Skip to content
2000
image of Crossing Boundaries: A Review of the Diverse Functions of Heterocyclic Compounds in the Management of Cancer and Infectious Diseases

Abstract

Introduction/Objective

Heterocyclic molecules, a mainstay of contemporary medicinal chemistry, are essential in developing antibacterial and anticancer treatments. Their distinct structural features-one or more heteroatoms within the ring-allow for a wide range of biological activities. With a focus on their modes of action and insights into the structure-activity relationship (SAR), this study examines the therapeutic uses of heterocyclic compounds in antibacterial, antifungal, antiviral, and anticancer treatments.

Methods

The review uses search engines like PubMed and Google Scholar, with a preference for English as the major language, to gather and analyse recent research on the antibacterial and anticancer applications of diverse heterocyclic compounds.

Results

It has been discovered that heterocyclic chemicals are useful in blocking microbial enzymes, including DNA gyrase and the machinery involved in protein synthesis. Heterocyclic compounds such as benzimidazoles, quinolines, and acridines have demonstrated noteworthy efficacy in cancer therapy through their targeting of tubulin inhibition, DNA intercalation, and signalling pathways like PI3K/Akt/mTOR and MAPK. The pharmacological characteristics of these compounds were improved by the addition of electron-withdrawing groups, halogenation, and heteroatom replacements, according to SAR investigations.

Conclusion

Heterocyclic compounds have great promise for antibacterial and anticancer treatments. They are crucial in drug development because of their structural flexibility, which enables the targeted suppression of vital biological processes. The effectiveness of heterocyclic compounds will continue to be improved by ongoing advancements in drug design and SAR optimization, opening new possibilities for the creation of more potent and selective medicinal treatments.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501372336250703114127
2025-07-09
2025-10-06
Loading full text...

Full text loading...

References

  1. Martins P. Jesus J. Santos S. Raposo L. Roma-Rodrigues C. Baptista P. Fernandes A. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015 20 9 16852 16891 10.3390/molecules200916852 26389876
    [Google Scholar]
  2. Pibiri I. Recent Advances: Heterocycles in Drugs and Drug Discovery. Int. J. Mol. Sci. 2024 25 17 9503 10.3390/ijms25179503 39273451
    [Google Scholar]
  3. Meanwell N.A. The pyridazine heterocycle in molecular recognition and drug discovery. Med. Chem. Res. 2023 32 9 1853 1921 10.1007/s00044‑023‑03035‑9 37362319
    [Google Scholar]
  4. Mir R.H. Mir P.A. Mohi-ud-din R. Sabreen S. Maqbool M. Shah A.J. Shenmar K. Raza S.N. Pottoo F.H. A Comprehensive Review on Journey of Pyrrole Scaffold Against Multiple Therapeutic Targets. Anticancer. Agents Med. Chem. 2022 22 19 3291 3303 10.2174/1871520622666220613140607 35702764
    [Google Scholar]
  5. Dhiman N. Kaur K. Jaitak V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem. 2020 28 15 115599 10.1016/j.bmc.2020.115599 32631569
    [Google Scholar]
  6. Hou J. Zhao W. Huang Z.N. Yang S.M. Wang L.J. Jiang Y. Zhou Z.S. Zheng M.Y. Jiang J.L. Li S.H. Li F.N. Evaluation of Novel N -(piperidine-4-yl)benzamide Derivatives as Potential Cell Cycle Inhibitors in HepG2 Cells. Chem. Biol. Drug Des. 2015 86 2 223 231 10.1111/cbdd.12484 25430863
    [Google Scholar]
  7. Yadagiri B. Holagunda U.D. Bantu R. Nagarapu L. Kumar C.G. Pombala S. Sridhar B. Synthesis of novel building blocks of benzosuberone bearing coumarin moieties and their evaluation as potential anticancer agents. Eur. J. Med. Chem. 2014 79 260 265 10.1016/j.ejmech.2014.04.015 24742385
