Skip to content
2000
image of Modern Solutions to UTIs: The Role of Nanotechnology and Herbal Treatments

Abstract

Introduction

Urinary tract infections (UTIs) range from mild to severe cases, commonly caused by uropathogenic (). The growing concern about antibiotic resistance demands alternative treatment strategies. Nanotechnology, particularly nanocarriers, presents a promising solution by enhancing drug delivery, antibacterial activity, and targeted therapy. This review focuses on the emerging role of combining herbal remedies with nanotechnology for more effective and personalized management of UTIs, aiming to overcome the limitations of conventional antibiotic therapies.

Methods

The review involved an extensive search of scientific databases and relevant literature, including studies published to date from PubMed, Science Direct, and Google Scholar. Urinary tract infections (UTI), antibiotic resistance, nanotechnology, drug delivery, targeted drug delivery, and herbal drugs were among the search phrases used.

Result

According to studies, combining herbal extracts such as neem and turmeric with nanotechnology significantly enhances antimicrobial activity against UTI pathogens. These nanoformulations show enhanced bacterial inhibition, reduced inflammation, and increased therapeutic precision with minimal side effects.

Discussion

The synergistic use of herbal remedies and nanocarriers offers a novel approach to managing UTIs. Nanotechnology not only enhances drug delivery but also improves diagnostic accuracy through fluorescence markers and biomolecule tagging. This strategy effectively addresses growing antibiotic resistance and supports the development of personalized treatments. The combination of natural bioactives and advanced delivery systems offers a safer, more effective alternative to conventional antibiotics in treating UTIs.

Conclusion

The integration of nanotechnology and herbal therapies revolutionizes UTI management through precision medicine. This approach enhances treatment efficacy, diagnostic accuracy, and patient outcomes, offering a personalized solution to combat antibiotic resistance and urinary tract abnormalities with improved targeting and minimal side effects.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501371882250713174322
2025-07-21
2025-09-25
Loading full text...

Full text loading...

References

  1. Stern J.H. Rutkowski J.M. Scherer P.E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016 23 5 770 784 10.1016/j.cmet.2016.04.011 27166942
    [Google Scholar]
  2. Bono MJ Leslie SW Reygaert WC Uncomplicated Urinary Tract Infections. StatPearls Treasure Island (FL) 2017
    [Google Scholar]
  3. Huynh E. Urogenital Tract. 2023 10.1002/9781119533221.ch27
    [Google Scholar]
  4. Aggarwal N. Lotfollahzadeh S. Recurrent urinary tract infections. StatPearls. Internet StatPearls Publishing 2022
    [Google Scholar]
  5. Urinary tract infections and pyelonephritis. Cecil text book of medicine Elsevier 2000 613 617
    [Google Scholar]
  6. Rubin R.H. Shapiro E.D. Andriole V.T. Davis R.J. Stamm W.E. Evaluation of new anti-infective drugs for the treatment of urinary tract infection. Clin. Infect. Dis. 1992 15 Suppl. 1 S216 S227 10.1093/clind/15.Supplement_1.S216 1477233
    [Google Scholar]
  7. Jagtap S. Harikumar S. Vinayagamoorthy V. Mukhopadhyay S. Dongre A. Comprehensive assessment of holding urine as a behavioral risk factor for UTI in women and reasons for delayed voiding. BMC Infect. Dis. 2022 22 1 521 10.1186/s12879‑022‑07501‑4 35668379
    [Google Scholar]
  8. Barnett B.J. Stephens D.S. Urinary tract infection: An overview. Am. J. Med. Sci. 1997 314 4 245 249 10.1097/00000441‑199710000‑00007 9332263
    [Google Scholar]
  9. Zowawi H.M. Harris P.N.A. Roberts M.J. Tambyah P.A. Schembri M.A. Pezzani M.D. Williamson D.A. Paterson D.L. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 2015 12 10 570 584 10.1038/nrurol.2015.199 26334085
    [Google Scholar]
  10. Salahuddin F. Sen P. Chechko S. Urinary tract infection with an unusual pathogen (Nocardia asteroides). J. Urol. 1996 155 2 654 655 10.1016/S0022‑5347(01)66487‑5 8558694
    [Google Scholar]
  11. McCowan C. Bakhshi A. McConnachie A. Malcolm W. Barry S.J.E. Santiago V.H. Leanord A. E. coli bacteraemia and antimicrobial resistance following antimicrobial prescribing for urinary tract infection in the community. BMC Infect. Dis. 2022 22 1 805 10.1186/s12879‑022‑07768‑7 36307776
    [Google Scholar]
  12. Wu L. Ling Z. Feng X. Mao C. Xu Z. Herb medicines against osteoporosis: Active compounds & relevant biological mechanisms. Curr. Top. Med. Chem. 2017 17 15 1670 1691 10.2174/1568026617666161116141033 27848901
    [Google Scholar]
  13. Wang C. Chen G. Wang J. Liu H. Xiong Y. Wang P. Effect of herba epimedium extract on bone mineral density and microstructure in ovariectomised rat. J. Pharm. Biomed. Sci. 2016 6 5
    [Google Scholar]
  14. Hengrui L. Toxic medicine used in Traditional Chinese Medicine for cancer treatment: Are ion channels involved? J. Tradit. Chin. Med. 2022 42 6 1019 1022 10.19852/j.cnki.jtcm.20220815.005 36378062
    [Google Scholar]
  15. Haixia W Shu M Li Y Panpan W Kehuan S Yingquan X Effectiveness associated with different therapies for senile osteoporosis: A network meta-analysis. J Tradit Chin Med 2020 40 1 17 27 32227762
    [Google Scholar]
  16. Shaito A. Thuan D.T.B. Phu H.T. Nguyen T.H.D. Hasan H. Halabi S. Abdelhady S. Nasrallah G.K. Eid A.H. Pintus G. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front. Pharmacol. 2020 11 422 10.3389/fphar.2020.00422 32317975
    [Google Scholar]
