Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Introduction/Objective

Heterocyclic molecules, a mainstay of contemporary medicinal chemistry, are essential in developing antibacterial and anticancer treatments. Their distinct structural features-one or more heteroatoms within the ring-allow for a wide range of biological activities. With a focus on their modes of action and insights into the structure-activity relationship (SAR), this study examines the therapeutic uses of heterocyclic compounds in antibacterial, antifungal, antiviral, and anticancer treatments.

Methods

The review uses search engines like PubMed and Google Scholar, with a preference for English as the major language, to gather and analyse recent research on the antibacterial and anticancer applications of diverse heterocyclic compounds.

Results

It has been discovered that heterocyclic chemicals are useful in blocking microbial enzymes, including DNA gyrase and the machinery involved in protein synthesis. Heterocyclic compounds such as benzimidazoles, quinolines, and acridines have demonstrated noteworthy efficacy in cancer therapy through their targeting of tubulin inhibition, DNA intercalation, and signalling pathways like PI3K/Akt/mTOR and MAPK. The pharmacological characteristics of these compounds were improved by the addition of electron-withdrawing groups, halogenation, and heteroatom replacements, according to SAR investigations.

Conclusion

Heterocyclic compounds have great promise for antibacterial and anticancer treatments. They are crucial in drug development because of their structural flexibility, which enables the targeted suppression of vital biological processes. The effectiveness of heterocyclic compounds will continue to be improved by ongoing advancements in drug design and SAR optimization, opening new possibilities for the creation of more potent and selective medicinal treatments.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501372336250703114127
2025-07-09
2025-12-08
Loading full text...

Full text loading...

References

  1. MartinsP. JesusJ. SantosS. RaposoL. Roma-RodriguesC. BaptistaP. FernandesA. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box.Molecules2015209168521689110.3390/molecules20091685226389876
    [Google Scholar]
  2. PibiriI. Recent Advances: Heterocycles in Drugs and Drug Discovery.Int. J. Mol. Sci.20242517950310.3390/ijms2517950339273451
    [Google Scholar]
  3. MeanwellN.A. The pyridazine heterocycle in molecular recognition and drug discovery.Med. Chem. Res.20233291853192110.1007/s00044‑023‑03035‑937362319
    [Google Scholar]
  4. MirR.H. MirP.A. Mohi-ud-dinR. SabreenS. MaqboolM. ShahA.J. ShenmarK. RazaS.N. PottooF.H. A Comprehensive Review on Journey of Pyrrole Scaffold Against Multiple Therapeutic Targets.Anticancer. Agents Med. Chem.202222193291330310.2174/187152062266622061314060735702764
    [Google Scholar]
  5. DhimanN. KaurK. JaitakV. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies.Bioorg. Med. Chem.2020281511559910.1016/j.bmc.2020.11559932631569
    [Google Scholar]
  6. HouJ. ZhaoW. HuangZ.N. YangS.M. WangL.J. JiangY. ZhouZ.S. ZhengM.Y. JiangJ.L. LiS.H. LiF.N. Evaluation of Novel N -(piperidine-4-yl)benzamide Derivatives as Potential Cell Cycle Inhibitors in HepG2 Cells.Chem. Biol. Drug Des.201586222323110.1111/cbdd.1248425430863
    [Google Scholar]
  7. YadagiriB. HolagundaU.D. BantuR. NagarapuL. KumarC.G. PombalaS. SridharB. Synthesis of novel building blocks of benzosuberone bearing coumarin moieties and their evaluation as potential anticancer agents.Eur. J. Med. Chem.20147926026510.1016/j.ejmech.2014.04.01524742385
    [Google Scholar]
