Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Introduction

Urinary tract infections (UTIs) range from mild to severe cases, commonly caused by uropathogenic (). The growing concern about antibiotic resistance demands alternative treatment strategies. Nanotechnology, particularly nanocarriers, presents a promising solution by enhancing drug delivery, antibacterial activity, and targeted therapy. This review focuses on the emerging role of combining herbal remedies with nanotechnology for more effective and personalized management of UTIs, aiming to overcome the limitations of conventional antibiotic therapies.

Methods

The review involved an extensive search of scientific databases and relevant literature, including studies published to date from PubMed, Science Direct, and Google Scholar. Urinary tract infections (UTI), antibiotic resistance, nanotechnology, drug delivery, targeted drug delivery, and herbal drugs were among the search phrases used.

Results

According to studies, combining herbal extracts such as neem and turmeric with nanotechnology significantly enhances antimicrobial activity against UTI pathogens. These nanoformulations show enhanced bacterial inhibition, reduced inflammation, and increased therapeutic precision with minimal side effects.

Discussion

The synergistic use of herbal remedies and nanocarriers offers a novel approach to managing UTIs. Nanotechnology not only enhances drug delivery but also improves diagnostic accuracy through fluorescence markers and biomolecule tagging. This strategy effectively addresses growing antibiotic resistance and supports the development of personalized treatments. The combination of natural bioactives and advanced delivery systems offers a safer, more effective alternative to conventional antibiotics in treating UTIs.

Conclusion

The integration of nanotechnology and herbal therapies revolutionizes UTI management through precision medicine. This approach enhances treatment efficacy, diagnostic accuracy, and patient outcomes, offering a personalized solution to combat antibiotic resistance and urinary tract abnormalities with improved targeting and minimal side effects.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501371882250713174322
2025-07-21
2025-12-08
Loading full text...

Full text loading...

References

  1. SternJ.H. RutkowskiJ.M. SchererP.E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk.Cell Metab.201623577078410.1016/j.cmet.2016.04.01127166942
    [Google Scholar]
  2. BonoMJ LeslieSW ReygaertWC Uncomplicated Urinary Tract Infections.StatPearls Treasure Island (FL)2017
    [Google Scholar]
  3. HuynhE. Urogenital Tract.202310.1002/9781119533221.ch27
    [Google Scholar]
  4. AggarwalN. LotfollahzadehS. Recurrent urinary tract infections. StatPearls.InternetStatPearls Publishing2022
    [Google Scholar]
  5. Urinary tract infections and pyelonephritis.Cecil text book of medicineElsevier2000613617
    [Google Scholar]
  6. RubinR.H. ShapiroE.D. AndrioleV.T. DavisR.J. StammW.E. Evaluation of new anti-infective drugs for the treatment of urinary tract infection.Clin. Infect. Dis.199215Suppl. 1S216S22710.1093/clind/15.Supplement_1.S2161477233
    [Google Scholar]
  7. JagtapS. HarikumarS. VinayagamoorthyV. MukhopadhyayS. DongreA. Comprehensive assessment of holding urine as a behavioral risk factor for UTI in women and reasons for delayed voiding.BMC Infect. Dis.202222152110.1186/s12879‑022‑07501‑435668379
    [Google Scholar]
  8. BarnettB.J. StephensD.S. Urinary tract infection: An overview.Am. J. Med. Sci.1997314424524910.1097/00000441‑199710000‑000079332263
    [Google Scholar]
  9. ZowawiH.M. HarrisP.N.A. RobertsM.J. TambyahP.A. SchembriM.A. PezzaniM.D. WilliamsonD.A. PatersonD.L. The emerging threat of multidrug-resistant Gram-negative bacteria in urology.Nat. Rev. Urol.2015121057058410.1038/nrurol.2015.19926334085
    [Google Scholar]
  10. SalahuddinF. SenP. ChechkoS. Urinary tract infection with an unusual pathogen (Nocardia asteroides).J. Urol.1996155265465510.1016/S0022‑5347(01)66487‑58558694
    [Google Scholar]
  11. McCowanC. BakhshiA. McConnachieA. MalcolmW. BarryS.J.E. SantiagoV.H. LeanordA. E. coli bacteraemia and antimicrobial resistance following antimicrobial prescribing for urinary tract infection in the community.BMC Infect. Dis.202222180510.1186/s12879‑022‑07768‑736307776
    [Google Scholar]
  12. WuL. LingZ. FengX. MaoC. XuZ. Herb medicines against osteoporosis: Active compounds & relevant biological mechanisms.Curr. Top. Med. Chem.201717151670169110.2174/156802661766616111614103327848901
    [Google Scholar]
  13. WangC. ChenG. WangJ. LiuH. XiongY. WangP. Effect of herba epimedium extract on bone mineral density and microstructure in ovariectomised rat.J. Pharm. Biomed. Sci.201665
    [Google Scholar]
  14. HengruiL. Toxic medicine used in Traditional Chinese Medicine for cancer treatment: Are ion channels involved?J. Tradit. Chin. Med.20224261019102210.19852/j.cnki.jtcm.20220815.00536378062
    [Google Scholar]
  15. HaixiaW ShuM LiY PanpanW KehuanS YingquanX Effectiveness associated with different therapies for senile osteoporosis: A network meta-analysis.J Tradit Chin Med2020401172732227762
    [Google Scholar]
  16. ShaitoA. ThuanD.T.B. PhuH.T. NguyenT.H.D. HasanH. HalabiS. AbdelhadyS. NasrallahG.K. EidA.H. PintusG. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety.Front. Pharmacol.20201142210.3389/fphar.2020.0042232317975