  17. Vivaldi E. Cotran R. Zangwill D.P. Kass E.H. Ascending infection as a mechanism in pathogenesis of experimental non-obstructive pyelonephritis. Exp. Biol. Med. 1959 102 1 242 244 10.3181/00379727‑102‑25206
    [Google Scholar]
  18. Brumfitt W. Gargan R.A. Hamilton-Miller J.M.T. Periurethral enterobacterial carriage preceding urinary infection. Lancet 1987 329 8537 824 826 10.1016/S0140‑6736(87)91606‑0 2882232
    [Google Scholar]
  19. Bhowmik A. Role of diagnostic procedures in managing human bacterial infections: A comprehensive overview. Arch Hematol Case Rep Rev 2023 8 1 8 19 10.17352/ahcrr.000043
    [Google Scholar]
  20. De Navasquez S. Experimental pyelonephritis in the rabbit produced by staphylococcal infection. J. Pathol. Bacteriol. 1950 62 3 429 436 10.1002/path.1700620315 14784907
    [Google Scholar]
  21. Hooton T.M. Roberts P.L. Stamm W.E. Effects of recent sexual activity and use of a diaphragm on the vaginal microflora. Clin. Infect. Dis. 1994 19 2 274 278 10.1093/clinids/19.2.274 7986899
    [Google Scholar]
  22. Gorgojo-Martínez J.J. Górriz J.L. Cebrián-Cuenca A. Castro Conde A. Velasco Arribas M. Clinical recommendations for managing genitourinary adverse effects in patients treated with SGLT-2 inhibitors: A multidisciplinary expert consensus. J. Clin. Med. 2024 13 21 6509 10.3390/jcm13216509 39518647
    [Google Scholar]
  23. Sanyaolu L.N. Cooper E. Read B. Ahmed H. Lecky D.M. Impact of menopausal status and recurrent UTIs on symptoms, severity, and daily life: Findings from an online survey of women reporting a recent UTI. Antibiotics 2023 12 7 1150 10.3390/antibiotics12071150 37508246
    [Google Scholar]
  24. Harris M. Fasolino T. Ivankovic D. Davis N.J. Brownlee N. Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms 2023 11 6 1407 10.3390/microorganisms11061407 37374909
    [Google Scholar]
  25. Zaffanello M Malerba G Cataldi L Antoniazzi F Franchini M Monti E Genetic risk for recurrent urinary tract infections in humans: A systematic review. J Biomed Biotechnol 2010 321082 10.1155/2010/321082 20379347
    [Google Scholar]
  26. Godaly G. Ambite I. Svanborg C. Innate immunity and genetic determinants of urinary tract infection susceptibility. Curr. Opin. Infect. Dis. 2015 28 1 88 96 10.1097/QCO.0000000000000127 25539411
    [Google Scholar]
  27. Chieng C.C.Y. Kong Q. Liou N.S.Y. Khasriya R. Horsley H. The clinical implications of bacterial pathogenesis and mucosal immunity in chronic urinary tract infection. Mucosal Immunol. 2023 16 1 61 71 10.1016/j.mucimm.2022.12.003 36642381
    [Google Scholar]
  28. Jalil M.B. Al Atbee M.Y.N. The prevalence of multiple drug resistance Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections. J. Clin. Lab. Anal. 2022 36 9 e24619 10.1002/jcla.24619 35870190
    [Google Scholar]
  29. Bennett JE Dolin R Blaser MJ Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Saunders 2019
    [Google Scholar]
  30. Podschun R. Sievers D. Fischer A. Ullmann U. Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J. Infect. Dis. 1993 168 6 1415 1421 10.1093/infdis/168.6.1415 7902383
    [Google Scholar]
  31. Johnson J.R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 1991 4 1 80 128 10.1128/CMR.4.1.80 1672263
    [Google Scholar]
  32. Plos K. Connell H. Jodal U. Marklund B.I. Mårild S. Wettergren B. Svanborg C. Intestinal carriage of P fimbriated Escherichia coli and the susceptibility to urinary tract infection in young children. J. Infect. Dis. 1995 171 3 625 631 10.1093/infdis/171.3.625 7876609
    [Google Scholar]
  33. Mancuso G. Midiri A. Gerace E. Marra M. Zummo S. Biondo C. Urinary tract infections: The current scenario and future prospects. Pathogens 2023 12 4 623 10.3390/pathogens12040623 37111509
    [Google Scholar]
  34. Cunha B.A. Urinary tract infections. Postgrad. Med. 1981 70 6 141 145 10.1080/00325481.1981.11715940 6171804
    [Google Scholar]
  35. Lila A.S.A. Rajab A.A.H. Abdallah M.H. Rizvi S.M.D. Moin A. Khafagy E.S. Tabrez S. Hegazy W.A.H. Biofilm lifestyle in recurrent urinary tract infections. Life 2023 13 1 148 10.3390/life13010148 36676100
    [Google Scholar]
  36. Flores-Mireles A.L. Walker J.N. Caparon M. Hultgren S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015 13 5 269 284 10.1038/nrmicro3432 25853778
    [Google Scholar]
  37. Behzadi P. Behzadi E. Pawlak-Adamska E.A. Urinary tract infections (UTIs) or genital tract infections (GTIs)? It’s the diagnostics that count. GMS Hyg. Infect. Control 2019 14 Doc14 10.3205/dgkh000320 30993060
    [Google Scholar]
  38. Davenport M. Mach K.E. Shortliffe L.M.D. Banaei N. Wang T.H. Liao J.C. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 2017 14 5 296 310 10.1038/nrurol.2017.20 28248946
    [Google Scholar]
  39. Kranz J. Schmidt S. Lebert C. Schneidewind L. Mandraka F. Kunze M. Helbig S. Vahlensieck W. Naber K. Schmiemann G. Wagenlehner F.M. The 2017 update of the German clinical guideline on epidemiology, diagnostics, therapy, prevention, and management of uncomplicated urinary tract infections in adult patients. Part II: Therapy and prevention. Urol. Int. 2018 100 3 271 278 10.1159/000487645 29539622
    [Google Scholar]
  40. Claeys K.C. Blanco N. Morgan D.J. Leekha S. Sullivan K.V. Advances and challenges in the diagnosis and treatment of urinary tract infections: The need for diagnostic stewardship. Curr. Infect. Dis. Rep. 2019 21 4 11 10.1007/s11908‑019‑0668‑7 30834993
    [Google Scholar]
  41. Horváth J. Wullt B. Naber K.G. Köves B. Biomarkers in urinary tract infections - Which ones are suitable for diagnostics and follow-up? GMS Infect. Dis. 2020 8 Doc24 10.3205/id000068 33299741