  8. AliI. LoneM. Al-OthmanZ. Al-WarthanA. SanagiM. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.Curr. Drug Targets201516771173410.2174/138945011666615030911592225751009
    [Google Scholar]
  9. NadaH. ElkamhawyA. LeeK. Structure activity relationship of key heterocyclic anti-angiogenic leads of promising potential in the fight against cancer.Molecules202126355310.3390/molecules2603055333494492
    [Google Scholar]
  10. SinghPK SilakariO Multitargeting heterocycles: Improved and rational chemical probes for multifactorial diseases.Key Heterocycle Cores for Designing Multitargeting MoleculesElsevier201812910.1016/B978‑0‑08‑102083‑8.00001‑7
    [Google Scholar]
  11. ApaydınS. TörökM. Sulfonamide derivatives as multi-target agents for complex diseases.Bioorg. Med. Chem. Lett.201929162042205010.1016/j.bmcl.2019.06.04131272793
    [Google Scholar]
  12. XiaoX. OswaldJ.T. WangT. ZhangW. LiW. Use of Anticancer Platinum Compounds in Combination Therapies and Challenges in Drug Delivery.Curr. Med. Chem.202027183055307810.2174/092986732566618110511584930394206
    [Google Scholar]
  13. EbenezerO. JordaanM.A. CarenaG. BonoT. ShapiM. TuszynskiJ.A. An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds.Int. J. Mol. Sci.20222315811735897691
    [Google Scholar]
  14. AmewuR.K. SakyiP.O. Osei-SafoD. Addae-MensahI. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets.Molecules20212623713410.3390/molecules2623713434885716
    [Google Scholar]
  15. MarsonCM Saturated heterocycles with applications in medicinal chemistry.Advances in Heterocyclic ChemistryElsevier2017133310.1016/bs.aihch.2016.03.004
    [Google Scholar]
  16. AsifM. AllahyaniM. AlmehmadiM.M. AlsaiariA.A. Applications and biological potential of substituted pyridazine analogs in medicinal and agricultural fields.Curr. Org. Chem.2023271081482010.2174/1385272827666230809094221
    [Google Scholar]
  17. FesatidouM. PetrouA. AthinaG. Heterocycle Compounds with Antimicrobial Activity.Curr. Pharm. Des.202026886790432026773
    [Google Scholar]
  18. KhanT. SankheK. SuvarnaV. SherjeA. PatelK. DravyakarB. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents.Biomed. Pharmacother.201810392393829710509
    [Google Scholar]
  19. MazuT.K. BrickerB.A. Flores-RozasH. AblordeppeyS.Y. The Mechanistic Targets of Antifungal Agents: An Overview.Mini Rev. Med. Chem.201616755557826776224
    [Google Scholar]
  20. MaY. Frutos-BeltránE. KangD. PannecouqueC. De ClercqE. Menéndez-AriasL. LiuX. ZhanP. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses.Chem. Soc. Rev.20215074514454010.1039/D0CS01084G33595031
    [Google Scholar]
  21. LunguI.A. MoldovanO.L. BirișV. RusuA. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance.Pharmaceutics2022148174910.3390/pharmaceutics1408174936015376
    [Google Scholar]
  22. WilesJ.A. BradburyB.J. PucciM.J. New quinolone antibiotics: A survey of the literature from 2005 to 2010.Expert Opin. Ther. Pat.201010201295131910.1517/13543776.2010.505922
    [Google Scholar]
  23. MirzaieA. PeiroviN. AkbarzadehI. MoghtaderiM. HeidariF. YeganehF.E. NoorbazarganH. MirzazadehS. BakhtiariR. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus.Bioorg. Chem.202010310423110.1016/j.bioorg.2020.10423132882442
    [Google Scholar]
  24. YakoutM.A. AliG.H. A novel parC mutation potentiating fluoroquinolone resistance in Klebsiella pneumoniae and Escherichia coli clinical isolates.J. Infect. Dev. Ctries.202216231431910.3855/jidc.1514235298427
    [Google Scholar]
  25. KohanskiM.A. DwyerD.J. CollinsJ.J. How antibiotics kill bacteria: from targets to networks.Nat. Rev. Microbiol.20108642343510.1038/nrmicro233320440275
    [Google Scholar]