    [Google Scholar]
  8. Ali I. Lone M. Al-Othman Z. Al-Warthan A. Sanagi M. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development. Curr. Drug Targets 2015 16 7 711 734 10.2174/1389450116666150309115922 25751009
    [Google Scholar]
  9. Nada H. Elkamhawy A. Lee K. Structure activity relationship of key heterocyclic anti-angiogenic leads of promising potential in the fight against cancer. Molecules 2021 26 3 553 10.3390/molecules26030553 33494492
    [Google Scholar]
  10. Singh PK Silakari O Multitargeting heterocycles: Improved and rational chemical probes for multifactorial diseases. Key Heterocycle Cores for Designing Multitargeting Molecules Elsevier 2018 1 29 10.1016/B978‑0‑08‑102083‑8.00001‑7
    [Google Scholar]
  11. Apaydın S. Török M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett. 2019 29 16 2042 2050 10.1016/j.bmcl.2019.06.041 31272793
    [Google Scholar]
  12. Xiao X. Oswald J.T. Wang T. Zhang W. Li W. Use of Anticancer Platinum Compounds in Combination Therapies and Challenges in Drug Delivery. Curr. Med. Chem. 2020 27 18 3055 3078 10.2174/0929867325666181105115849 30394206
    [Google Scholar]
  13. Ebenezer O. Jordaan M.A. Carena G. Bono T. Shapi M. Tuszynski J.A. An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int. J. Mol. Sci. 2022 23 15 8117 35897691
    [Google Scholar]
  14. Amewu R.K. Sakyi P.O. Osei-Safo D. Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021 26 23 7134 10.3390/molecules26237134 34885716
    [Google Scholar]
  15. Marson CM Saturated heterocycles with applications in medicinal chemistry. Advances in Heterocyclic Chemistry Elsevier 2017 13 33 10.1016/bs.aihch.2016.03.004
    [Google Scholar]
  16. Asif M. Allahyani M. Almehmadi M.M. Alsaiari A.A. Applications and biological potential of substituted pyridazine analogs in medicinal and agricultural fields. Curr. Org. Chem. 2023 27 10 814 820 10.2174/1385272827666230809094221
    [Google Scholar]
  17. Fesatidou M. Petrou A. Athina G. Heterocycle Compounds with Antimicrobial Activity. Curr. Pharm. Des. 2020 26 8 867 904 32026773
    [Google Scholar]
  18. Khan T. Sankhe K. Suvarna V. Sherje A. Patel K. Dravyakar B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018 103 923 938 29710509
    [Google Scholar]
  19. Mazu T.K. Bricker B.A. Flores-Rozas H. Ablordeppey S.Y. The Mechanistic Targets of Antifungal Agents: An Overview. Mini Rev. Med. Chem. 2016 16 7 555 578 26776224
    [Google Scholar]
  20. Ma Y. Frutos-Beltrán E. Kang D. Pannecouque C. De Clercq E. Menéndez-Arias L. Liu X. Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem. Soc. Rev. 2021 50 7 4514 4540 10.1039/D0CS01084G 33595031
    [Google Scholar]
  21. Lungu I.A. Moldovan O.L. Biriș V. Rusu A. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance. Pharmaceutics 2022 14 8 1749 10.3390/pharmaceutics14081749 36015376
    [Google Scholar]
  22. Wiles J.A. Bradbury B.J. Pucci M.J. New quinolone antibiotics: A survey of the literature from 2005 to 2010. Expert Opin. Ther. Pat. 2010 10 20 1295 1319 10.1517/13543776.2010.505922
    [Google Scholar]
  23. Mirzaie A. Peirovi N. Akbarzadeh I. Moghtaderi M. Heidari F. Yeganeh F.E. Noorbazargan H. Mirzazadeh S. Bakhtiari R. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorg. Chem. 2020 103 104231 10.1016/j.bioorg.2020.104231 32882442
    [Google Scholar]
  24. Yakout M.A. Ali G.H. A novel parC mutation potentiating fluoroquinolone resistance in Klebsiella pneumoniae and Escherichia coli clinical isolates. J. Infect. Dev. Ctries. 2022 16 2 314 319 10.3855/jidc.15142 35298427
    [Google Scholar]
  25. Kohanski M.A. Dwyer D.J. Collins J.J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 2010 8 6 423 435 10.1038/nrmicro2333 20440275