    [Google Scholar]
  42. Martínez-Figueroa C. Cortés-Sarabia K. del Carmen Alarcón-Romero L. Catalán-Nájera H.G. Martínez-Alarcón M. Vences-Velázquez A. Observation of intracellular bacterial communities in urinary sediment using brightfield microscopy; a case report. BMC Urol. 2020 20 1 89 10.1186/s12894‑020‑00661‑y 32631308
    [Google Scholar]
  43. Dospinescu V.M. Tiele A. Covington J. Sniffing out urinary tract infection—Diagnosis based on volatile organic compounds and smell profile. Biosensors 2020 10 8 83 10.3390/bios10080083 32717983
    [Google Scholar]
  44. Dixon M. Stefil M. McDonald M. Bjerklund-Johansen T.E. Naber K. Wagenlehner F. Mouraviev V. Metagenomics in diagnosis and improved targeted treatment of UTI. World J. Urol. 2020 38 1 35 43 10.1007/s00345‑019‑02731‑9 30944967
    [Google Scholar]
  45. Fritzenwanker M. Imirzalioglu C. Chakraborty T. Wagenlehner F.M. Modern diagnostic methods for urinary tract infections. Expert Rev. Anti Infect. Ther. 2016 14 11 1047 1063 10.1080/14787210.2016.1236685 27624932
    [Google Scholar]
  46. Coulthard M.G. Using urine nitrite sticks to test for urinary tract infection in children aged < 2 years: A meta-analysis. Pediatr. Nephrol. 2019 34 7 1283 1288 10.1007/s00467‑019‑04226‑6 30895368
    [Google Scholar]
  47. Masajtis-Zagajewska A. Nowicki M. New markers of urinary tract infection. Clin. Chim. Acta 2017 471 286 291 10.1016/j.cca.2017.06.003 28622967
    [Google Scholar]
  48. Taylor R.A. Moore C.L. Cheung K.H. Brandt C. Predicting urinary tract infections in the emergency department with machine learning. PLoS One 2018 13 3 e0194085 10.1371/journal.pone.0194085 29513742
    [Google Scholar]
  49. Chu C.M. Lowder J.L. Diagnosis and treatment of urinary tract infections across age groups. Am. J. Obstet. Gynecol. 2018 219 1 40 51 10.1016/j.ajog.2017.12.231 29305250
    [Google Scholar]
  50. Rubab M. Shahbaz H.M. Olaimat A.N. Oh D.H. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens. Bioelectron. 2018 105 49 57 10.1016/j.bios.2018.01.023 29358112
    [Google Scholar]
  51. Nasseri B. Soleimani N. Rabiee N. Kalbasi A. Karimi M. Hamblin M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 2018 117 112 128 10.1016/j.bios.2018.05.050 29890393
    [Google Scholar]
  52. Kishimoto M. Tsuchiaka S. Rahpaya S.S. Hasebe A. Otsu K. Sugimura S. Kobayashi S. Komatsu N. Nagai M. Omatsu T. Naoi Y. Sano K. Okazaki-Terashima S. Oba M. Katayama Y. Sato R. Asai T. Mizutani T. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. J. Vet. Med. Sci. 2017 79 3 517 523 10.1292/jvms.16‑0489 28070089
    [Google Scholar]
  53. Hong D.K. Blauwkamp T.A. Kertesz M. Bercovici S. Truong C. Banaei N. Liquid biopsy for infectious diseases: Sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn. Microbiol. Infect. Dis. 2018 92 3 210 213 10.1016/j.diagmicrobio.2018.06.009 30017314
    [Google Scholar]
  54. Padil V.V.T. Wacławek S. Černík M. Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol. Adv. 2018 36 7 1984 2016 10.1016/j.biotechadv.2018.08.008 30165173
    [Google Scholar]
  55. Vasudevan S. Srinivasan P. Rayappan J.B.B. Solomon A.P. A photoluminescence biosensor for the detection of N -acyl homoserine lactone using cysteamine functionalized ZnO nanoparticles for the early diagnosis of urinary tract infections. J. Mater. Chem. B Mater. Biol. Med. 2020 8 19 4228 4236 10.1039/C9TB02243K 32330210
    [Google Scholar]
  56. Myndrul V. Coy E. Bechelany M. Iatsunskyi I. Photoluminescence label-free immunosensor for the detection of Aflatoxin B1 using polyacrylonitrile/zinc oxide nanofibers. Mater. Sci. Eng. C 2021 118 111401 10.1016/j.msec.2020.111401 33255004
    [Google Scholar]
  57. Myndrul V. Viter R. Savchuk M. Shpyrka N. Erts D. Jevdokimovs D. Silamiķelis V. Smyntyna V. Ramanavicius A. Iatsunskyi I. Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosens. Bioelectron. 2018 102 661 667 10.1016/j.bios.2017.11.048 29175228
    [Google Scholar]
  58. Kalyani N. Goel S. Jaiswal S. On‑site sensing of pesticides using point‑of‑care biosensors: a review. Environ. Chem. Lett. 2021 19 1 345 354 10.1007/s10311‑020‑01070‑1
    [Google Scholar]
  59. Dolk F.C.K. Pouwels K.B. Smith D.R.M. Robotham J.V. Smieszek T. Antibiotics in primary care in England: which antibiotics are prescribed and for which conditions? J. Antimicrob. Chemother. 2018 73 Suppl. 2 ii2 ii10 10.1093/jac/dkx504 29490062
    [Google Scholar]
  60. Jiraratsatit K. Muengtaweepongsa S. Itharat A. Davies N.M. Evaluation of levofloxacin and yahom-navakot remedy extract combination therapy against antibiotic resistant bacteria in vitro. Asian Med. J. Altern. Med. 2021 21 3 220 238
    [Google Scholar]
  61. Walsh T.R. Gales A.C. Laxminarayan R. Dodd P.C. Antimicrobial resistance: addressing a global threat to humanity. Public Library of Science San Francisco CA, USA 2023 e1004264
    [Google Scholar]
  62. Dethlefsen L. Huse S. Sogin M.L. Relman D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008 6 11 e280 10.1371/journal.pbio.0060280 19018661
    [Google Scholar]
  63. McCabe W.R. Jackson G.G. Treatment of Pyelonephritis. N. Engl. J. Med. 1965 272 20 1037 1044 10.1056/NEJM196505202722002 14281538
    [Google Scholar]
  64. Eyler R.F. Shvets K. Clinical pharmacology of antibiotics. Clin. J. Am. Soc. Nephrol. 2019 14 7 1080 1090 10.2215/CJN.08140718 30862698
    [Google Scholar]
  65. Kassabian M. Calderwood M.S. Ohsfeldt R. A cost-effectiveness analysis of fosfomycin: A single-dose antibiotic therapy for treatment of uncomplicated urinary tract infection. Health Serv. Insights 2022 15 11786329221126340 10.1177/11786329221126340 36245475