  26. Shafiurrahman, Hasan SM, Singh K, Kumar A, Suvaiv, Bano J, Shahanawaz M, Ahmad S, Kushwaha SP. Revolutionizing Quinolone Development for DNA Gyrase Targeting; Discovering the Promising Approach to Fighting Microbial Infections.Antiinfect. Agents2024
    [Google Scholar]
  27. RajakumariK. AravindK. BalamugundhanM. JagadeesanM. SomasundaramA. Brindha DeviP. RamasamyP. Comprehensive review of DNA gyrase as enzymatic target for drug discovery and development.Eur. J. Med. Chem. Rep.20241210023310.1016/j.ejmcr.2024.100233
    [Google Scholar]
  28. Medellín-LunaM.F. Hernández-LópezH. Castañeda-DelgadoJ.E. Martinez-GutierrezF. Lara-RamírezE. Espinoza-RodríguezJ.J. García-CruzS. Portales-PérezD.P. Cervantes-VillagranaA.R. Fluoroquinolone Analogs, SAR Analysis, and the Antimicrobial Evaluation of 7-Benzimidazol-1-yl-fluoroquinolone in in vitro, in silico, and in vivo Models.Molecules20232816601810.3390/molecules2816601837630269
    [Google Scholar]
  29. PadalinoG. DugganK. MurL.A.J. MaillardJ.Y. BrancaleA. HoffmannK.F. Compounds containing 2, 3-Bis (phenylamino) quinoxaline exhibit activity against methicillin-resistant staphylococcus aureus, enterococcus faecalis, and their biofilms.MicrobiologyOpen2024136e01110.1002/mbo3.7001139665231
    [Google Scholar]
  30. ZengC. AvulaS.R. MengJ. ZhouC. Synthesis and biological evaluation of piperazine hybridized coumarin indolylcyanoenones with antibacterial potential.Molecules2023286251110.3390/molecules2806251136985486
    [Google Scholar]
  31. McCoyL.S. XieY. TorY. Antibiotics that target protein synthesis.Wiley Interdiscip. Rev. RNA20112220923210.1002/wrna.6021957007
    [Google Scholar]
  32. LiuP. JiangY. JiaoL. LuoY. WangX. YangT. Strategies for the Discovery of Oxazolidinone Antibacterial Agents: Development and Future Perspectives.J. Med. Chem.20236620138601387310.1021/acs.jmedchem.3c0104037807849
    [Google Scholar]
  33. ZhaG.F. PreethamH.D. RangappaS. Sharath KumarK.S. GirishY.R. RakeshK.P. AshrafizadehM. ZarrabiA. RangappaK.S. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance Staphylococcus aureus (MRSA) and its SAR studies.Bioorg. Chem.202111510517510.1016/j.bioorg.2021.10517534298242
    [Google Scholar]
  34. AmbadeS.S. GuptaV.K. BholeR.P. KhedekarP.B. ChikhaleR.V. A review on five and six-membered heterocyclic compounds targeting the penicillin-binding protein 2 (PBP2A) of Methicillin-resistant Staphylococcus aureus (MRSA).Molecules20232820700810.3390/molecules2820700837894491
    [Google Scholar]
  35. ZhangH.Z. GanL.L. WangH. ZhouC.H. New Progress in Azole Compounds as Antimicrobial Agents.Mini Rev. Med. Chem.201617212216610.2174/138955751666616063012072527484625
    [Google Scholar]
  36. MehtaD. SainiV. BajajA. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance.RSC Med. Chem.20231491603162810.1039/D3MD00151B37731690
    [Google Scholar]
  37. ZhaoS. ZhangX. WeiP. SuX. ZhaoL. WuM. HaoC. LiuC. ZhaoD. ChengM. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents.Eur. J. Med. Chem.20171379610710.1016/j.ejmech.2017.05.04328558334
    [Google Scholar]
  38. MorrisA.J. RogersK. McKinneyW.P. RobertsS.A. FreemanJ.T. Antifungal susceptibility testing results of New Zealand yeast isolates, 2001–2015: Impact of recent CLSI breakpoints and epidemiological cut-off values for Candida and other yeast species.J. Glob. Antimicrob. Resist.201814727710.1016/j.jgar.2018.02.01429486358
    [Google Scholar]
  39. WalP. SaraswatN. VigH. A detailed insight onto the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections.Curr. Drug Ther.202217314815910.2174/1574885517666220328141054
    [Google Scholar]