    [Google Scholar]
  26. Shafiurrahman, Hasan SM, Singh K, Kumar A, Suvaiv, Bano J, Shahanawaz M, Ahmad S, Kushwaha SP. Revolutionizing Quinolone Development for DNA Gyrase Targeting; Discovering the Promising Approach to Fighting Microbial Infections. Antiinfect. Agents 2024
    [Google Scholar]
  27. Rajakumari K. Aravind K. Balamugundhan M. Jagadeesan M. Somasundaram A. Brindha Devi P. Ramasamy P. Comprehensive review of DNA gyrase as enzymatic target for drug discovery and development. Eur. J. Med. Chem. Rep. 2024 12 100233 10.1016/j.ejmcr.2024.100233
    [Google Scholar]
  28. Medellín-Luna M.F. Hernández-López H. Castañeda-Delgado J.E. Martinez-Gutierrez F. Lara-Ramírez E. Espinoza-Rodríguez J.J. García-Cruz S. Portales-Pérez D.P. Cervantes-Villagrana A.R. Fluoroquinolone Analogs, SAR Analysis, and the Antimicrobial Evaluation of 7-Benzimidazol-1-yl-fluoroquinolone in in vitro, in silico, and in vivo Models. Molecules 2023 28 16 6018 10.3390/molecules28166018 37630269
    [Google Scholar]
  29. Padalino G. Duggan K. Mur L.A.J. Maillard J.Y. Brancale A. Hoffmann K.F. Compounds containing 2, 3-Bis (phenylamino) quinoxaline exhibit activity against methicillin-resistant staphylococcus aureus, enterococcus faecalis, and their biofilms. MicrobiologyOpen 2024 13 6 e011 10.1002/mbo3.70011 39665231
    [Google Scholar]
  30. Zeng C. Avula S.R. Meng J. Zhou C. Synthesis and biological evaluation of piperazine hybridized coumarin indolylcyanoenones with antibacterial potential. Molecules 2023 28 6 2511 10.3390/molecules28062511 36985486
    [Google Scholar]
  31. McCoy L.S. Xie Y. Tor Y. Antibiotics that target protein synthesis. Wiley Interdiscip. Rev. RNA 2011 2 2 209 232 10.1002/wrna.60 21957007
    [Google Scholar]
  32. Liu P. Jiang Y. Jiao L. Luo Y. Wang X. Yang T. Strategies for the Discovery of Oxazolidinone Antibacterial Agents: Development and Future Perspectives. J. Med. Chem. 2023 66 20 13860 13873 10.1021/acs.jmedchem.3c01040 37807849
    [Google Scholar]
  33. Zha G.F. Preetham H.D. Rangappa S. Sharath Kumar K.S. Girish Y.R. Rakesh K.P. Ashrafizadeh M. Zarrabi A. Rangappa K.S. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg. Chem. 2021 115 105175 10.1016/j.bioorg.2021.105175 34298242
    [Google Scholar]
  34. Ambade S.S. Gupta V.K. Bhole R.P. Khedekar P.B. Chikhale R.V. A review on five and six-membered heterocyclic compounds targeting the penicillin-binding protein 2 (PBP2A) of Methicillin-resistant Staphylococcus aureus (MRSA). Molecules 2023 28 20 7008 10.3390/molecules28207008 37894491
    [Google Scholar]
  35. Zhang H.Z. Gan L.L. Wang H. Zhou C.H. New Progress in Azole Compounds as Antimicrobial Agents. Mini Rev. Med. Chem. 2016 17 2 122 166 10.2174/1389557516666160630120725 27484625
    [Google Scholar]
  36. Mehta D. Saini V. Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med. Chem. 2023 14 9 1603 1628 10.1039/D3MD00151B 37731690
    [Google Scholar]
  37. Zhao S. Zhang X. Wei P. Su X. Zhao L. Wu M. Hao C. Liu C. Zhao D. Cheng M. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. Eur. J. Med. Chem. 2017 137 96 107 10.1016/j.ejmech.2017.05.043 28558334
    [Google Scholar]
  38. Morris A.J. Rogers K. McKinney W.P. Roberts S.A. Freeman J.T. Antifungal susceptibility testing results of New Zealand yeast isolates, 2001–2015: Impact of recent CLSI breakpoints and epidemiological cut-off values for Candida and other yeast species. J. Glob. Antimicrob. Resist. 2018 14 72 77 10.1016/j.jgar.2018.02.014 29486358
    [Google Scholar]
  39. Wal P. Saraswat N. Vig H. A detailed insight onto the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections. Curr. Drug Ther. 2022 17 3 148 159 10.2174/1574885517666220328141054
    [Google Scholar]