    [Google Scholar]
  66. Little P. Moore M.V. Turner S. Rumsby K. Warner G. Lowes J.A. Smith H. Hawke C. Leydon G. Arscott A. Turner D. Mullee M. Effectiveness of five different approaches in management of urinary tract infection: Randomised controlled trial. BMJ 2010 340 feb05 1 c199 10.1136/bmj.c199 20139214
    [Google Scholar]
  67. Grabe M Bjerklund-Johansen T Botto H Çek M Naber K Tenke P Guidelines on urological infections. 2015 Available from: https://uroweb.org/guidelines/urological-infections
  68. Hickling D.R. Nitti V.W. Management of recurrent urinary tract infections in healthy adult women. Rev. Urol. 2013 15 2 41 48 24082842
    [Google Scholar]
  69. Alrushaid N. Khan F.A. Al-Suhaimi E.A. Elaissari A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics 2023 15 3 1025 10.3390/pharmaceutics15031025 36986885
    [Google Scholar]
  70. Medina C. Santos-Martinez M.J. Radomski A. Corrigan O.I. Radomski M.W. Nanoparticles: Pharmacological and toxicological significance. Br. J. Pharmacol. 2007 150 5 552 558 10.1038/sj.bjp.0707130 17245366
    [Google Scholar]
  71. Yezdani U. Khan M.G. Kushwah N. Verma A. Khan F. Application of nanotechnology in diagnosis and treatment of various diseases and its future advances in medicine. World J. Pharm. Pharm. Sci. 2018 7 1611 1633
    [Google Scholar]
  72. Edgar J.Y.C. Wang H. Introduction for design of nanoparticle based drug delivery systems. Curr. Pharm. Des. 2017 23 14 2108 2112 10.2174/1381612822666161025154003 27784242
    [Google Scholar]
  73. Bannov A.G. Popov M.V. Kurmashov P.B. Thermal analysis of carbon nanomaterials: Advantages and problems of interpretation. J. Therm. Anal. Calorim. 2020 142 1 349 370 10.1007/s10973‑020‑09647‑2
    [Google Scholar]
  74. Kumar M.S. Das A.P. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review. Adv. Colloid Interface Sci. 2017 249 53 65 10.1016/j.cis.2017.06.010 28668171
    [Google Scholar]
  75. Bartelds R. Nematollahi M.H. Pols T. Stuart M.C.A. Pardakhty A. Asadikaram G. Poolman B. Niosomes, an alternative for liposomal delivery. PLoS One 2018 13 4 e0194179 10.1371/journal.pone.0194179 29649223
    [Google Scholar]
  76. Nematollahi M.H. Pardakhty A. Torkzadeh-Mahanai M. Mehrabani M. Asadikaram G. Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention. RSC Advances 2017 7 78 49463 49472 10.1039/C7RA07834J
    [Google Scholar]
  77. Abbaszadeh-Goudarzi K. Nematollahi M.H. Khanbabaei H. Nave H.H. Mirzaei H.R. Pourghadamyari H. Sahebkar A. Targeted delivery of CRISPR/Cas13 as a promising therapeutic approach to treat SARS-CoV-2. Curr. Pharm. Biotechnol. 2021 22 9 1149 1155 10.2174/18734316MTEwtNTgrw 33038909
    [Google Scholar]
  78. Dakal T.C. Kumar A. Majumdar R.S. Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016 7 1831 10.3389/fmicb.2016.01831 27899918
    [Google Scholar]
  79. Wang L. Yang J. Yang X. Hou Q. Liu S. Zheng W. Long Y. Jiang X. Mercaptophenylboronic acid-activated gold nanoparticles as nanoantibiotics against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces 2020 12 46 51148 51159 10.1021/acsami.0c12597 33155812
    [Google Scholar]
  80. Mittal R. Pan D.R. Parrish J.M. Huang E.H. Yang Y. Patel A.P. Malhotra A.K. Mittal J. Chhibber S. Harjai K. Local drug delivery in the urinary tract: Current challenges and opportunities. J. Drug Target. 2018 26 8 658 669 10.1080/1061186X.2017.1419356 29251520
    [Google Scholar]
  81. Chien Y. Novel drug delivery systems (Drugs and the pharmaceutical sciences). Marcel Dekkar Inc New York. 1992 50 797
    [Google Scholar]
  82. Suri S.S. Fenniri H. Singh B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007 2 1 16 10.1186/1745‑6673‑2‑16 18053152
    [Google Scholar]
  83. Nevozhay D. Kańska U. Budzyńska R. Boratyński J. Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases. Postepy Hig Med Dosw 2007 61 350 360 17554238
    [Google Scholar]
  84. Shaji S Haridas S Jacob JS Kannan M Nanotechnology in Pharmaceuticals. Emerging Trends of Nanotechnology in Environment and Sustainability: A Review-Based Approach Springer 2018 10.1007/978‑3‑319‑71327‑4_9
    [Google Scholar]
  85. Cole A.J. Yang V.C. David A.E. Cancer theranostics: The rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011 29 7 323 332 10.1016/j.tibtech.2011.03.001 21489647
    [Google Scholar]
  86. Abdel-Mottaleb M.M.A. Neumann D. Lamprecht A. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm. 2011 79 1 36 42 10.1016/j.ejpb.2011.04.009 21558002
    [Google Scholar]
  87. Muchow M. Maincent P. Müller R.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm. 2008 34 12 1394 1405 10.1080/03639040802130061 18665980
    [Google Scholar]
  88. Nayak A.P. Tiyaboonchai W. Patankar S. Madhusudhan B. Souto E.B. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloids Surf. B Biointerfaces 2010 81 1 263 273 10.1016/j.colsurfb.2010.07.020 20688493
    [Google Scholar]
  89. Attama A.A. Schicke B.C. Paepenmüller T. Müller-Goymann C.C. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: Characterization. Eur. J. Pharm. Biopharm. 2007 67 1 48 57 10.1016/j.ejpb.2006.12.004 17276663
    [Google Scholar]
  90. Liu J. Gong T. Fu H. Wang C. Wang X. Chen Q. Zhang Q. He Q. Zhang Z. Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm. 2008 356 1-2 333 344 10.1016/j.ijpharm.2008.01.008 18281169
    [Google Scholar]
  91. Sznitowska M. Gajewska M. Janicki S. Radwanska A. Lukowski G. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm. 2001 52 2 159 163 10.1016/S0939‑6411(01)00157‑6 11522481
    [Google Scholar]