  40. SabareesG TamilarasiGP AlagarsamyV KandhasamyS GouthamanS SolomonVR An overview of acridine analogs: Pharmacological significance and recent developments.Curr. Med. Chem.202410.2174/010929867331098724061009152238934279
    [Google Scholar]
  41. KumarR. SinghA.A. KumarU. JainP. SharmaA.K. KantC. Haque FaiziM.S. Recent advances in synthesis of heterocyclic Schiff base transition metal complexes and their antimicrobial activities especially antibacterial and antifungal.J. Mol. Struct.2023129413634610.1016/j.molstruc.2023.136346
    [Google Scholar]
  42. WubeA.A. BucarF. AsresK. GibbonsS. AdamsM. StreitB. BodensieckA. BauerR. Knipholone, a selective inhibitor of leukotriene metabolism.Phytomedicine200613645245616716917
    [Google Scholar]
  43. Sharifi-RadJ. Cruz-MartinsN. López-JornetP. LopezE.P. HarunN. YeskaliyevaB. BeyatliA. SytarO. ShaheenS. SharopovF. TaheriY. DoceaA.O. CalinaD. ChoW.C. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms.Oxid. Med. Cell. Longev.20212021649234634531939
    [Google Scholar]
  44. YangC. LiT. JiangL. ZhiX. CaoH. Semisynthesis and biological evaluation of some novel Mannich base derivatives derived from a natural lignan obovatol as potential antifungal agents.Bioorg. Chem.20209410346910.1016/j.bioorg.2019.10346931787345
    [Google Scholar]
  45. RajuK.R. PrasadA.R. KumarB.S. RavindranathL.R. Synthesis and medicinal evaluation of Mannich bases carrying azetidinone moiety.Journal of Clinical and Analytical Medicine.201566720725
    [Google Scholar]
  46. CebeciY.U. CeylanS. DemirbasN. KaraoğluŞ.A. Microwave-assisted synthesis of novel mannich base and conazole derivatives containing biologically active pharmacological groups.Lett. Drug Des. Discov.2021183269283
    [Google Scholar]
  47. SantanaA.C. Silva FilhoR.C. MenezesJ.C.J.M.D.S. AllonsoD. CamposV.R. Nitrogen-based heterocyclic compounds: A promising class of antiviral agents against chikungunya virus.Life (Basel)20201111633396631
    [Google Scholar]
  48. QuirogaD. Coy-BarreraE. Synthesis of antifungal heterocycle-containing mannich bases: A comprehensive review.Organics.202344503523
    [Google Scholar]
  49. MaY. WangL. LuA. XueW. Synthesis and biological activity of novel oxazinyl flavonoids as antiviral and anti-phytopathogenic fungus agents.Molecules20222720687536296469
    [Google Scholar]
  50. EmamiS. AhmadiR. AhadiH. AshoorihaM. Diverse therapeutic potential of 3-hydroxy-4-pyranones and related compounds as kojic acid analogs.Med. Chem. Res.2022311118421861
    [Google Scholar]
  51. PrasherP SharmaM JahanK SetzerWN Sharifi-RadJ Synthetic methodologies of imidazo [1, 2-a] pyrimidine: A review.Chem. Afr.2024812210.1007/s42250‑024‑01142‑7
    [Google Scholar]
  52. UtrejaD. SalotraR. KaurG. SharmaS. KaushalS. Chemistry of quinolines and their agrochemical potential.Curr. Org. Chem.2022262018951913
    [Google Scholar]
  53. AlzahraniA.Y. AboelezM.O. KamelM.S. SelimH.M. AlsaggafA.T. HamdM.A. El-RemailyM.A. Design, spectroscopic characterizations, and biological investigation of oxospiro [chromine-4, 3-indolene]-based compounds as promising antiproliferative EGFR inhibitors and antimicrobial agents.Mol. Divers.202529147148738851658
    [Google Scholar]
  54. ZenchenkoA.A. DrenichevM.S. Il’ichevaI.A. MikhailovS.N. Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action.Mol. Biol.202155678681210.1134/S002689332104010534955556
    [Google Scholar]
  55. AbuelizzH.A. MarzoukM. BakheitA.H. Al-SalahiR. Investigation of some benzoquinazoline and quinazoline derivatives as novel inhibitors of HCV-NS3/4A protease: biological, molecular docking and QSAR studies.RSC Advances20201059358203583010.1039/D0RA05604A35517076
    [Google Scholar]