    [Google Scholar]
  17. VivaldiE. CotranR. ZangwillD.P. KassE.H. Ascending infection as a mechanism in pathogenesis of experimental non-obstructive pyelonephritis.Exp. Biol. Med.1959102124224410.3181/00379727‑102‑25206
    [Google Scholar]
  18. BrumfittW. GarganR.A. Hamilton-MillerJ.M.T. Periurethral enterobacterial carriage preceding urinary infection.Lancet1987329853782482610.1016/S0140‑6736(87)91606‑02882232
    [Google Scholar]
  19. BhowmikA. Role of diagnostic procedures in managing human bacterial infections: A comprehensive overview.Arch Hematol Case Rep Rev20238181910.17352/ahcrr.000043
    [Google Scholar]
  20. De NavasquezS. Experimental pyelonephritis in the rabbit produced by staphylococcal infection.J. Pathol. Bacteriol.195062342943610.1002/path.170062031514784907
    [Google Scholar]
  21. HootonT.M. RobertsP.L. StammW.E. Effects of recent sexual activity and use of a diaphragm on the vaginal microflora.Clin. Infect. Dis.199419227427810.1093/clinids/19.2.2747986899
    [Google Scholar]
  22. Gorgojo-MartínezJ.J. GórrizJ.L. Cebrián-CuencaA. Castro CondeA. Velasco ArribasM. Clinical recommendations for managing genitourinary adverse effects in patients treated with SGLT-2 inhibitors: A multidisciplinary expert consensus.J. Clin. Med.20241321650910.3390/jcm1321650939518647
    [Google Scholar]
  23. SanyaoluL.N. CooperE. ReadB. AhmedH. LeckyD.M. Impact of menopausal status and recurrent UTIs on symptoms, severity, and daily life: Findings from an online survey of women reporting a recent UTI.Antibiotics2023127115010.3390/antibiotics1207115037508246
    [Google Scholar]
  24. HarrisM. FasolinoT. IvankovicD. DavisN.J. BrownleeN. Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections.Microorganisms2023116140710.3390/microorganisms1106140737374909
    [Google Scholar]
  25. ZaffanelloM MalerbaG CataldiL AntoniazziF FranchiniM MontiE Genetic risk for recurrent urinary tract infections in humans: A systematic review.J Biomed Biotechnol201032108210.1155/2010/32108220379347
    [Google Scholar]
  26. GodalyG. AmbiteI. SvanborgC. Innate immunity and genetic determinants of urinary tract infection susceptibility.Curr. Opin. Infect. Dis.2015281889610.1097/QCO.000000000000012725539411
    [Google Scholar]
  27. ChiengC.C.Y. KongQ. LiouN.S.Y. KhasriyaR. HorsleyH. The clinical implications of bacterial pathogenesis and mucosal immunity in chronic urinary tract infection.Mucosal Immunol.2023161617110.1016/j.mucimm.2022.12.00336642381
    [Google Scholar]
  28. JalilM.B. Al AtbeeM.Y.N. The prevalence of multiple drug resistance Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections.J. Clin. Lab. Anal.2022369e2461910.1002/jcla.2461935870190
    [Google Scholar]
  29. BennettJE DolinR BlaserMJ Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases.Saunders2019
    [Google Scholar]
  30. PodschunR. SieversD. FischerA. UllmannU. Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections.J. Infect. Dis.199316861415142110.1093/infdis/168.6.14157902383
    [Google Scholar]
  31. JohnsonJ.R. Virulence factors in Escherichia coli urinary tract infection.Clin. Microbiol. Rev.1991418012810.1128/CMR.4.1.801672263
    [Google Scholar]
  32. PlosK. ConnellH. JodalU. MarklundB.I. MårildS. WettergrenB. SvanborgC. Intestinal carriage of P fimbriated Escherichia coli and the susceptibility to urinary tract infection in young children.J. Infect. Dis.1995171362563110.1093/infdis/171.3.6257876609
    [Google Scholar]
  33. MancusoG. MidiriA. GeraceE. MarraM. ZummoS. BiondoC. Urinary tract infections: The current scenario and future prospects.Pathogens202312462310.3390/pathogens1204062337111509
    [Google Scholar]
  34. CunhaB.A. Urinary tract infections.Postgrad. Med.198170614114510.1080/00325481.1981.117159406171804
    [Google Scholar]
  35. LilaA.S.A. RajabA.A.H. AbdallahM.H. RizviS.M.D. MoinA. KhafagyE.S. TabrezS. HegazyW.A.H. Biofilm lifestyle in recurrent urinary tract infections.Life202313114810.3390/life1301014836676100
    [Google Scholar]
  36. Flores-MirelesA.L. WalkerJ.N. CaparonM. HultgrenS.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options.Nat. Rev. Microbiol.201513526928410.1038/nrmicro343225853778
    [Google Scholar]
  37. BehzadiP. BehzadiE. Pawlak-AdamskaE.A. Urinary tract infections (UTIs) or genital tract infections (GTIs)? It’s the diagnostics that count.GMS Hyg. Infect. Control201914Doc1410.3205/dgkh00032030993060
    [Google Scholar]
  38. DavenportM. MachK.E. ShortliffeL.M.D. BanaeiN. WangT.H. LiaoJ.C. New and developing diagnostic technologies for urinary tract infections.Nat. Rev. Urol.201714529631010.1038/nrurol.2017.2028248946
    [Google Scholar]
  39. KranzJ. SchmidtS. LebertC. SchneidewindL. MandrakaF. KunzeM. HelbigS. VahlensieckW. NaberK. SchmiemannG. WagenlehnerF.M. The 2017 update of the German clinical guideline on epidemiology, diagnostics, therapy, prevention, and management of uncomplicated urinary tract infections in adult patients. Part II: Therapy and prevention.Urol. Int.2018100327127810.1159/00048764529539622
    [Google Scholar]
  40. ClaeysK.C. BlancoN. MorganD.J. LeekhaS. SullivanK.V. Advances and challenges in the diagnosis and treatment of urinary tract infections: The need for diagnostic stewardship.Curr. Infect. Dis. Rep.20192141110.1007/s11908‑019‑0668‑730834993
    [Google Scholar]
  41. HorváthJ. WulltB. NaberK.G. KövesB. Biomarkers in urinary tract infections - Which ones are suitable for diagnostics and follow-up?GMS Infect. Dis.20208Doc2410.3205/id00006833299741