  40. Sabarees G Tamilarasi GP Alagarsamy V Kandhasamy S Gouthaman S Solomon VR An overview of acridine analogs: Pharmacological significance and recent developments. Curr. Med. Chem. 2024 10.2174/0109298673310987240610091522 38934279
    [Google Scholar]
  41. Kumar R. Singh A.A. Kumar U. Jain P. Sharma A.K. Kant C. Haque Faizi M.S. Recent advances in synthesis of heterocyclic Schiff base transition metal complexes and their antimicrobial activities especially antibacterial and antifungal. J. Mol. Struct. 2023 1294 136346 10.1016/j.molstruc.2023.136346
    [Google Scholar]
  42. Wube A.A. Bucar F. Asres K. Gibbons S. Adams M. Streit B. Bodensieck A. Bauer R. Knipholone, a selective inhibitor of leukotriene metabolism. Phytomedicine 2006 13 6 452 456 16716917
    [Google Scholar]
  43. Sharifi-Rad J. Cruz-Martins N. López-Jornet P. Lopez E.P. Harun N. Yeskaliyeva B. Beyatli A. Sytar O. Shaheen S. Sharopov F. Taheri Y. Docea A.O. Calina D. Cho W.C. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms. Oxid. Med. Cell. Longev. 2021 2021 6492346 34531939
    [Google Scholar]
  44. Yang C. Li T. Jiang L. Zhi X. Cao H. Semisynthesis and biological evaluation of some novel Mannich base derivatives derived from a natural lignan obovatol as potential antifungal agents. Bioorg. Chem. 2020 94 103469 10.1016/j.bioorg.2019.103469 31787345
    [Google Scholar]
  45. Raju K.R. Prasad A.R. Kumar B.S. Ravindranath L.R. Synthesis and medicinal evaluation of Mannich bases carrying azetidinone moiety. Journal of Clinical and Analytical Medicine. 2015 6 6 720 725
    [Google Scholar]
  46. Cebeci Y.U. Ceylan S. Demirbas N. Karaoğlu Ş.A. Microwave-assisted synthesis of novel mannich base and conazole derivatives containing biologically active pharmacological groups. Lett. Drug Des. Discov. 2021 18 3 269 283
    [Google Scholar]
  47. Santana A.C. Silva Filho R.C. Menezes J.C.J.M.D.S. Allonso D. Campos V.R. Nitrogen-based heterocyclic compounds: A promising class of antiviral agents against chikungunya virus. Life (Basel) 2020 11 1 16 33396631
    [Google Scholar]
  48. Quiroga D. Coy-Barrera E. Synthesis of antifungal heterocycle-containing mannich bases: A comprehensive review. Organics. 2023 4 4 503 523
    [Google Scholar]
  49. Ma Y. Wang L. Lu A. Xue W. Synthesis and biological activity of novel oxazinyl flavonoids as antiviral and anti-phytopathogenic fungus agents. Molecules 2022 27 20 6875 36296469
    [Google Scholar]
  50. Emami S. Ahmadi R. Ahadi H. Ashooriha M. Diverse therapeutic potential of 3-hydroxy-4-pyranones and related compounds as kojic acid analogs. Med. Chem. Res. 2022 31 11 1842 1861
    [Google Scholar]
  51. Prasher P Sharma M Jahan K Setzer WN Sharifi-Rad J Synthetic methodologies of imidazo [1, 2-a] pyrimidine: A review. Chem. Afr. 2024 8 1 22 10.1007/s42250‑024‑01142‑7
    [Google Scholar]
  52. Utreja D. Salotra R. Kaur G. Sharma S. Kaushal S. Chemistry of quinolines and their agrochemical potential. Curr. Org. Chem. 2022 26 20 1895 1913
    [Google Scholar]
  53. Alzahrani A.Y. Aboelez M.O. Kamel M.S. Selim H.M. Alsaggaf A.T. Hamd M.A. El-Remaily M.A. Design, spectroscopic characterizations, and biological investigation of oxospiro [chromine-4, 3-indolene]-based compounds as promising antiproliferative EGFR inhibitors and antimicrobial agents. Mol. Divers. 2024 ••• 1 7 38851658
    [Google Scholar]
  54. Zenchenko A.A. Drenichev M.S. Il’icheva I.A. Mikhailov S.N. Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action. Mol. Biol. 2021 55 6 786 812 10.1134/S0026893321040105 34955556
    [Google Scholar]
  55. Abuelizz H.A. Marzouk M. Bakheit A.H. Al-Salahi R. Investigation of some benzoquinazoline and quinazoline derivatives as novel inhibitors of HCV-NS3/4A protease: biological, molecular docking and QSAR studies. RSC Advances 2020 10 59 35820 35830 10.1039/D0RA05604A 35517076