  56. WangS. WangY. WangJ. SatoT. IzawaK. SoloshonokV.A. LiuH. The Second-generation of Highly Potent Hepatitis C Virus (HCV) NS3/4A Protease Inhibitors: Evolutionary Design Based on Tailor-made Amino Acids, Synthesis and Major Features of Bio-activity.Curr. Pharm. Des.201723304493455428530544
    [Google Scholar]
  57. StantonR.A. GernertK.M. NettlesJ.H. AnejaR. Drugs that target dynamic microtubules: a new molecular perspective.Med. Res. Rev.201131344348121381049
    [Google Scholar]
  58. ThakralS. SinghV. Recent development on importance of heterocyclic amides as potential bioactive molecules: a review.Curr. Bioact. Compd.201915331633610.2174/1573407214666180614121140
    [Google Scholar]
  59. VenugopalS. SharmaV. MehraA. SinghI. SinghG. DNA intercalators as anticancer agents.Chem. Biol. Drug Des.2022100458059810.1111/cbdd.1411635822451
    [Google Scholar]
  60. DasA. BanikB.K. Advances in heterocycles as DNA intercalating cancer drugs.Phys. Sci. Rev.2023892473252110.1515/psr‑2021‑0065
    [Google Scholar]
  61. TikhomirovA.S. ShtilA.A. ShchekotikhinA.E. Advances in the Discovery of Anthraquinone-Based Anticancer Agents.Recent Patents Anticancer Drug Discov.201813215918310.2174/157489281366617120612311429210664
    [Google Scholar]
  62. SwiftL. GolsteynR. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells.Int. J. Mol. Sci.20141533403343110.3390/ijms1503340324573252
    [Google Scholar]
  63. ZhangJ. StevensM.F. BradshawT.D. Temozolomide: mechanisms of action, repair and resistance.Curr. Mol. Pharmacol.20125110211410.2174/187446721120501010222122467
    [Google Scholar]
  64. YuW. ZhangL. WeiQ. ShaoA. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy.Front. Oncol.20209154710.3389/fonc.2019.0154732010632
    [Google Scholar]
  65. KaurR. KaurG. GillR.K. SoniR. BariwalJ. Recent developments in tubulin polymerization inhibitors: An overview.Eur. J. Med. Chem.2014878912410.1016/j.ejmech.2014.09.05125240869
    [Google Scholar]
  66. MehrabiR. BagheriG. AlipourF. Anticancer effects of Anbuta and Vinoblastin on breast cancer cell line ZR 75-1.J. Entomol. Zool. Stud.201532208210
    [Google Scholar]
  67. EbenezerO. ShapiM. TuszynskiJ.A. A Review of the Recent Developments of Molecular Hybrids Targeting Tubulin Polymerization.Int. J. Mol. Sci.2022237400110.3390/ijms2307400135409361
    [Google Scholar]
  68. XiaoP. MaT. ZhouC. XuY. LiuY. ZhangH. Anticancer effect of docetaxel induces apoptosis of prostate cancer via the cofilin-1 and paxillin signaling pathway.Mol. Med. Rep.20161354079408410.3892/mmr.2016.500027035282
    [Google Scholar]
  69. McLoughlinE.C. O’BoyleN.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review.Pharmaceuticals (Basel)2020131810.3390/ph1301000831947889
    [Google Scholar]
  70. KidwaiM. VenktaramananR. MohanR. SapraP. Cancer chemotherapy and heterocyclic compounds.Curr. Med. Chem.20029121209122810.2174/092986702337005912052173
    [Google Scholar]
  71. ShenP. WangY. JiaX. XuP. QinL. FengX. LiZ. QiuZ. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases.Eur. J. Med. Chem.202223911455135749986
    [Google Scholar]
  72. WangJ. YaoX. HuangJ. New tricks for human farnesyltransferase inhibitor: cancer and beyond.MedChemComm20178584185410.1039/C7MD00030H30108801
    [Google Scholar]
  73. MusumeciF. CianciusiA. D’AgostinoI. GrossiG. CarboneA. SchenoneS. Synthetic heterocyclic derivatives as kinase inhibitors tested for the treatment of neuroblastoma.Molecules20212623706934885651
    [Google Scholar]
  74. ShetuS.A. BandyopadhyayD. Small-molecule RAS inhibitors as anticancer agents: discovery, development, and mechanistic studies.Int. J. Mol. Sci.2022237370635409064