    [Google Scholar]
  42. Martínez-FigueroaC. Cortés-SarabiaK. del Carmen Alarcón-RomeroL. Catalán-NájeraH.G. Martínez-AlarcónM. Vences-VelázquezA. Observation of intracellular bacterial communities in urinary sediment using brightfield microscopy; a case report.BMC Urol.20202018910.1186/s12894‑020‑00661‑y32631308
    [Google Scholar]
  43. DospinescuV.M. TieleA. CovingtonJ. Sniffing out urinary tract infection—Diagnosis based on volatile organic compounds and smell profile.Biosensors20201088310.3390/bios1008008332717983
    [Google Scholar]
  44. DixonM. StefilM. McDonaldM. Bjerklund-JohansenT.E. NaberK. WagenlehnerF. MouravievV. Metagenomics in diagnosis and improved targeted treatment of UTI.World J. Urol.2020381354310.1007/s00345‑019‑02731‑930944967
    [Google Scholar]
  45. FritzenwankerM. ImirzaliogluC. ChakrabortyT. WagenlehnerF.M. Modern diagnostic methods for urinary tract infections.Expert Rev. Anti Infect. Ther.201614111047106310.1080/14787210.2016.123668527624932
    [Google Scholar]
  46. CoulthardM.G. Using urine nitrite sticks to test for urinary tract infection in children aged < 2 years: A meta-analysis.Pediatr. Nephrol.20193471283128810.1007/s00467‑019‑04226‑630895368
    [Google Scholar]
  47. Masajtis-ZagajewskaA. NowickiM. New markers of urinary tract infection.Clin. Chim. Acta201747128629110.1016/j.cca.2017.06.00328622967
    [Google Scholar]
  48. TaylorR.A. MooreC.L. CheungK.H. BrandtC. Predicting urinary tract infections in the emergency department with machine learning.PLoS One2018133e019408510.1371/journal.pone.019408529513742
    [Google Scholar]
  49. ChuC.M. LowderJ.L. Diagnosis and treatment of urinary tract infections across age groups.Am. J. Obstet. Gynecol.20182191405110.1016/j.ajog.2017.12.23129305250
    [Google Scholar]
  50. RubabM. ShahbazH.M. OlaimatA.N. OhD.H. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food.Biosens. Bioelectron.2018105495710.1016/j.bios.2018.01.02329358112
    [Google Scholar]
  51. NasseriB. SoleimaniN. RabieeN. KalbasiA. KarimiM. HamblinM.R. Point-of-care microfluidic devices for pathogen detection.Biosens. Bioelectron.201811711212810.1016/j.bios.2018.05.05029890393
    [Google Scholar]
  52. KishimotoM. TsuchiakaS. RahpayaS.S. HasebeA. OtsuK. SugimuraS. KobayashiS. KomatsuN. NagaiM. OmatsuT. NaoiY. SanoK. Okazaki-TerashimaS. ObaM. KatayamaY. SatoR. AsaiT. MizutaniT. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex.J. Vet. Med. Sci.201779351752310.1292/jvms.16‑048928070089
    [Google Scholar]
  53. HongD.K. BlauwkampT.A. KerteszM. BercoviciS. TruongC. BanaeiN. Liquid biopsy for infectious diseases: Sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease.Diagn. Microbiol. Infect. Dis.201892321021310.1016/j.diagmicrobio.2018.06.00930017314
    [Google Scholar]
  54. PadilV.V.T. WacławekS. ČerníkM. VarmaR.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields.Biotechnol. Adv.20183671984201610.1016/j.biotechadv.2018.08.00830165173
    [Google Scholar]
  55. VasudevanS. SrinivasanP. RayappanJ.B.B. SolomonA.P. A photoluminescence biosensor for the detection of N -acyl homoserine lactone using cysteamine functionalized ZnO nanoparticles for the early diagnosis of urinary tract infections.J. Mater. Chem. B Mater. Biol. Med.20208194228423610.1039/C9TB02243K32330210
    [Google Scholar]
  56. MyndrulV. CoyE. BechelanyM. IatsunskyiI. Photoluminescence label-free immunosensor for the detection of Aflatoxin B1 using polyacrylonitrile/zinc oxide nanofibers.Mater. Sci. Eng. C202111811140110.1016/j.msec.2020.11140133255004
    [Google Scholar]
  57. MyndrulV. ViterR. SavchukM. ShpyrkaN. ErtsD. JevdokimovsD. SilamiķelisV. SmyntynaV. RamanaviciusA. IatsunskyiI. Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A.Biosens. Bioelectron.201810266166710.1016/j.bios.2017.11.04829175228
    [Google Scholar]
  58. KalyaniN. GoelS. JaiswalS. On-site sensing of pesticides using point-of-care biosensors: a review.Environ. Chem. Lett.202119134535410.1007/s10311‑020‑01070‑1
    [Google Scholar]
  59. DolkF.C.K. PouwelsK.B. SmithD.R.M. RobothamJ.V. SmieszekT. Antibiotics in primary care in England: which antibiotics are prescribed and for which conditions?J. Antimicrob. Chemother.201873Suppl. 2ii2ii1010.1093/jac/dkx50429490062
    [Google Scholar]
  60. JiraratsatitK. MuengtaweepongsaS. ItharatA. DaviesN.M. Evaluation of levofloxacin and yahom-navakot remedy extract combination therapy against antibiotic resistant bacteria in vitro .Asian Med. J. Altern. Med.2021213220238
    [Google Scholar]
  61. WalshT.R. GalesA.C. LaxminarayanR. DoddP.C. Antimicrobial resistance: addressing a global threat to humanity.Public Library of Science San FranciscoCA, USA2023e1004264
    [Google Scholar]
  62. DethlefsenL. HuseS. SoginM.L. RelmanD.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing.PLoS Biol.2008611e28010.1371/journal.pbio.006028019018661
    [Google Scholar]
  63. McCabeW.R. JacksonG.G. Treatment of Pyelonephritis.N. Engl. J. Med.1965272201037104410.1056/NEJM19650520272200214281538
    [Google Scholar]
  64. EylerR.F. ShvetsK. Clinical pharmacology of antibiotics.Clin. J. Am. Soc. Nephrol.20191471080109010.2215/CJN.0814071830862698
    [Google Scholar]
  65. KassabianM. CalderwoodM.S. OhsfeldtR. A cost-effectiveness analysis of fosfomycin: A single-dose antibiotic therapy for treatment of uncomplicated urinary tract infection.Health Serv. Insights2022151178632922112634010.1177/1178632922112634036245475