  92. Kovacevic A. Savic S. Vuleta G. Müller R.H. Keck C.M. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure. Int. J. Pharm. 2011 406 1-2 163 172 10.1016/j.ijpharm.2010.12.036 21219990
    [Google Scholar]
  93. Müller R. Petersen R. Hommoss A. Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 2007 59 6 522 530 10.1016/j.addr.2007.04.012 17602783
    [Google Scholar]
  94. Puglia C. Blasi P. Rizza L. Schoubben A. Bonina F. Rossi C. Ricci M. Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation. Int. J. Pharm. 2008 357 1-2 295 304 10.1016/j.ijpharm.2008.01.045 18343059
    [Google Scholar]
  95. Bilensoy E. Sarisozen C. Esendağlı G. Doğan A.L. Aktaş Y. Şen M. Mungan N.A. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int. J. Pharm. 2009 371 1-2 170 176 10.1016/j.ijpharm.2008.12.015 19135514
    [Google Scholar]
  96. Bai J. Li Y. Du J. Wang S. Zheng J. Yang Q. Chen X. One-pot synthesis of polyacrylamide-gold nanocomposite. Mater. Chem. Phys. 2007 106 2-3 412 415 10.1016/j.matchemphys.2007.06.021
    [Google Scholar]
  97. Turos E. Shim J.Y. Wang Y. Greenhalgh K. Reddy G.S.K. Dickey S. Lim D.V. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorg. Med. Chem. Lett. 2007 17 1 53 56 10.1016/j.bmcl.2006.09.098 17049850
    [Google Scholar]
  98. Mahmoudi M. Simchi A. Milani A.S. Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 2009 336 2 510 518 10.1016/j.jcis.2009.04.046 19476952
    [Google Scholar]
  99. Mao H.Q. Roy K. Troung-Le V.L. Janes K.A. Lin K.Y. Wang Y. August J.T. Leong K.W. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J. Control. Release 2001 70 3 399 421 10.1016/S0168‑3659(00)00361‑8 11182210
    [Google Scholar]
  100. Rejinold N.S. Chennazhi K.P. Nair S.V. Tamura H. Jayakumar R. Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr. Polym. 2011 83 2 776 786 10.1016/j.carbpol.2010.08.052
    [Google Scholar]
  101. Saraogi G.K. Gupta P. Gupta U.D. Jain N.K. Agrawal G.P. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int. J. Pharm. 2010 385 1-2 143 149 10.1016/j.ijpharm.2009.10.004 19819315
    [Google Scholar]
  102. Martínez A. Iglesias I. Lozano R. Teijón J.M. Blanco M.D. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr. Polym. 2011 83 3 1311 1321 10.1016/j.carbpol.2010.09.038
    [Google Scholar]
  103. Cortés H. Hernández-Parra H. Bernal-Chávez S.A. Prado-Audelo M.L.D. Caballero-Florán I.H. Borbolla-Jiménez F.V. González-Torres M. Magaña J.J. Leyva-Gómez G. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials 2021 14 12 3197 10.3390/ma14123197 34200640
    [Google Scholar]
  104. Luo G. Yu X. Jin C. Yang F. Fu D. Long J. Xu J. Zhan C. Lu W. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int. J. Pharm. 2010 385 1-2 150 156 10.1016/j.ijpharm.2009.10.014 19825404
    [Google Scholar]
  105. Mukhopadhyay S. Narayan R. Gadag S. Shenoy P.A. Garg S. Nayak U.Y. T A. Development of levofloxacin glycosylated mesoporous silica nanoparticles for urinary tract infections. J. Appl. Pharm. Sci. 2024 14 12 174 179 10.7324/JAPS.2024.181547
    [Google Scholar]
  106. Gregoriadis G. Ryman B.E. Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. Eur. J. Biochem. 1972 24 3 485 491 10.1111/j.1432‑1033.1972.tb19710.x 4500958
    [Google Scholar]
  107. McCormack B. Gregoriadis G. Drugs-in-cyclodextrins-in liposomes: A novel concept in drug delivery. Int. J. Pharm. 1994 112 3 249 258 10.1016/0378‑5173(94)90361‑1
    [Google Scholar]
  108. Illum L. Davis S.S. The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338). FEBS Lett. 1984 167 1 79 82 10.1016/0014‑5793(84)80836‑4 6698206
    [Google Scholar]
  109. Kirby C. Gregoriadis G. The effect of lipid composition of small unilamellar liposomes containing melphalan and vincristine on drug clearance after injection into mice. Biochem. Pharmacol. 1983 32 4 609 615 10.1016/0006‑2952(83)90483‑5 6830624
    [Google Scholar]
  110. Torchilin V.P. Shtilman M.I. Trubetskoy V.S. Whiteman K. Milstein A.M. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim. Biophys. Acta Biomembr. 1994 1195 1 181 184 10.1016/0005‑2736(94)90025‑6 7918561
    [Google Scholar]
  111. Forssen E.A. Coulter D.M. Proffitt R.T. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res. 1992 52 12 3255 3261 1596882
    [Google Scholar]
  112. Freitas R.A. Current status of nanomedicine and medical nanorobotics. J. Comput. Theor. Nanosci. 2005 2 1 1 25
    [Google Scholar]
  113. Moghimi S.M. Hunter A.C. Murray J.C. Nanomedicine: Current status and future prospects. FASEB J. 2005 19 3 311 330 10.1096/fj.04‑2747rev 15746175
    [Google Scholar]
  114. Chosy M.B. Sun J. Rahn H.P. Liu X. Brčić J. Wender P.A. Cegelski L. Vancomycin-polyguanidino dendrimer conjugates inhibit growth of antibiotic-resistant gram- positive and gram-negative bacteria and eradicate biofilm-associated S. aureus. ACS Infect. Dis. 2024 10 2 384 397 10.1021/acsinfecdis.3c00168 38252999
    [Google Scholar]
  115. Baker J.R. Quintana A. Piehler L. Banazak-Holl M. Tomalia D. Raczka E. The synthesis and testing of anti-cancer therapeutic nanodevices. Biomed. Microdevices 2001 3 1 61 69 10.1023/A:1011485622697
    [Google Scholar]
  116. Demanuele A. Attwood D. Dendrimer–drug interactions. Adv. Drug Deliv. Rev. 2005 57 15 2147 2162 10.1016/j.addr.2005.09.012 16310283
    [Google Scholar]
  117. Menjoge A.R. Kannan R.M. Tomalia D.A. Dendrimer-based drug and imaging conjugates: Design considerations for nanomedical applications. Drug Discov. Today 2010 15 5-6 171 185 10.1016/j.drudis.2010.01.009 20116448
    [Google Scholar]
  118. Singh P. Gupta U. Asthana A. Jain N.K. Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem. 2008 19 11 2239 2252 10.1021/bc800125u 18950215
    [Google Scholar]