    [Google Scholar]
  75. PandaP. ChakrobortyS. UnnamatlaM.V. Structure-Activity-Relationship (SAR) Studies of Novel Hybrid Quinoline and Quinolone Derivatives as Anticancer Agents.Key Heterocyclic Cores for Smart Anticancer Drug–Design2022Part I167204
    [Google Scholar]
  76. AbbasN MatadaGS DhiwarPS PatelS DevasahayamG Fused and substituted pyrimidine derivatives as profound anti-cancer agents.Anti-Cancer Agents Med. Chem.2021213386189310.2174/1871520620666200721104431
    [Google Scholar]
  77. DeyR. VishwakarmaK. PatelB. VyasV.K. BhattH. Evolution of Telomerase Inhibitors: A Review on Key Patents from 2015 to 2023.ChemistrySelect2024947e202404444
    [Google Scholar]
  78. PrabhuP.P. PanneerselvamT. ShastryC.S. SivakumarA. PandeS.S. Synthesis and anticancer evaluation of 2-phenyl thiaolidinone substituted 2-phenyl benzothiazole-6-carboxylic acid derivatives.J. Saudi Chem. Soc.2015192181185
    [Google Scholar]
  79. MousaviS.M. ZareiM. HashemiS.A. BabapoorA. AmaniA.M. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities.Artif. Cells Nanomed. Biotechnol.20194711132114830942110
    [Google Scholar]
  80. ChiacchioU. GuminaG. RescifinaA. RomeoR. UccellaN. CasuscelliF. PipernoA. RomeoG. Modified dideoxynucleosides: Synthesis of 2′-N-alkyl-3′-hydroxyalkyl-1′, 2′-isoxazolidinyl thymidine and 5-fluorouridine derivatives.Tetrahedron1996522688898898
    [Google Scholar]
  81. JainA.K. VaidyaA. RavichandranV. KashawS.K. AgrawalR.K. Recent developments and biological activities of thiazolidinone derivatives: a review.Bioorg. Med. Chem.201220113378339522546204
    [Google Scholar]
  82. PanigrahyD. HuangS. KieranM.W. KaipainenA. PPARgamma as a therapeutic target for tumor angiogenesis and metastasis.Cancer Biol. Ther.20054768769316082179
    [Google Scholar]
  83. Kaur ManjalS. KaurR. BhatiaR. KumarK. SinghV. ShankarR. KaurR. RawalR.K. Synthetic and medicinal perspective of thiazolidinones: A review.Bioorg. Chem.20177540642329102723
    [Google Scholar]
  84. TorgovnickA. SchumacherB. DNA repair mechanisms in cancer development and therapy.Front. Genet.2015615725954303
    [Google Scholar]
  85. LiangC. LeeD.W. NewtonM.G. ChuC.K. Synthesis of L-dioxolane nucleosides and related chemistry.J. Org. Chem.199560615461553
    [Google Scholar]
  86. BrånaltJ. KvarnströmI. ClassonB. SamuelssonB. Synthesis of [4,5-Bis(hydroxymethyl)-1,3-dioxolan-2-yl]nucleosides as Potential Inhibitors of HIV.J. Org. Chem.199661113599360311667204
    [Google Scholar]
  87. AsatiV. MahapatraD.K. BhartiS.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives.Eur. J. Med. Chem.201610931434126807863
    [Google Scholar]
  88. PortaC. PaglinoC. MoscaA. Targeting PI3K/Akt/mTOR Signaling in Cancer.Front. Oncol.201446410.3389/fonc.2014.0006424782981
    [Google Scholar]
  89. NitulescuG.M. MarginaD. JuzenasP. PengQ. OlaruO.T. SaloustrosE. FengaC. SpandidosD.A. LibraM. TsatsakisA.M. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review).Int. J. Oncol.201648386988510.3892/ijo.2015.330626698230
    [Google Scholar]
  90. AndrsM. KorabecnyJ. JunD. HodnyZ. BartekJ. KucaK. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring.J. Med. Chem.2015581417110.1021/jm501026z25387153
    [Google Scholar]
  91. LindsleyC. The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation: a 2009 update.Curr. Top. Med. Chem.201010445847710.2174/15680261079098060220180757
    [Google Scholar]
  92. PontesO. Oliveira-PintoS. BaltazarF. CostaM. Renal cell carcinoma therapy: Current and new drug candidates.Drug Discov. Today202227130431410.1016/j.drudis.2021.07.00934265458
    [Google Scholar]