    [Google Scholar]
  66. LittleP. MooreM.V. TurnerS. RumsbyK. WarnerG. LowesJ.A. SmithH. HawkeC. LeydonG. ArscottA. TurnerD. MulleeM. Effectiveness of five different approaches in management of urinary tract infection: Randomised controlled trial.BMJ2010340feb05 1c19910.1136/bmj.c19920139214
    [Google Scholar]
  67. GrabeM Bjerklund-JohansenT BottoH ÇekM NaberK TenkeP Guidelines on urological infections.2015Available from: https://uroweb.org/guidelines/urological-infections
  68. HicklingD.R. NittiV.W. Management of recurrent urinary tract infections in healthy adult women.Rev. Urol.2013152414824082842
    [Google Scholar]
  69. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics1503102536986885
    [Google Scholar]
  70. MedinaC. Santos-MartinezM.J. RadomskiA. CorriganO.I. RadomskiM.W. Nanoparticles: Pharmacological and toxicological significance.Br. J. Pharmacol.2007150555255810.1038/sj.bjp.070713017245366
    [Google Scholar]
  71. YezdaniU. KhanM.G. KushwahN. VermaA. KhanF. Application of nanotechnology in diagnosis and treatment of various diseases and its future advances in medicine.World J. Pharm. Pharm. Sci.2018716111633
    [Google Scholar]
  72. EdgarJ.Y.C. WangH. Introduction for design of nanoparticle based drug delivery systems.Curr. Pharm. Des.201723142108211210.2174/138161282266616102515400327784242
    [Google Scholar]
  73. BannovA.G. PopovM.V. KurmashovP.B. Thermal analysis of carbon nanomaterials: Advantages and problems of interpretation.J. Therm. Anal. Calorim.2020142134937010.1007/s10973‑020‑09647‑2
    [Google Scholar]
  74. KumarM.S. DasA.P. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review.Adv. Colloid Interface Sci.2017249536510.1016/j.cis.2017.06.01028668171
    [Google Scholar]
  75. BarteldsR. NematollahiM.H. PolsT. StuartM.C.A. PardakhtyA. AsadikaramG. PoolmanB. Niosomes, an alternative for liposomal delivery.PLoS One2018134e019417910.1371/journal.pone.019417929649223
    [Google Scholar]
  76. NematollahiM.H. PardakhtyA. Torkzadeh-MahanaiM. MehrabaniM. AsadikaramG. Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention.RSC Advances2017778494634947210.1039/C7RA07834J
    [Google Scholar]
  77. Abbaszadeh-GoudarziK. NematollahiM.H. KhanbabaeiH. NaveH.H. MirzaeiH.R. PourghadamyariH. SahebkarA. Targeted delivery of CRISPR/Cas13 as a promising therapeutic approach to treat SARS-CoV-2.Curr. Pharm. Biotechnol.20212291149115510.2174/18734316MTEwtNTgrw33038909
    [Google Scholar]
  78. DakalT.C. KumarA. MajumdarR.S. YadavV. Mechanistic basis of antimicrobial actions of silver nanoparticles.Front. Microbiol.20167183110.3389/fmicb.2016.0183127899918
    [Google Scholar]
  79. WangL. YangJ. YangX. HouQ. LiuS. ZhengW. LongY. JiangX. Mercaptophenylboronic acid-activated gold nanoparticles as nanoantibiotics against multidrug-resistant bacteria.ACS Appl. Mater. Interfaces20201246511485115910.1021/acsami.0c1259733155812
    [Google Scholar]
  80. MittalR. PanD.R. ParrishJ.M. HuangE.H. YangY. PatelA.P. MalhotraA.K. MittalJ. ChhibberS. HarjaiK. Local drug delivery in the urinary tract: Current challenges and opportunities.J. Drug Target.201826865866910.1080/1061186X.2017.141935629251520
    [Google Scholar]
  81. ChienY. Novel drug delivery systems (Drugs and the pharmaceutical sciences).Marcel Dekkar IncNew York.199250797
    [Google Scholar]
  82. SuriS.S. FenniriH. SinghB. Nanotechnology-based drug delivery systems.J. Occup. Med. Toxicol.2007211610.1186/1745‑6673‑2‑1618053152
    [Google Scholar]
  83. NevozhayD. KańskaU. BudzyńskaR. BoratyńskiJ. Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases.Postepy Hig Med Dosw20076135036017554238
    [Google Scholar]
  84. ShajiS HaridasS JacobJS KannanM Nanotechnology in Pharmaceuticals.Emerging Trends of Nanotechnology in Environment and Sustainability: A Review-Based ApproachSpringer201810.1007/978‑3‑319‑71327‑4_9
    [Google Scholar]
  85. ColeA.J. YangV.C. DavidA.E. Cancer theranostics: The rise of targeted magnetic nanoparticles.Trends Biotechnol.201129732333210.1016/j.tibtech.2011.03.00121489647
    [Google Scholar]
  86. Abdel-MottalebM.M.A. NeumannD. LamprechtA. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers.Eur. J. Pharm. Biopharm.2011791364210.1016/j.ejpb.2011.04.00921558002
    [Google Scholar]
  87. MuchowM. MaincentP. MüllerR.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery.Drug Dev. Ind. Pharm.200834121394140510.1080/0363904080213006118665980
    [Google Scholar]
  88. NayakA.P. TiyaboonchaiW. PatankarS. MadhusudhanB. SoutoE.B. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment.Colloids Surf. B Biointerfaces201081126327310.1016/j.colsurfb.2010.07.02020688493
    [Google Scholar]
  89. AttamaA.A. SchickeB.C. PaepenmüllerT. Müller-GoymannC.C. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: Characterization.Eur. J. Pharm. Biopharm.2007671485710.1016/j.ejpb.2006.12.00417276663
    [Google Scholar]
  90. LiuJ. GongT. FuH. WangC. WangX. ChenQ. ZhangQ. HeQ. ZhangZ. Solid lipid nanoparticles for pulmonary delivery of insulin.Int. J. Pharm.20083561-233334410.1016/j.ijpharm.2008.01.00818281169
    [Google Scholar]
  91. SznitowskaM. GajewskaM. JanickiS. RadwanskaA. LukowskiG. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits.Eur. J. Pharm. Biopharm.200152215916310.1016/S0939‑6411(01)00157‑611522481
    [Google Scholar]