  119. Shi L Fleming CJ Riechers SL Yin N-N Luo J Lam KS High-resolution imaging of dendrimers used in drug delivery via scanning probe microscopy. J Drug Deliv 2011 254095 10.1155/2011/254095 21773043
    [Google Scholar]
  120. Shah N. Steptoe R.J. Parekh H.S. Low-generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA. J. Pept. Sci. 2011 17 6 470 478 10.1002/psc.1347 21351322
    [Google Scholar]
  121. Kitchens K.M. Kolhatkar R.B. Swaan P.W. Eddington N.D. Ghandehari H. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling. Pharm. Res. 2006 23 12 2818 2826 10.1007/s11095‑006‑9122‑2 17094034
    [Google Scholar]
  122. Antonietti M. Landfester K. Polyreactions in miniemulsions. Prog. Polym. Sci. 2002 27 4 689 757 10.1016/S0079‑6700(01)00051‑X
    [Google Scholar]
  123. Jones M.C. Leroux J.C. Polymeric micelles – A new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 1999 48 2 101 111 10.1016/S0939‑6411(99)00039‑9 10469928
    [Google Scholar]
  124. Lasic D.D. Mixed micelles in drug delivery. Nature 1992 355 6357 279 280 10.1038/355279a0 1731228
    [Google Scholar]
  125. Lindman B. Wennerström H. Micelles: Amphiphile aggregation in aqueous solution. Micelles 2006 1 83
    [Google Scholar]
  126. Attwood D Florence A Attwood D Florence A Pharmaceutical aspects of solubilization. Surfactant Systems Springer Dordrecht 1983 293 387 10.1007/978‑94‑009‑5775‑6_6
    [Google Scholar]
  127. Palmer T. Caride V. Caldecourt M. Twickler J. Abdullah V. The mechanism of liposome accumulation in infarction. Biochim. Biophys. Acta, Gen. Subj. 1984 797 3 363 368 10.1016/0304‑4165(84)90258‑7
    [Google Scholar]
  128. Maeda H. Wu J. Sawa T. Matsumura Y. Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000 65 1-2 271 284 10.1016/S0168‑3659(99)00248‑5 10699287
    [Google Scholar]
  129. Gabizon A.A. Liposome circulation time and tumor targeting: Implications for cancer chemotherapy. Adv. Drug Deliv. Rev. 1995 16 2-3 285 294 10.1016/0169‑409X(95)00030‑B
    [Google Scholar]
  130. Torchilin V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2006 24 1 1 16 10.1007/s11095‑006‑9132‑0 17109211
    [Google Scholar]
  131. Öztürk R. Murt A. Epidemiology of urological infections: A global burden. World J. Urol. 2020 38 11 2669 2679 10.1007/s00345‑019‑03071‑4 31925549
    [Google Scholar]
  132. Liu S. Qiao S. Li L. Qi G. Lin Y. Qiao Z. Wang H. Shao C. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology 2015 26 49 495602 10.1088/0957‑4484/26/49/495602 26572164
    [Google Scholar]
  133. Iyer J.K. Dickey A. Rouhani P. Kaul A. Govindaraju N. Singh R.N. Kaul R. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS One 2018 13 1 e0191020 10.1371/journal.pone.0191020 29324795
    [Google Scholar]
  134. Upgade A Prabakaran P. Green nanosilver: A potent antifungal for urinary tract infections. Int. J. Res. Pharm. Nano Sci. 2014 3 6 552 567
    [Google Scholar]
  135. Zhao J. Wang Z. Chen X. Wang J. Li J. Effects of intravesical liposome-mediated human beta-defensin-2 gene transfection in a mouse urinary tract infection model. Microbiol. Immunol. 2011 55 4 217 223 10.1111/j.1348‑0421.2011.00315.x 21272062
    [Google Scholar]
  136. Santhoshkumar J. Kumar S.V. Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour.-Efficient Technol. 2017 3 4 459 465 10.1016/j.reffit.2017.05.001
    [Google Scholar]
  137. Zhu Z. Yu F. Chen H. Wang J. Lopez A.I. Chen Q. Li S. Long Y. Darouiche R.O. Hull R.A. Zhang L. Cai C. Coating of silicone with mannoside- PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens. Acta Biomater. 2017 64 200 210 10.1016/j.actbio.2017.10.008 29024820
    [Google Scholar]
  138. Lopez-Carrizales M. Velasco K.I. Castillo C. Flores A. Magaña M. Martinez-Castanon G.A. Martinez-Gutierrez F. in vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens. Antibiotics 2018 7 2 50 10.3390/antibiotics7020050 29921822
    [Google Scholar]
  139. Crecente-Campo J. Lorenzo-Abalde S. Mora A. Marzoa J. Csaba N. Blanco J. González-Fernández Á. Alonso M.J. Bilayer polymeric nanocapsules: A formulation approach for a thermostable and adjuvanted E. coli antigen vaccine. J. Control. Release 2018 286 20 32 10.1016/j.jconrel.2018.07.018 30017722
    [Google Scholar]
  140. Venkat Kumar G. Su C.H. Velusamy P. Surface immobilization of kanamycin-chitosan nanoparticles on polyurethane ureteral stents to prevent bacterial adhesion. Biofouling 2016 32 8 861 870 10.1080/08927014.2016.1202242 27436679
    [Google Scholar]
  141. Yoon B.I. Ha U.S. Sohn D.W. Lee S.J. Kim H.W. Han C.H. Lee C.B. Cho Y.H. Anti-inflammatory and antimicrobial effects of nanocatechin in a chronic bacterial prostatitis rat model. J. Infect. Chemother. 2011 17 2 189 194 10.1007/s10156‑010‑0098‑9 20694569
    [Google Scholar]
  142. Fernandes M.M. Ivanova K. Francesko A. Mendoza E. Tzanov T. Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation. Process Biochem. 2017 59 116 122 10.1016/j.procbio.2016.09.011
    [Google Scholar]
  143. Beranová J Seydlová G Kozak H Potocký Š Konopásek I Kromka A. Antibacterial behavior of diamond nanoparticles against Escherichia coli. Phys. Status Solidi B 2012 249 12 2581 2584 10.1002/pssb.201200079
    [Google Scholar]
  144. Sharma K. Bose S.K. Chhibber S. Harjai K. Exploring the therapeutic efficacy of zingerone nanoparticles in treating biofilm-associated pyelonephritis caused by Pseudomonas aeruginosa in the murine model. Inflammation 2020 43 6 2344 2356 10.1007/s10753‑020‑01304‑y 32948964
    [Google Scholar]