  93. DreasA. MikulskiM. MilikM. FabritiusC.H. BrzózkaK. RzymskiT. Mitogen-activated Protein Kinase (MAPK) Interacting Kinases 1 and 2 (MNK1 and MNK2) as Targets for Cancer Therapy: Recent Progress in the Development of MNK Inhibitors.Curr. Med. Chem.201724283025305328164761
    [Google Scholar]
  94. WydraV.R. DitzingerR.B. SeidlerN.J. HackerF.W. LauferS.A. A patent review of MAPK inhibitors (2018 – present).Expert Opin. Ther. Pat.201833642144410.1080/13543776.2023.2242584
    [Google Scholar]
  95. SharmaA. ShahS.R. IllumH. DowellJ. Vemurafenib.Drugs201272172207222210.2165/11640870‑000000000‑0000023116250
    [Google Scholar]
  96. SunX. XuS. YangZ. ZhengP. ZhuW. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: A patent review.Expert Opin. Ther. Pat.201431322323810.1080/13543776.2021.1860210
    [Google Scholar]
  97. RamT. SinghA.K. KumarA. SinghH. PathakP. GrishinaM. KhalilullahH. JaremkoM. EmwasA.H. VermaA. KumarP. MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives.RSC Med. Chem.202314101837185710.1039/D3MD00145H37859720
    [Google Scholar]
  98. von NussbaumF. BrandsM. HinzenB. WeigandS. HäbichD. Antibacterial natural products in medicinal chemistry-exodus or revival?Angew. Chem. Int. Ed.200645315072512910.1002/anie.20060035016881035
    [Google Scholar]
  99. LiuH. LongS. RakeshK.P. ZhaG.F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents.Eur. J. Med. Chem.202018511180410.1016/j.ejmech.2019.11180431675510
    [Google Scholar]
  100. GavadeS.N. MarkadV.L. KodamK.M. ShingareM.S. ManeD.V. Synthesis and biological evaluation of novel 2,4,6-triazine derivatives as antimicrobial agents.Bioorg. Med. Chem. Lett.201222155075507710.1016/j.bmcl.2012.05.11122742908
    [Google Scholar]
  101. AnsariA. AliA. AsifM. ShamsuzzamanS. Review: biologically active pyrazole derivatives.New J. Chem.2017411164110.1039/C6NJ03181A
    [Google Scholar]
  102. SharmaD. NarasimhanB. KumarP. JudgeV. NarangR. De ClercqE. BalzariniJ. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives.Eur. J. Med. Chem.20094462347235310.1016/j.ejmech.2008.08.01018851889
    [Google Scholar]
  103. SharmaP. RaneN. GurramV.K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents.Bioorg. Med. Chem. Lett.200414164185419010.1016/j.bmcl.2004.06.01415261267
    [Google Scholar]
  104. GahtoriP. GhoshS.K. SinghB. SinghU.P. BhatH.R. UppalA. Synthesis, SAR and antibacterial activity of hybrid chloro, dichloro-phenylthiazolyl-s-triazines.Saudi Pharm. J.2012201354310.1016/j.jsps.2011.05.00323960775
    [Google Scholar]
  105. CiullaM.G. GelainF. Structure–activity relationships of antibacterial peptides.Microb. Biotechnol.202316475777710.1111/1751‑7915.1421336705032
    [Google Scholar]
  106. El-Sayed AliT. Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents.Eur. J. Med. Chem.200944114385439210.1016/j.ejmech.2009.05.03119586688
    [Google Scholar]
  107. Kumar VermaS. VermaR. XueF. Kumar ThakurP. GirishY.R. RakeshK.P. Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review.Bioorg. Chem.202010510440010.1016/j.bioorg.2020.10440033128966
    [Google Scholar]
  108. LetafatB. MohammadhosseiniN. AsadipourA. ForoumadiA. Synthesis and in vitro Antibacterial Activity of New 2-(1-Methyl-4-nitro-1 H -imidazol-5-ylsulfonyl)-1,3,4-thiadiazoles.J. Chem.2011831120112310.1155/2011/642071
    [Google Scholar]
  109. KimS.J. JungM.H. YooK.H. ChoJ.H. OhC.H. Synthesis and antibacterial activities of novel oxazolidinones having cyclic sulfonamide moieties.Bioorg. Med. Chem. Lett.200818215815581810.1016/j.bmcl.2008.09.03418842403
    [Google Scholar]
