324020709092838477208
    [Google Scholar]
  24. Zipinotti dos SantosD. de SouzaJ.C. PimentaT.M. da Silva MartinsB. JuniorR.S.R. ButzeneS.M.S. TessaroloN.G. CilasP.M.L.Jr SilvaI.V. RangelL.B.A. The impact of lipid metabolism on breast cancer: A review about its role in tumorigenesis and immune escape.Cell Commun. Signal.202321116110.1186/s12964‑023‑01178‑137370164
    [Google Scholar]
  25. MonacoM.E. Fatty acid metabolism in breast cancer subtypes.Oncotarget2017817294872950010.18632/oncotarget.1549428412757
    [Google Scholar]
  26. HuangX. LiuB. ShenS. Lipid metabolism in breast cancer: From basic research to clinical application.Cancers202517465010.3390/cancers1704065040002245
    [Google Scholar]
  27. BartschH. NairJ. OwenR.W. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: Emerging evidence for their role as risk modifiers.Carcinogenesis199920122209221810.1093/carcin/20.12.220910590211
    [Google Scholar]
  28. ZanoagaO. JurjA. RadulyL. Cojocneanu-PetricR. Fuentes-MatteiE. WuO. BraicuC. GhermanC.D. Berindan-NeagoeI. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer.Exp. Ther. Med.20181521167117629434704
    [Google Scholar]
  29. LofterødT. MortensenE.S. NalwogaH. WilsgaardT. FrydenbergH. RisbergT. EggenA.E. McTiernanA. AzizS. WistE.A. StensvoldA. ReitanJ.B. AkslenL.A. ThuneI. Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes.BMC Cancer201818165410.1186/s12885‑018‑4568‑229902993
    [Google Scholar]
  30. WanM. PanS. ShanB. DiaoH. JinH. WangZ. WangW. HanS. LiuW. HeJ. ZhengZ. PanY. HanX. ZhangJ. Lipid metabolic reprograming: The unsung hero in breast cancer progression and tumor microenvironment.Mol. Cancer20252416110.1186/s12943‑025‑02258‑140025508
    [Google Scholar]
  31. Mohamad AliD. HogeveenK. OrhantR.M. Le Gal de KerangalT. ErganF. UlmannL. Pencreac’hG. Lysophosphatidylcholine-DHA specifically induces cytotoxic effects of the MDA-MB-231 human breast cancer cell line in vitro —comparative effects with other lipids containing dha.Nutrients2023159213710.3390/nu1509213737432249
    [Google Scholar]
  32. AbdelzaherE. MostafaM.F. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) upregulation in breast carcinoma contributes to tumor progression and predicts early tumor recurrence.Tumour Biol.20153675473548310.1007/s13277‑015‑3214‑825683484
    [Google Scholar]
  33. JohnsonA.M. KleczkoE.K. NemenoffR.A. Eicosanoids in cancer: New roles in immunoregulation.Front. Pharmacol.20201159549810.3389/fphar.2020.59549833364964
    [Google Scholar]
  34. KimD.H. SongN.Y. YimH. Targeting dysregulated lipid metabolism in the tumor microenvironment.Arch. Pharm. Res.20234611-1285588110.1007/s12272‑023‑01473‑y38060103
    [Google Scholar]
  35. PandeyV. SenD. RatheeS. SoniS. MishraS. JainS.K. PatilU.K. Unlocking toll-like receptors: Targeting therapeutics for respiratory tract infections and inflammatory disorders.Recent Adv. Inflamm. Allergy Drug Discov.202418301310.2174/0127722708329138240926073013
    [Google Scholar]
  36. RatheeS. SenD. PandeyV. JainS.K. Advances in understanding and managing Alzheimer’s Disease: From pathophysiology to innovative therapeutic strategies.Curr. Drug Targets2024251175277410.2174/011389450132009624062707140039039673
    [Google Scholar]
  37. PandeyV. RatheeS. SenD. JainS.K. PatilU.K. Phytovesicular nanoconstructs for advanced delivery of medicinal metabolites: An in-depth review.Curr. Drug Targets2024251384786510.2174/011389450131083224081507161839171597
    [Google Scholar]
  38. JainS.K. Molecular docking analysis of d-glucosamine and rivastigmine tartrate targeting alzheimer’s disease-associated proteins: An in silico approach.Asian J. Pharm.20241821610.22377/ajp.v18i02.5458
    [Google Scholar]
  39. SahuA. RatheeS. SarafS. JainS.K. A review on the recent advancements and artificial intelligence in tablet technology.Curr. Drug Targets202425641643010.2174/011389450128129023122105393938213164
    [Google Scholar]
  40. SenD. RatheeS. PandeyV. JainS.K. Exploring Saffron’s therapeutic potential: Insights on phytochemistry, bioactivity, and clinical implications.Curr. Pharm. Des.2024311710.2174/011381612833794124092818194339415584
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501387287250611095023
Loading
/content/journals/cdt/10.2174/0113894501387287250611095023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test