    [Google Scholar]
  56. Wang S. Wang Y. Wang J. Sato T. Izawa K. Soloshonok V.A. Liu H. The Second-generation of Highly Potent Hepatitis C Virus (HCV) NS3/4A Protease Inhibitors: Evolutionary Design Based on Tailor-made Amino Acids, Synthesis and Major Features of Bio-activity. Curr. Pharm. Des. 2017 23 30 4493 4554 28530544
    [Google Scholar]
  57. Stanton R.A. Gernert K.M. Nettles J.H. Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev. 2011 31 3 443 481 21381049
    [Google Scholar]
  58. Thakral S. Singh V. Recent development on importance of heterocyclic amides as potential bioactive molecules: a review. Curr. Bioact. Compd. 2019 15 3 316 336 10.2174/1573407214666180614121140
    [Google Scholar]
  59. Venugopal S. Sharma V. Mehra A. Singh I. Singh G. DNA intercalators as anticancer agents. Chem. Biol. Drug Des. 2022 100 4 580 598 10.1111/cbdd.14116 35822451
    [Google Scholar]
  60. Das A. Banik B.K. Advances in heterocycles as DNA intercalating cancer drugs. Phys. Sci. Rev. 2023 8 9 2473 2521 10.1515/psr‑2021‑0065
    [Google Scholar]
  61. Tikhomirov A.S. Shtil A.A. Shchekotikhin A.E. Advances in the Discovery of Anthraquinone-Based Anticancer Agents. Recent Patents Anticancer Drug Discov. 2018 13 2 159 183 10.2174/1574892813666171206123114 29210664
    [Google Scholar]
  62. Swift L. Golsteyn R. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int. J. Mol. Sci. 2014 15 3 3403 3431 10.3390/ijms15033403 24573252
    [Google Scholar]
  63. Zhang J. Stevens M.F. Bradshaw T.D. Temozolomide: mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 2012 5 1 102 114 10.2174/1874467211205010102 22122467
    [Google Scholar]
  64. Yu W. Zhang L. Wei Q. Shao A. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front. Oncol. 2020 9 1547 10.3389/fonc.2019.01547 32010632
    [Google Scholar]
  65. Kaur R. Kaur G. Gill R.K. Soni R. Bariwal J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem. 2014 87 89 124 10.1016/j.ejmech.2014.09.051 25240869
    [Google Scholar]
  66. Mehrabi R. Bagheri G. Alipour F. Anticancer effects of Anbuta and Vinoblastin on breast cancer cell line ZR 75-1. J. Entomol. Zool. Stud. 2015 3 2 208 210
    [Google Scholar]
  67. Ebenezer O. Shapi M. Tuszynski J.A. A Review of the Recent Developments of Molecular Hybrids Targeting Tubulin Polymerization. Int. J. Mol. Sci. 2022 23 7 4001 10.3390/ijms23074001 35409361
    [Google Scholar]
  68. Xiao P. Ma T. Zhou C. Xu Y. Liu Y. Zhang H. Anticancer effect of docetaxel induces apoptosis of prostate cancer via the cofilin-1 and paxillin signaling pathway. Mol. Med. Rep. 2016 13 5 4079 4084 10.3892/mmr.2016.5000 27035282
    [Google Scholar]
  69. McLoughlin E.C. O’Boyle N.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020 13 1 8 10.3390/ph13010008 31947889
    [Google Scholar]
  70. Kidwai M. Venktaramanan R. Mohan R. Sapra P. Cancer chemotherapy and heterocyclic compounds. Curr. Med. Chem. 2002 9 12 1209 1228 10.2174/0929867023370059 12052173
    [Google Scholar]
  71. Shen P. Wang Y. Jia X. Xu P. Qin L. Feng X. Li Z. Qiu Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur. J. Med. Chem. 2022 239 114551 35749986
    [Google Scholar]
  72. Wang J. Yao X. Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MedChemComm 2017 8 5 841 854 10.1039/C7MD00030H 30108801
    [Google Scholar]
  73. Musumeci F. Cianciusi A. D’Agostino I. Grossi G. Carbone A. Schenone S. Synthetic heterocyclic derivatives as kinase inhibitors tested for the treatment of neuroblastoma. Molecules 2021 26 23 7069 34885651
    [Google Scholar]
  74. Shetu S.A. Bandyopadhyay D. Small-molecule RAS inhibitors as anticancer agents: discovery, development, and mechanistic studies. Int. J. Mol. Sci. 2022 23 7 3706 35409064