  110. AbdeenS. KunkleT. SalimN. RayA.M. MammadovaN. SummersC. StevensM. AmbroseA.J. ParkY. SchultzP.G. HorwichA.L. HoangQ.Q. ChapmanE. JohnsonS.M. Sulfonamido-2-arylbenzoxazole GroEL/ES Inhibitors as Potent Antibacterials against Methicillin-Resistant Staphylococcus aureus (MRSA).J. Med. Chem.201861167345735710.1021/acs.jmedchem.8b0098930060666
    [Google Scholar]
  111. NaazF. SrivastavaR. SinghA. SinghN. VermaR. SinghV.K. SinghR.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole.Bioorg. Med. Chem.201826123414342810.1016/j.bmc.2018.05.01529778528
    [Google Scholar]
  112. AtharM. LoneM.Y. KhedkarV.M. RadadiyaA. ShahA. JhaP.C. Structural Investigation of Vinca Domain Tubulin Binders by Pharmacophore, Atom based QSAR, Docking and Molecular Dynamics Simulations.Comb. Chem. High Throughput Screen.201720868269528486912
    [Google Scholar]
  113. YoonY.K. AliM.A. WeiA.C. ShiraziA.N. ParangK. ChoonT.S. Benzimidazoles as new scaffold of sirtuin inhibitors: Green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties.Eur. J. Med. Chem.20148344845410.1016/j.ejmech.2014.06.06024992072
    [Google Scholar]
  114. ShaoK.P. ZhangX.Y. ChenP.J. XueD.Q. HeP. MaL.Y. ZhengJ.X. ZhangQ.R. LiuH.M. Synthesis and biological evaluation of novel pyrimidine–benzimidazol hybrids as potential anticancer agents.Bioorg. Med. Chem. Lett.201424163877388110.1016/j.bmcl.2014.06.05025001482
    [Google Scholar]
  115. RacanéL. PavelićS.K. NhiliR. DepauwS. Paul-ConstantC. RatkajI. David-CordonnierM.H. PavelićK. Tralić-KulenovićV. Karminski-ZamolaG. New anticancer active and selective phenylene-bisbenzothiazoles: Synthesis, antiproliferative evaluation and DNA binding.Eur. J. Med. Chem.20136388289110.1016/j.ejmech.2013.02.02623603616
    [Google Scholar]
  116. NoolviM.N. PatelH.M. KaurM. Benzothiazoles: Search for anticancer agents.Eur. J. Med. Chem.20125444746210.1016/j.ejmech.2012.05.02822703845
    [Google Scholar]
  117. ChenG. WengQ. FuL. WangZ. YuP. LiuZ. LiX. ZhangH. LiangG. Synthesis and biological evaluation of novel oxindole-based RTK inhibitors as anti-cancer agents.Bioorg. Med. Chem.201422246953696010.1016/j.bmc.2014.10.01725456085
    [Google Scholar]
  118. PastwińskaJ. KaraśK. KarwaciakI. RatajewskiM. Targeting EGFR in melanoma–the sea of possibilities to overcome drug resistance. Biochimica et Biophysica Acta (BBA)-.Revis. Cancer20221877418875435772580
    [Google Scholar]
  119. ZhangK. WangP. XuanL.N. FuX.Y. JingF. LiS. LiuY.M. ChenB.Q. Synthesis and antitumor activities of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety.Bioorg. Med. Chem. Lett.201424225154515610.1016/j.bmcl.2014.09.08625442303
    [Google Scholar]
  120. MowafyS. FaragN.A. AbouzidK.A.M. Design, synthesis and in vitro anti-proliferative activity of 4,6-quinazolinediamines as potent EGFR-TK inhibitors.Eur. J. Med. Chem.20136113214510.1016/j.ejmech.2012.10.01723142066
    [Google Scholar]
  121. VyasV.K. VariyaB. GhateM.D. Design, synthesis and pharmacological evaluation of novel substituted quinoline-2-carboxamide derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents.Eur. J. Med. Chem.20148238539310.1016/j.ejmech.2014.05.06424929289
    [Google Scholar]
  122. ShenS.L. ShaoJ.H. LuoJ.Z. LiuJ.T. MiaoJ.Y. ZhaoB.X. Novel chiral ferrocenylpyrazolo[1,5-a][1,4]diazepin-4-one derivatives – Synthesis, characterization and inhibition against lung cancer cells.Eur. J. Med. Chem.20136325626810.1016/j.ejmech.2013.02.01623501111
    [Google Scholar]
  123. SinghS. KumarR. PayraS. SinghS.K. Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery.Cureus2023158e4435910.7759/cureus.4435937779744
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501372336250703114127
Loading
/content/journals/cdt/10.2174/0113894501372336250703114127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test