  92. KovacevicA. SavicS. VuletaG. MüllerR.H. KeckC.M. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure.Int. J. Pharm.20114061-216317210.1016/j.ijpharm.2010.12.03621219990
    [Google Scholar]
  93. MüllerR. PetersenR. HommossA. PardeikeJ. Nanostructured lipid carriers (NLC) in cosmetic dermal products.Adv. Drug Deliv. Rev.200759652253010.1016/j.addr.2007.04.01217602783
    [Google Scholar]
  94. PugliaC. BlasiP. RizzaL. SchoubbenA. BoninaF. RossiC. RicciM. Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation.Int. J. Pharm.20083571-229530410.1016/j.ijpharm.2008.01.04518343059
    [Google Scholar]
  95. BilensoyE. SarisozenC. EsendağlıG. DoğanA.L. AktaşY. ŞenM. MunganN.A. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors.Int. J. Pharm.20093711-217017610.1016/j.ijpharm.2008.12.01519135514
    [Google Scholar]
  96. BaiJ. LiY. DuJ. WangS. ZhengJ. YangQ. ChenX. One-pot synthesis of polyacrylamide-gold nanocomposite.Mater. Chem. Phys.20071062-341241510.1016/j.matchemphys.2007.06.021
    [Google Scholar]
  97. TurosE. ShimJ.Y. WangY. GreenhalghK. ReddyG.S.K. DickeyS. LimD.V. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents.Bioorg. Med. Chem. Lett.2007171535610.1016/j.bmcl.2006.09.09817049850
    [Google Scholar]
  98. MahmoudiM. SimchiA. MilaniA.S. StroeveP. Cell toxicity of superparamagnetic iron oxide nanoparticles.J. Colloid Interface Sci.2009336251051810.1016/j.jcis.2009.04.04619476952
    [Google Scholar]
  99. MaoH.Q. RoyK. Troung-LeV.L. JanesK.A. LinK.Y. WangY. AugustJ.T. LeongK.W. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency.J. Control. Release200170339942110.1016/S0168‑3659(00)00361‑811182210
    [Google Scholar]
  100. RejinoldN.S. ChennazhiK.P. NairS.V. TamuraH. JayakumarR. Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier.Carbohydr. Polym.201183277678610.1016/j.carbpol.2010.08.052
    [Google Scholar]
  101. SaraogiG.K. GuptaP. GuptaU.D. JainN.K. AgrawalG.P. Gelatin nanocarriers as potential vectors for effective management of tuberculosis.Int. J. Pharm.20103851-214314910.1016/j.ijpharm.2009.10.00419819315
    [Google Scholar]
  102. MartínezA. IglesiasI. LozanoR. TeijónJ.M. BlancoM.D. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems.Carbohydr. Polym.20118331311132110.1016/j.carbpol.2010.09.038
    [Google Scholar]
  103. CortésH. Hernández-ParraH. Bernal-ChávezS.A. Prado-AudeloM.L.D. Caballero-FloránI.H. Borbolla-JiménezF.V. González-TorresM. MagañaJ.J. Leyva-GómezG. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses.Materials20211412319710.3390/ma1412319734200640
    [Google Scholar]
  104. LuoG. YuX. JinC. YangF. FuD. LongJ. XuJ. ZhanC. LuW. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors.Int. J. Pharm.20103851-215015610.1016/j.ijpharm.2009.10.01419825404
    [Google Scholar]
  105. MukhopadhyayS. NarayanR. GadagS. ShenoyP.A. GargS. NayakU.Y. TA. Development of levofloxacin glycosylated mesoporous silica nanoparticles for urinary tract infections.J. Appl. Pharm. Sci.2024141217417910.7324/JAPS.2024.181547
    [Google Scholar]
  106. GregoriadisG. RymanB.E. Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases.Eur. J. Biochem.197224348549110.1111/j.1432‑1033.1972.tb19710.x4500958
    [Google Scholar]
  107. McCormackB. GregoriadisG. Drugs-in-cyclodextrins-in liposomes: A novel concept in drug delivery.Int. J. Pharm.1994112324925810.1016/0378‑5173(94)90361‑1
    [Google Scholar]
  108. IllumL. DavisS.S. The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338).FEBS Lett.19841671798210.1016/0014‑5793(84)80836‑46698206
    [Google Scholar]
  109. KirbyC. GregoriadisG. The effect of lipid composition of small unilamellar liposomes containing melphalan and vincristine on drug clearance after injection into mice.Biochem. Pharmacol.198332460961510.1016/0006‑2952(83)90483‑56830624
    [Google Scholar]
  110. TorchilinV.P. ShtilmanM.I. TrubetskoyV.S. WhitemanK. MilsteinA.M. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo .Biochim. Biophys. Acta Biomembr.19941195118118410.1016/0005‑2736(94)90025‑67918561
    [Google Scholar]
  111. ForssenE.A. CoulterD.M. ProffittR.T. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors.Cancer Res.19925212325532611596882
    [Google Scholar]
  112. FreitasR.A. Current status of nanomedicine and medical nanorobotics.J. Comput. Theor. Nanosci.200521125
    [Google Scholar]
  113. MoghimiS.M. HunterA.C. MurrayJ.C. Nanomedicine: Current status and future prospects.FASEB J.200519331133010.1096/fj.04‑2747rev15746175
    [Google Scholar]
  114. ChosyM.B. SunJ. RahnH.P. LiuX. BrčićJ. WenderP.A. CegelskiL. Vancomycin-polyguanidino dendrimer conjugates inhibit growth of antibiotic-resistant gram- positive and gram-negative bacteria and eradicate biofilm-associated S. aureus.ACS Infect. Dis.202410238439710.1021/acsinfecdis.3c0016838252999
    [Google Scholar]
  115. BakerJ.R. QuintanaA. PiehlerL. Banazak-HollM. TomaliaD. RaczkaE. The synthesis and testing of anti-cancer therapeutic nanodevices.Biomed. Microdevices200131616910.1023/A:1011485622697
    [Google Scholar]
  116. DemanueleA. AttwoodD. Dendrimer–drug interactions.Adv. Drug Deliv. Rev.200557152147216210.1016/j.addr.2005.09.01216310283
    [Google Scholar]
  117. MenjogeA.R. KannanR.M. TomaliaD.A. Dendrimer-based drug and imaging conjugates: Design considerations for nanomedical applications.Drug Discov. Today2010155-617118510.1016/j.drudis.2010.01.00920116448
    [Google Scholar]