    [Google Scholar]
  75. Panda P. Chakroborty S. Unnamatla M.V. Structure-Activity-Relationship (SAR) Studies of Novel Hybrid Quinoline and Quinolone Derivatives as Anticancer Agents. Key Heterocyclic Cores for Smart Anticancer Drug–Design 2022 Part I 167 204
    [Google Scholar]
  76. Abbas N Matada GS Dhiwar PS Patel S Devasahayam G Fused and substituted pyrimidine derivatives as profound anti-cancer agents. Anti-Cancer Agents Med. Chem. 2021 21 33 861 893 10.2174/1871520620666200721104431
    [Google Scholar]
  77. Dey R. Vishwakarma K. Patel B. Vyas V.K. Bhatt H. Evolution of Telomerase Inhibitors: A Review on Key Patents from 2015 to 2023. ChemistrySelect 2024 9 47 e202404444
    [Google Scholar]
  78. Prabhu P.P. Panneerselvam T. Shastry C.S. Sivakumar A. Pande S.S. Synthesis and anticancer evaluation of 2-phenyl thiaolidinone substituted 2-phenyl benzothiazole-6-carboxylic acid derivatives. J. Saudi Chem. Soc. 2015 19 2 181 185
    [Google Scholar]
  79. Mousavi S.M. Zarei M. Hashemi S.A. Babapoor A. Amani A.M. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1132 1148 30942110
    [Google Scholar]
  80. Chiacchio U. Gumina G. Rescifina A. Romeo R. Uccella N. Casuscelli F. Piperno A. Romeo G. Modified dideoxynucleosides: Synthesis of 2′-N-alkyl-3′-hydroxyalkyl-1′, 2′-isoxazolidinyl thymidine and 5-fluorouridine derivatives. Tetrahedron 1996 52 26 8889 8898
    [Google Scholar]
  81. Jain A.K. Vaidya A. Ravichandran V. Kashaw S.K. Agrawal R.K. Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorg. Med. Chem. 2012 20 11 3378 3395 22546204
    [Google Scholar]
  82. Panigrahy D. Huang S. Kieran M.W. Kaipainen A. PPARgamma as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol. Ther. 2005 4 7 687 693 16082179
    [Google Scholar]
  83. Kaur Manjal S. Kaur R. Bhatia R. Kumar K. Singh V. Shankar R. Kaur R. Rawal R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem. 2017 75 406 423 29102723
    [Google Scholar]
  84. Torgovnick A. Schumacher B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015 6 157 25954303
    [Google Scholar]
  85. Liang C. Lee D.W. Newton M.G. Chu C.K. Synthesis of L-dioxolane nucleosides and related chemistry. J. Org. Chem. 1995 60 6 1546 1553
    [Google Scholar]
  86. Brånalt J. Kvarnström I. Classon B. Samuelsson B. Synthesis of [4,5-Bis(hydroxymethyl)-1,3-dioxolan-2-yl]nucleosides as Potential Inhibitors of HIV. J. Org. Chem. 1996 61 11 3599 3603 11667204
    [Google Scholar]
  87. Asati V. Mahapatra D.K. Bharti S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem. 2016 109 314 341 26807863
    [Google Scholar]
  88. Porta C. Paglino C. Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front. Oncol. 2014 4 64 10.3389/fonc.2014.00064 24782981
    [Google Scholar]
  89. Nitulescu G.M. Margina D. Juzenas P. Peng Q. Olaru O.T. Saloustros E. Fenga C. Spandidos D.A. Libra M. Tsatsakis A.M. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int. J. Oncol. 2016 48 3 869 885 10.3892/ijo.2015.3306 26698230
    [Google Scholar]
  90. Andrs M. Korabecny J. Jun D. Hodny Z. Bartek J. Kuca K. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring. J. Med. Chem. 2015 58 1 41 71 10.1021/jm501026z 25387153
    [Google Scholar]
  91. Lindsley C. The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation: a 2009 update. Curr. Top. Med. Chem. 2010 10 4 458 477 10.2174/156802610790980602 20180757
    [Google Scholar]
  92. Pontes O. Oliveira-Pinto S. Baltazar F. Costa M. Renal cell carcinoma therapy: Current and new drug candidates. Drug Discov. Today 2022 27 1 304 314 10.1016/j.drudis.2021.07.009 34265458
    [Google Scholar]
  93. Dreas A. Mikulski M. Milik M. Fabritius C.H. Brzózka K. Rzymski T. Mitogen-activated Protein Kinase (MAPK) Interacting Kinases 1 and 2 (MNK1 and MNK2) as Targets for Cancer Therapy: Recent Progress in the Development of MNK Inhibitors. Curr. Med. Chem. 2017 24 28 3025 3053 28164761