  145. Brauner B. Semmler J. Rauch D. Nokaj M. Haiss P. Schwarz P. Wirth M. Gabor F. Trimethoprim-loaded PLGA nanoparticles grafted with WGA as potential intravesical therapy of urinary tract infections—Studies on adhesion to SV-HUCs under varying time, pH, and drug-loading conditions. ACS Omega 2020 5 28 17377 17384 10.1021/acsomega.0c01745 32715222
    [Google Scholar]
  146. Sajjad S. Uzair B. Shaukat A. Jamshed M. Leghari S.A.K. Ismail M. Mansoor Q. Synergistic evaluation of AgO 2 nanoparticles with ceftriaxone against CTXM and blaSHV genes positive ESBL producing clinical strains of Uro-pathogenic E. coli. IET Nanobiotechnol. 2019 13 4 435 440 10.1049/iet‑nbt.2018.5415 31171749
    [Google Scholar]
  147. Saha B. Bhattacharya J. Mukherjee A. Ghosh A. Santra C. Dasgupta A.K. Karmakar P. in vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res. Lett. 2007 2 12 614 622 10.1007/s11671‑007‑9104‑2
    [Google Scholar]
  148. SAHAY R. Biological activities of neem and neem compounds. Life Sciences: Trends and Technology Scieng Publications 33 46
    [Google Scholar]
  149. Girish K Shankara BS Neem–A green treasure. Electron. J. Biol. 2008 4 3 102 111
    [Google Scholar]
  150. Kirtikar K. Basu B. Medicinal Plants (edsBlatter, E., Cains, JF, Mhaskar, KS). New Delhi VivekVihar 1975 536
    [Google Scholar]
  151. Francine U. Jeannette U. Pierre R.J. Assessment of antibacterial activity of neem plant (Azadirachta indica) on Staphylococcus aureus and Escherichia coli. J Med Plants Stud. 2015 3 4 85 91
    [Google Scholar]
  152. Mohamed SP Study on antibacterial activity of medicinal herbs against urinary tract infection (UTI) pathogens. Int J Zool Appl Biosci 2023 8 1 1 7 10.55126/ijzab.2023.v08.i01.001
    [Google Scholar]
  153. Dhane N.S. Havaldar V.D. Bhokare P.V. Dias R.J. Mali K.K. Ghorpade V.S. Antibacterial activity of methanolic extracts of Nycthanthes arbortristis. Int. J. Pharmacol. 2016 3 4 76 79
    [Google Scholar]
  154. Verma N.S. Dwivedi S. Panigrahi D. Gupta S. Anti-bacterial activity of root bark of Nyctanthes arbor-tristis Linn. Int. J. Discov. Herb. Res. 2011 1 2 61 62
    [Google Scholar]
  155. Sasmal D. Das S. Basu S. Phytoconstituents and therapeutic potential of Nyctanthes arbortristis Linn. Pharmacogn. Rev. 2007 1 2 344 349
    [Google Scholar]
  156. Singh S. Comparative evaluation of antiinflammatory potential of fixed oil of different species of Ocimum and its possible mechanism of action. Indian J. Exp. Biol. 1998 36 10 1028 1031 10356964
    [Google Scholar]
  157. Thaweboon S Thaweboon B in vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. Southeast Asian J Trop Med Public Health 2009 40 5 1025 1033 19842385
    [Google Scholar]
  158. Kath R.K. Gupta R.K. Antioxidant activity of hydroalcoholic leaf extract of ocimum sanctum in animal models of peptic ulcer. Indian J. Physiol. Pharmacol. 2006 50 4 391 396 17402269
    [Google Scholar]
  159. Mp P. K J. Gg R. Antibacterial activity of Ocimum species and their phytochemical and antioxidant potential. Int. J. Microbiol. Res. 2012 4 8 302 307 10.9735/0975‑5276.4.8.302‑307
    [Google Scholar]
  160. Praveen G. Antibacterial Effect of Ocimum sanctum Linn.(Tulsi). Int. J. Allied Pract. Res. Rev. 2010 1 25 42 46
    [Google Scholar]
  161. Karuppasamy V. Kannan S. Sudha C. Devika M. Sundhareswari T. in vitro efficacy of phytotherapeutics for the prevention of urinary tract infections in pregnant women. Indian J. Biochem. Biophys. 2024 61 3 182 189 [IJBB].
    [Google Scholar]
  162. Bisset N.G. Herbal Drugs and Phytopharrnaceuticals: A Handbook for Practice on a Scientific Basis. Int. J. Pharmacogn. 1997 35 1 72
    [Google Scholar]
  163. Eigner D. Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J. Ethnopharmacol. 1999 67 1 1 6 10.1016/S0378‑8741(98)00234‑7 10616954
    [Google Scholar]
  164. Cordell G.A. Quinn-Beattie M.L. Farnsworth N.R. The potential of alkaloids in drug discovery. Phytother. Res. 2001 15 3 183 205 10.1002/ptr.890 11351353
    [Google Scholar]
  165. Gupta A. Mahajan S. Sharma R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol. Rep. 2015 6 51 55 10.1016/j.btre.2015.02.001 28626697
    [Google Scholar]
  166. Tandon N. Sharma M. Quality standards of Indian medicinal plants. Medicinal Plants Unit New Delhi 2010
    [Google Scholar]
  167. Kannan P. Ramadevi S. Hopper W. Antibacterial activity of Terminalia chebula fruit extract. Afr. J. Microbiol. Res. 2009 3 4 180 184
    [Google Scholar]
  168. Ambawade S.D. Kasture V.S. Kasture S.B. Anticonvulsant activity of roots and rhizomes of Glycyrrhiza glabra. Indian J. Pharmacol. 2002 34 4 251 255
    [Google Scholar]
  169. Girach R. Medicinal plants used by Kondh tribe of district Phulbani (Orissa) in Eastern India. Ethnobotany. 1992 4 1 53 66
    [Google Scholar]
  170. Nayak A. Das N. Nanda B. Utility of some tribal drugs of Keonjhar and Similipal area. J. Teach. Res. Chem. 1998 5 53 59
    [Google Scholar]
  171. Brahmam M. Dhal N. Saxena H. Jain S. Ethnobotanical studies among the Tanla of Malyagiri hills in Dhenkanal district. Ethnobiology in Human Welfare Deep Publications Orissa, India 1996 393 396
    [Google Scholar]
  172. Satapathy K. Brahamam M. Some medicinal plants used by the tribals of Sundargarh district, Orissa Ethnobotany in human welfare Deep publication New Delhi 1996 153 158
    [Google Scholar]
  173. Aminuddin G.R. Observations of the ethnobotany of the Bhunjia–a tribe of Sonabera plateau. Ethnobot. 1993 5 83 86
    [Google Scholar]
  174. Girach R. Ahmed M. Brahmam M. Misra M. Native phytotherapy among rural population of district Bhadrak Orissa. Ethnobiology in human welfare: abstracts of the fourth international congress of ethnobiology Lucknow, Uttar Pradesh, India, 17-21 November, 1994.