  118. SinghP. GuptaU. AsthanaA. JainN.K. Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice.Bioconjug. Chem.200819112239225210.1021/bc800125u18950215
    [Google Scholar]
  119. ShiL FlemingCJ RiechersSL YinN-N LuoJ LamKS High-resolution imaging of dendrimers used in drug delivery via scanning probe microscopy.J Drug Deliv201125409510.1155/2011/25409521773043
    [Google Scholar]
  120. ShahN. SteptoeR.J. ParekhH.S. Low-generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA.J. Pept. Sci.201117647047810.1002/psc.134721351322
    [Google Scholar]
  121. KitchensK.M. KolhatkarR.B. SwaanP.W. EddingtonN.D. GhandehariH. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling.Pharm. Res.200623122818282610.1007/s11095‑006‑9122‑217094034
    [Google Scholar]
  122. AntoniettiM. LandfesterK. Polyreactions in miniemulsions.Prog. Polym. Sci.200227468975710.1016/S0079‑6700(01)00051‑X
    [Google Scholar]
  123. JonesM.C. LerouxJ.C. Polymeric micelles – A new generation of colloidal drug carriers.Eur. J. Pharm. Biopharm.199948210111110.1016/S0939‑6411(99)00039‑910469928
    [Google Scholar]
  124. LasicD.D. Mixed micelles in drug delivery.Nature1992355635727928010.1038/355279a01731228
    [Google Scholar]
  125. LindmanB. WennerströmH. Micelles: Amphiphile aggregation in aqueous solution.Micelles2006183
    [Google Scholar]
  126. AttwoodD FlorenceA AttwoodD FlorenceA Pharmaceutical aspects of solubilization.Surfactant SystemsSpringerDordrecht198329338710.1007/978‑94‑009‑5775‑6_6
    [Google Scholar]
  127. PalmerT. CarideV. CaldecourtM. TwicklerJ. AbdullahV. The mechanism of liposome accumulation in infarction.Biochim. Biophys. Acta, Gen. Subj.1984797336336810.1016/0304‑4165(84)90258‑7
    [Google Scholar]
  128. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  129. GabizonA.A. Liposome circulation time and tumor targeting: Implications for cancer chemotherapy.Adv. Drug Deliv. Rev.1995162-328529410.1016/0169‑409X(95)00030‑B
    [Google Scholar]
  130. TorchilinV.P. Micellar nanocarriers: Pharmaceutical perspectives.Pharm. Res.200624111610.1007/s11095‑006‑9132‑017109211
    [Google Scholar]
  131. ÖztürkR. MurtA. Epidemiology of urological infections: A global burden.World J. Urol.202038112669267910.1007/s00345‑019‑03071‑431925549
    [Google Scholar]
  132. LiuS. QiaoS. LiL. QiG. LinY. QiaoZ. WangH. ShaoC. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections.Nanotechnology2015264949560210.1088/0957‑4484/26/49/49560226572164
    [Google Scholar]
  133. IyerJ.K. DickeyA. RouhaniP. KaulA. GovindarajuN. SinghR.N. KaulR. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis.PLoS One2018131e019102010.1371/journal.pone.019102029324795
    [Google Scholar]
  134. UpgadeA PrabakaranP. Green nanosilver: A potent antifungal for urinary tract infections.Int. J. Res. Pharm. Nano Sci.201436552567
    [Google Scholar]
  135. ZhaoJ. WangZ. ChenX. WangJ. LiJ. Effects of intravesical liposome-mediated human beta-defensin-2 gene transfection in a mouse urinary tract infection model.Microbiol. Immunol.201155421722310.1111/j.1348‑0421.2011.00315.x21272062
    [Google Scholar]
  136. SanthoshkumarJ. KumarS.V. RajeshkumarS. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen.Resour.-Efficient Technol.20173445946510.1016/j.reffit.2017.05.001
    [Google Scholar]
  137. ZhuZ. YuF. ChenH. WangJ. LopezA.I. ChenQ. LiS. LongY. DarouicheR.O. HullR.A. ZhangL. CaiC. Coating of silicone with mannoside- PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens.Acta Biomater.20176420021010.1016/j.actbio.2017.10.00829024820
    [Google Scholar]
  138. Lopez-CarrizalesM. VelascoK.I. CastilloC. FloresA. MagañaM. Martinez-CastanonG.A. Martinez-GutierrezF. in vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens.Antibiotics2018725010.3390/antibiotics702005029921822
    [Google Scholar]
  139. Crecente-CampoJ. Lorenzo-AbaldeS. MoraA. MarzoaJ. CsabaN. BlancoJ. González-FernándezÁ. AlonsoM.J. Bilayer polymeric nanocapsules: A formulation approach for a thermostable and adjuvanted E. coli antigen vaccine.J. Control. Release2018286203210.1016/j.jconrel.2018.07.01830017722
    [Google Scholar]
  140. Venkat KumarG. SuC.H. VelusamyP. Surface immobilization of kanamycin-chitosan nanoparticles on polyurethane ureteral stents to prevent bacterial adhesion.Biofouling201632886187010.1080/08927014.2016.120224227436679
    [Google Scholar]
  141. YoonB.I. HaU.S. SohnD.W. LeeS.J. KimH.W. HanC.H. LeeC.B. ChoY.H. Anti-inflammatory and antimicrobial effects of nanocatechin in a chronic bacterial prostatitis rat model.J. Infect. Chemother.201117218919410.1007/s10156‑010‑0098‑920694569
    [Google Scholar]
  142. FernandesM.M. IvanovaK. FranceskoA. MendozaE. TzanovT. Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation.Process Biochem.20175911612210.1016/j.procbio.2016.09.011
    [Google Scholar]
  143. BeranováJ SeydlováG KozakH PotockýŠ KonopásekI KromkaA. Antibacterial behavior of diamond nanoparticles against Escherichia coli.Phys. Status Solidi B2012249122581258410.1002/pssb.201200079
    [Google Scholar]
  144. SharmaK. BoseS.K. ChhibberS. HarjaiK. Exploring the therapeutic efficacy of zingerone nanoparticles in treating biofilm-associated pyelonephritis caused by Pseudomonas aeruginosa in the murine model.Inflammation20204362344235610.1007/s10753‑020‑01304‑y32948964
    [Google Scholar]