    [Google Scholar]
  94. Wydra V.R. Ditzinger R.B. Seidler N.J. Hacker F.W. Laufer S.A. A patent review of MAPK inhibitors (2018 – present). Expert Opin. Ther. Pat. 2018 33 6 421 444 10.1080/13543776.2023.2242584
    [Google Scholar]
  95. Sharma A. Shah S.R. Illum H. Dowell J. Vemurafenib. Drugs 2012 72 17 2207 2222 10.2165/11640870‑000000000‑00000 23116250
    [Google Scholar]
  96. Sun X. Xu S. Yang Z. Zheng P. Zhu W. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: A patent review. Expert Opin. Ther. Pat. 2014 31 3 223 238 10.1080/13543776.2021.1860210
    [Google Scholar]
  97. Ram T. Singh A.K. Kumar A. Singh H. Pathak P. Grishina M. Khalilullah H. Jaremko M. Emwas A.H. Verma A. Kumar P. MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives. RSC Med. Chem. 2023 14 10 1837 1857 10.1039/D3MD00145H 37859720
    [Google Scholar]
  98. von Nussbaum F. Brands M. Hinzen B. Weigand S. Häbich D. Antibacterial natural products in medicinal chemistry-exodus or revival? Angew. Chem. Int. Ed. 2006 45 31 5072 5129 10.1002/anie.200600350 16881035
    [Google Scholar]
  99. Liu H. Long S. Rakesh K.P. Zha G.F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur. J. Med. Chem. 2020 185 111804 10.1016/j.ejmech.2019.111804 31675510
    [Google Scholar]
  100. Gavade S.N. Markad V.L. Kodam K.M. Shingare M.S. Mane D.V. Synthesis and biological evaluation of novel 2,4,6-triazine derivatives as antimicrobial agents. Bioorg. Med. Chem. Lett. 2012 22 15 5075 5077 10.1016/j.bmcl.2012.05.111 22742908
    [Google Scholar]
  101. Ansari A. Ali A. Asif M. Shamsuzzaman S. Review: biologically active pyrazole derivatives. New J. Chem. 2017 41 1 16 41 10.1039/C6NJ03181A
    [Google Scholar]
  102. Sharma D. Narasimhan B. Kumar P. Judge V. Narang R. De Clercq E. Balzarini J. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur. J. Med. Chem. 2009 44 6 2347 2353 10.1016/j.ejmech.2008.08.010 18851889
    [Google Scholar]
  103. Sharma P. Rane N. Gurram V.K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2004 14 16 4185 4190 10.1016/j.bmcl.2004.06.014 15261267
    [Google Scholar]
  104. Gahtori P. Ghosh S.K. Singh B. Singh U.P. Bhat H.R. Uppal A. Synthesis, SAR and antibacterial activity of hybrid chloro, dichloro-phenylthiazolyl-s-triazines. Saudi Pharm. J. 2012 20 1 35 43 10.1016/j.jsps.2011.05.003 23960775
    [Google Scholar]
  105. Ciulla M.G. Gelain F. Structure–activity relationships of antibacterial peptides. Microb. Biotechnol. 2023 16 4 757 777 10.1111/1751‑7915.14213 36705032
    [Google Scholar]
  106. El-Sayed Ali T. Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents. Eur. J. Med. Chem. 2009 44 11 4385 4392 10.1016/j.ejmech.2009.05.031 19586688
    [Google Scholar]
  107. Kumar Verma S. Verma R. Xue F. Kumar Thakur P. Girish Y.R. Rakesh K.P. Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg. Chem. 2020 105 104400 10.1016/j.bioorg.2020.104400 33128966
    [Google Scholar]
  108. Letafat B. Mohammadhosseini N. Asadipour A. Foroumadi A. Synthesis and in vitro Antibacterial Activity of New 2-(1-Methyl-4-nitro-1 H -imidazol-5-ylsulfonyl)-1,3,4-thiadiazoles. J. Chem. 2011 8 3 1120 1123 10.1155/2011/642071
    [Google Scholar]
  109. Kim S.J. Jung M.H. Yoo K.H. Cho J.H. Oh C.H. Synthesis and antibacterial activities of novel oxazolidinones having cyclic sulfonamide moieties. Bioorg. Med. Chem. Lett. 2008 18 21 5815 5818 10.1016/j.bmcl.2008.09.034 18842403
    [Google Scholar]
  110. Abdeen S. Kunkle T. Salim N. Ray A.M. Mammadova N. Summers C. Stevens M. Ambrose A.J. Park Y. Schultz P.G. Horwich A.L. Hoang Q.Q. Chapman E. Johnson S.M. Sulfonamido-2-arylbenzoxazole GroEL/ES Inhibitors as Potent Antibacterials against Methicillin-Resistant Staphylococcus aureus (MRSA). J. Med. Chem. 2018 61 16 7345 7357 10.1021/acs.jmedchem.8b00989 30060666