    [Google Scholar]
  175. Bhattarai S. Chaudhary R.P. Taylor R.S.L. Ghimire S.K. Biological activities of some Nepalese medicinal plants used in treating bacterial infections in human beings. Nepal J. Sci. Technol. 1970 10 83 90 10.3126/njst.v10i0.2830
    [Google Scholar]
  176. Chauhan N Kumar D Kasana M. Medicinal plants of Muzaffarnagar district used in treatment of urinary tract and kidney stones. Indian J Tradit Knowl 2009 8 2 191 195
    [Google Scholar]
  177. Hossan S Agarwala B Sarwar S Karim M Jahan R Rahmatullah M Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and sexually transmitted diseases. Ethnobot Res Appl 2010 8 61 74 10.17348/era.8.0.61‑74
    [Google Scholar]
  178. Revathi P. Parimelazhagan T. Traditional knowledge on medicinal plants used by the Irula tribe of Hasanur Hills, Erode District, Tamil Nadu, India. Ethnobotanical Leaflets. 2010 2010 2 4
    [Google Scholar]
  179. Jabalameli L. Beigverdi R. Ranjbar H.H. Pouriran R. Jabalameli F. Emaneini M. Phenotypic and genotypic prevalence of extended-spectrum β-Lactamase-Producing Escherichia coli: A systematic review and meta-analysis in Iran. Microb. Drug Resist. 2021 27 1 73 86 10.1089/mdr.2019.0396 32456547
    [Google Scholar]
  180. Hussein K.A. Lee Y.D. Joo J.H. Effect of rosemary essential oil and Trichoderma koningiopsis T-403 VOCs on pathogenic fungi responsible for ginseng root rot disease. J. Microbiol. Biotechnol. 2020 30 7 1018 1026 10.4014/jmb.2002.02013 32270657
    [Google Scholar]
  181. Tichaczek-Goska D. Gleńsk M. Wojnicz D. The enhancement of the photodynamic therapy and ciprofloxacin activity against uropathogenic Escherichia coli strains by polypodium vulgare rhizome aqueous extract. Pathogens 2021 10 12 1544 10.3390/pathogens10121544 34959499
    [Google Scholar]
  182. Al Zuhairi J.J.M.J. Jookar Kashi F. Rahimi-Moghaddam A. Yazdani M. Antioxidant, cytotoxic and antibacterial activity of Rosmarinus officinalis L. essential oil against bacteria isolated from urinary tract infection. Eur. J. Integr. Med. 2020 38 101192 10.1016/j.eujim.2020.101192
    [Google Scholar]
  183. Chacón-Vargas K.F. Sánchez-Torres L.E. Chávez-González M.L. Adame-Gallegos J.R. Nevárez-Moorillón G.V. Mexican Oregano (Lippia berlandieri Schauer and Poliomintha longiflora Gray) essential oils induce cell death by apoptosis in Leishmania (Leishmania) mexicana Promastigotes. Molecules 2022 27 16 5183 10.3390/molecules27165183 36014423
    [Google Scholar]
  184. Vogel N.W. Taschetto A.P.D. Dall’Agnol R. Weidlich L. Ethur E.M. Assessment of the antimicrobial effect of three plants used for therapy of community-acquired urinary tract infection in Rio Grande do Sul (Brazil). J. Ethnopharmacol. 2011 137 3 1334 1336 10.1016/j.jep.2011.07.070 21843617
    [Google Scholar]
  185. Okragla E. Chraniuk M. Wolska L. Microtox test as a tool to assess antimicrobial properties of herbal infusions used in urinary tract infections. Acta Pol. Pharm. 2017 74 3 895 901 29513959
    [Google Scholar]
  186. Ukah U.V. Glass M. Avery B. Daignault D. Mulvey M.R. Reid-Smith R.J. Parmley E.J. Portt A. Boerlin P. Manges A.R. Risk factors for acquisition of multidrug-resistant Escherichia coli and development of community-acquired urinary tract infections. Epidemiol. Infect. 2018 146 1 46 57 10.1017/S0950268817002680 29229015
    [Google Scholar]
  187. Tong Y. Sun M. Chi Y. Prophylactic herbal therapy prevents experimental ascending urinary tract infection in mice. Chin. J. Integr. Med. 2016 22 10 774 777 10.1007/s11655‑016‑2601‑3 27435291
    [Google Scholar]
  188. Tong Y. Jia S. Han B. Chinese herb-resistant clinical isolates of Escherichia coli. J. Altern. Complement. Med. 2013 19 4 387 388 10.1089/acm.2011.0955 23050957
    [Google Scholar]
  189. Tong Y. Leng Y. Bai J. Chinese herbal medicine: A safe alternative therapy for urinary tract infection in patients with renal insufficiency. Afr. J. Tradit. Complement. Altern. Med. 2011 9 2 266 270 10.4314/ajtcam.v9i2.13 23983345
    [Google Scholar]
  190. Tong Y. Jia Q. Sun Y. A renal tuberculosis case: Could Chinese medicine play a role? J. Altern. Complement. Med. 2009 15 8 939 941 10.1089/acm.2007.0759 19678787
    [Google Scholar]
  191. Mickymaray S. Al Aboody M.S. in vitro antioxidant and bactericidal efficacy of 15 common spices: novel therapeutics for urinary tract infections? Medicina 2019 55 6 289 10.3390/medicina55060289 31248181
    [Google Scholar]
  192. Petrolini F.V.B. Lucarini R. Souza M.G.M. Pires R.H. Cunha W.R. Martins C.H.G. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections. Braz. J. Microbiol. 2013 44 3 829 834 10.1590/S1517‑83822013005000061 24516424
    [Google Scholar]
  193. Harjai K. Kumar R. Singh S. Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 2010 58 2 161 168 10.1111/j.1574‑695X.2009.00614.x 19878318
    [Google Scholar]
  194. Sohn D.W. Han C.H. Jung Y.S. Kim S.I. Kim S.W. Cho Y.H. Anti-inflammatory and antimicrobial effects of garlic and synergistic effect between garlic and ciprofloxacin in a chronic bacterial prostatitis rat model. Int. J. Antimicrob. Agents 2009 34 3 215 219 10.1016/j.ijantimicag.2009.02.012 19375896
    [Google Scholar]
  195. Vadekeetil A. Chhibber S. Harjai K. Efficacy of intravesical targeting of novel quorum sensing inhibitor nanoparticles against Pseudomonas aeruginosa biofilm-associated murine pyelonephritis. J. Drug Target. 2019 27 9 995 1003 10.1080/1061186X.2019.1574802 30741037
    [Google Scholar]
  196. Vadekeetil A. Alexandar V. Chhibber S. Harjai K. Adjuvant effect of cranberry proanthocyanidin active fraction on antivirulent property of ciprofloxacin against Pseudomonas aeruginosa. Microb. Pathog. 2016 90 98 103 10.1016/j.micpath.2015.11.024 26620081
    [Google Scholar]
  197. Ayyash M. Shehabi A.A. Mahmoud N.N. Al-Bakri A.G. Antibiofilm properties of triclosan with EDTA or cranberry as Foley Catheter lock solutions. J. Appl. Microbiol. 2019 127 6 1876 1888 10.1111/jam.14439 31502331
    [Google Scholar]
  198. Lau I. Albrecht U. Kirschner-Hermanns R. Phytotherapy in catheter-associated urinary tract infection. Urologe A 2018 57 12 1472 1480 10.1007/s00120‑018‑0740‑1 30054678
    [Google Scholar]
  199. Nausch B. Pace S. Pein H. Koeberle A. Rossi A. Künstle G. Werz O. The standardized herbal combination BNO 2103 contained in Canephron® N alleviates inflammatory pain in experimental cystitis and prostatitis. Phytomedicine 2019 60 152987 10.1016/j.phymed.2019.152987 31257118
    [Google Scholar]
  200. Boddu S. R K. Mandava K. A comprehensive review of urinary tract infections: Pathophysiology, antibiotic resistance, and therapeutic strategies, with emphasis on herbal alternatives. Rev. Res. Med. Microbiol. 2024 10 1097 10.1097/MRM.0000000000000400
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501371882250713174322
Loading
/content/journals/cdt/10.2174/0113894501371882250713174322
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test