  145. BraunerB. SemmlerJ. RauchD. NokajM. HaissP. SchwarzP. WirthM. GaborF. Trimethoprim-loaded PLGA nanoparticles grafted with WGA as potential intravesical therapy of urinary tract infections—Studies on adhesion to SV-HUCs under varying time, pH, and drug-loading conditions.ACS Omega2020528173771738410.1021/acsomega.0c0174532715222
    [Google Scholar]
  146. SajjadS. UzairB. ShaukatA. JamshedM. LeghariS.A.K. IsmailM. MansoorQ. Synergistic evaluation of AgO2 nanoparticles with ceftriaxone against CTXM and blaSHV genes positive ESBL producing clinical strains of Uro-pathogenic E. coli.IET Nanobiotechnol.201913443544010.1049/iet‑nbt.2018.541531171749
    [Google Scholar]
  147. SahaB. BhattacharyaJ. MukherjeeA. GhoshA. SantraC. DasguptaA.K. KarmakarP. in vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics.Nanoscale Res. Lett.200721261462210.1007/s11671‑007‑9104‑2
    [Google Scholar]
  148. SAHAYR. Biological activities of neem and neem compounds.Life Sciences: Trends and TechnologyScieng Publications3346
    [Google Scholar]
  149. GirishK ShankaraBS Neem–A green treasure.Electron. J. Biol.200843102111
    [Google Scholar]
  150. KirtikarK. BasuB. Medicinal Plants (edsBlatter, E., Cains, JF, Mhaskar, KS).New DelhiVivekVihar1975536
    [Google Scholar]
  151. FrancineU. JeannetteU. PierreR.J. Assessment of antibacterial activity of neem plant (Azadirachta indica) on Staphylococcus aureus and Escherichia coli.J Med Plants Stud.2015348591
    [Google Scholar]
  152. MohamedSP Study on antibacterial activity of medicinal herbs against urinary tract infection (UTI) pathogens.Int J Zool Appl Biosci2023811710.55126/ijzab.2023.v08.i01.001
    [Google Scholar]
  153. DhaneN.S. HavaldarV.D. BhokareP.V. DiasR.J. MaliK.K. GhorpadeV.S. Antibacterial activity of methanolic extracts of Nycthanthes arbortristis.Int. J. Pharmacol.2016347679
    [Google Scholar]
  154. VermaN.S. DwivediS. PanigrahiD. GuptaS. Anti-bacterial activity of root bark of Nyctanthes arbor-tristis Linn.Int. J. Discov. Herb. Res.2011126162
    [Google Scholar]
  155. SasmalD. DasS. BasuS. Phytoconstituents and therapeutic potential of Nyctanthes arbortristis Linn.Pharmacogn. Rev.200712344349
    [Google Scholar]
  156. SinghS. Comparative evaluation of antiinflammatory potential of fixed oil of different species of Ocimum and its possible mechanism of action.Indian J. Exp. Biol.199836101028103110356964
    [Google Scholar]
  157. ThaweboonS ThaweboonB in vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms.Southeast Asian J Trop Med Public Health20094051025103319842385
    [Google Scholar]
  158. KathR.K. GuptaR.K. Antioxidant activity of hydroalcoholic leaf extract of ocimum sanctum in animal models of peptic ulcer.Indian J. Physiol. Pharmacol.200650439139617402269
    [Google Scholar]
  159. MpP. KJ. GgR. Antibacterial activity of Ocimum species and their phytochemical and antioxidant potential.Int. J. Microbiol. Res.20124830230710.9735/0975‑5276.4.8.302‑307
    [Google Scholar]
  160. PraveenG. Antibacterial Effect of Ocimum sanctum Linn.(Tulsi).Int. J. Allied Pract. Res. Rev.20101254246
    [Google Scholar]
  161. KaruppasamyV. KannanS. SudhaC. DevikaM. SundhareswariT. in vitro efficacy of phytotherapeutics for the prevention of urinary tract infections in pregnant women.Indian J. Biochem. Biophys.2024613182189[IJBB]
    [Google Scholar]
  162. BissetN.G. Herbal Drugs and Phytopharrnaceuticals: A Handbook for Practice on a Scientific Basis.Int. J. Pharmacogn.199735172
    [Google Scholar]
  163. EignerD. ScholzD. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal.J. Ethnopharmacol.19996711610.1016/S0378‑8741(98)00234‑710616954
    [Google Scholar]
  164. CordellG.A. Quinn-BeattieM.L. FarnsworthN.R. The potential of alkaloids in drug discovery.Phytother. Res.200115318320510.1002/ptr.89011351353
    [Google Scholar]
  165. GuptaA. MahajanS. SharmaR. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol. Rep.20156515510.1016/j.btre.2015.02.00128626697
    [Google Scholar]
  166. TandonN. SharmaM. Quality standards of Indian medicinal plants.Medicinal Plants UnitNew Delhi2010
    [Google Scholar]
  167. KannanP. RamadeviS. HopperW. Antibacterial activity of Terminalia chebula fruit extract.Afr. J. Microbiol. Res.200934180184
    [Google Scholar]
  168. AmbawadeS.D. KastureV.S. KastureS.B. Anticonvulsant activity of roots and rhizomes of Glycyrrhiza glabra.Indian J. Pharmacol.2002344251255
    [Google Scholar]
  169. GirachR. Medicinal plants used by Kondh tribe of district Phulbani (Orissa) in Eastern India.Ethnobotany.1992415366
    [Google Scholar]
  170. NayakA. DasN. NandaB. Utility of some tribal drugs of Keonjhar and Similipal area.J. Teach. Res. Chem.199855359
    [Google Scholar]
  171. BrahmamM. DhalN. SaxenaH. JainS. Ethnobotanical studies among the Tanla of Malyagiri hills in Dhenkanal district.Ethnobiology in Human Welfare Deep PublicationsOrissa, India1996393396
    [Google Scholar]
  172. SatapathyK. BrahamamM. Some medicinal plants used by the tribals of Sundargarh district, OrissaEthnobotany in human welfare Deep publicationNew Delhi1996153158
    [Google Scholar]
  173. AminuddinG.R. Observations of the ethnobotany of the Bhunjia–a tribe of Sonabera plateau.Ethnobot.199358386
    [Google Scholar]
  174. GirachR. AhmedM. BrahmamM. MisraM. Native phytotherapy among rural population of district Bhadrak Orissa.Ethnobiology in human welfare: abstracts of the fourth international congress of ethnobiologyLucknow, Uttar Pradesh, India, 17-21 November, 1994.