    [Google Scholar]
  111. Naaz F. Srivastava R. Singh A. Singh N. Verma R. Singh V.K. Singh R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem. 2018 26 12 3414 3428 10.1016/j.bmc.2018.05.015 29778528
    [Google Scholar]
  112. Athar M. Lone M.Y. Khedkar V.M. Radadiya A. Shah A. Jha P.C. Structural Investigation of Vinca Domain Tubulin Binders by Pharmacophore, Atom based QSAR, Docking and Molecular Dynamics Simulations. Comb. Chem. High Throughput Screen. 2017 20 8 682 695 28486912
    [Google Scholar]
  113. Yoon Y.K. Ali M.A. Wei A.C. Shirazi A.N. Parang K. Choon T.S. Benzimidazoles as new scaffold of sirtuin inhibitors: Green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties. Eur. J. Med. Chem. 2014 83 448 454 10.1016/j.ejmech.2014.06.060 24992072
    [Google Scholar]
  114. Shao K.P. Zhang X.Y. Chen P.J. Xue D.Q. He P. Ma L.Y. Zheng J.X. Zhang Q.R. Liu H.M. Synthesis and biological evaluation of novel pyrimidine–benzimidazol hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett. 2014 24 16 3877 3881 10.1016/j.bmcl.2014.06.050 25001482
    [Google Scholar]
  115. Racané L. Pavelić S.K. Nhili R. Depauw S. Paul-Constant C. Ratkaj I. David-Cordonnier M.H. Pavelić K. Tralić-Kulenović V. Karminski-Zamola G. New anticancer active and selective phenylene-bisbenzothiazoles: Synthesis, antiproliferative evaluation and DNA binding. Eur. J. Med. Chem. 2013 63 882 891 10.1016/j.ejmech.2013.02.026 23603616
    [Google Scholar]
  116. Noolvi M.N. Patel H.M. Kaur M. Benzothiazoles: Search for anticancer agents. Eur. J. Med. Chem. 2012 54 447 462 10.1016/j.ejmech.2012.05.028 22703845
    [Google Scholar]
  117. Chen G. Weng Q. Fu L. Wang Z. Yu P. Liu Z. Li X. Zhang H. Liang G. Synthesis and biological evaluation of novel oxindole-based RTK inhibitors as anti-cancer agents. Bioorg. Med. Chem. 2014 22 24 6953 6960 10.1016/j.bmc.2014.10.017 25456085
    [Google Scholar]
  118. Pastwińska J. Karaś K. Karwaciak I. Ratajewski M. Targeting EGFR in melanoma–the sea of possibilities to overcome drug resistance. Biochimica et Biophysica Acta (BBA)-. Revis. Cancer 2022 1877 4 188754 35772580
    [Google Scholar]
  119. Zhang K. Wang P. Xuan L.N. Fu X.Y. Jing F. Li S. Liu Y.M. Chen B.Q. Synthesis and antitumor activities of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety. Bioorg. Med. Chem. Lett. 2014 24 22 5154 5156 10.1016/j.bmcl.2014.09.086 25442303
    [Google Scholar]
  120. Mowafy S. Farag N.A. Abouzid K.A.M. Design, synthesis and in vitro anti-proliferative activity of 4,6-quinazolinediamines as potent EGFR-TK inhibitors. Eur. J. Med. Chem. 2013 61 132 145 10.1016/j.ejmech.2012.10.017 23142066
    [Google Scholar]
  121. Vyas V.K. Variya B. Ghate M.D. Design, synthesis and pharmacological evaluation of novel substituted quinoline-2-carboxamide derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents. Eur. J. Med. Chem. 2014 82 385 393 10.1016/j.ejmech.2014.05.064 24929289
    [Google Scholar]
  122. Shen S.L. Shao J.H. Luo J.Z. Liu J.T. Miao J.Y. Zhao B.X. Novel chiral ferrocenylpyrazolo[1,5-a][1,4]diazepin-4-one derivatives – Synthesis, characterization and inhibition against lung cancer cells. Eur. J. Med. Chem. 2013 63 256 268 10.1016/j.ejmech.2013.02.016 23501111
    [Google Scholar]
  123. Singh S. Kumar R. Payra S. Singh S.K. Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery. Cureus 2023 15 8 e44359 10.7759/cureus.44359 37779744
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501372336250703114127
Loading
/content/journals/cdt/10.2174/0113894501372336250703114127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test