    [Google Scholar]
  175. BhattaraiS. ChaudharyR.P. TaylorR.S.L. GhimireS.K. Biological activities of some Nepalese medicinal plants used in treating bacterial infections in human beings.Nepal J. Sci. Technol.197010839010.3126/njst.v10i0.2830
    [Google Scholar]
  176. ChauhanN KumarD KasanaM. Medicinal plants of Muzaffarnagar district used in treatment of urinary tract and kidney stones.Indian J Tradit Knowl200982191195
    [Google Scholar]
  177. HossanS AgarwalaB SarwarS KarimM JahanR RahmatullahM Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and sexually transmitted diseases.Ethnobot Res Appl20108617410.17348/era.8.0.61‑74
    [Google Scholar]
  178. RevathiP. ParimelazhaganT. Traditional knowledge on medicinal plants used by the Irula tribe of Hasanur Hills, Erode District, Tamil Nadu, India.Ethnobotanical Leaflets.2010201024
    [Google Scholar]
  179. JabalameliL. BeigverdiR. RanjbarH.H. PouriranR. JabalameliF. EmaneiniM. Phenotypic and genotypic prevalence of extended-spectrum β-Lactamase-Producing Escherichia coli: A systematic review and meta-analysis in Iran.Microb. Drug Resist.2021271738610.1089/mdr.2019.039632456547
    [Google Scholar]
  180. HusseinK.A. LeeY.D. JooJ.H. Effect of rosemary essential oil and Trichoderma koningiopsis T-403 VOCs on pathogenic fungi responsible for ginseng root rot disease.J. Microbiol. Biotechnol.20203071018102610.4014/jmb.2002.0201332270657
    [Google Scholar]
  181. Tichaczek-GoskaD. GleńskM. WojniczD. The enhancement of the photodynamic therapy and ciprofloxacin activity against uropathogenic Escherichia coli strains by polypodium vulgare rhizome aqueous extract.Pathogens20211012154410.3390/pathogens1012154434959499
    [Google Scholar]
  182. Al ZuhairiJ.J.M.J. Jookar KashiF. Rahimi-MoghaddamA. YazdaniM. Antioxidant, cytotoxic and antibacterial activity of Rosmarinus officinalis L. essential oil against bacteria isolated from urinary tract infection.Eur. J. Integr. Med.20203810119210.1016/j.eujim.2020.101192
    [Google Scholar]
  183. Chacón-VargasK.F. Sánchez-TorresL.E. Chávez-GonzálezM.L. Adame-GallegosJ.R. Nevárez-MoorillónG.V. Mexican Oregano (Lippia berlandieri Schauer and Poliomintha longiflora Gray) essential oils induce cell death by apoptosis in Leishmania (Leishmania) mexicana Promastigotes.Molecules20222716518310.3390/molecules2716518336014423
    [Google Scholar]
  184. VogelN.W. TaschettoA.P.D. Dall’AgnolR. WeidlichL. EthurE.M. Assessment of the antimicrobial effect of three plants used for therapy of community-acquired urinary tract infection in Rio Grande do Sul (Brazil).J. Ethnopharmacol.201113731334133610.1016/j.jep.2011.07.07021843617
    [Google Scholar]
  185. OkraglaE. ChraniukM. WolskaL. Microtox test as a tool to assess antimicrobial properties of herbal infusions used in urinary tract infections.Acta Pol. Pharm.201774389590129513959
    [Google Scholar]
  186. UkahU.V. GlassM. AveryB. DaignaultD. MulveyM.R. Reid-SmithR.J. ParmleyE.J. PorttA. BoerlinP. MangesA.R. Risk factors for acquisition of multidrug-resistant Escherichia coli and development of community-acquired urinary tract infections.Epidemiol. Infect.20181461465710.1017/S095026881700268029229015
    [Google Scholar]
  187. TongY. SunM. ChiY. Prophylactic herbal therapy prevents experimental ascending urinary tract infection in mice.Chin. J. Integr. Med.2016221077477710.1007/s11655‑016‑2601‑327435291
    [Google Scholar]
  188. TongY. JiaS. HanB. Chinese herb-resistant clinical isolates of Escherichia coli.J. Altern. Complement. Med.201319438738810.1089/acm.2011.095523050957
    [Google Scholar]
  189. TongY. LengY. BaiJ. Chinese herbal medicine: A safe alternative therapy for urinary tract infection in patients with renal insufficiency.Afr. J. Tradit. Complement. Altern. Med.20119226627010.4314/ajtcam.v9i2.1323983345
    [Google Scholar]
  190. TongY. JiaQ. SunY. A renal tuberculosis case: Could Chinese medicine play a role?J. Altern. Complement. Med.200915893994110.1089/acm.2007.075919678787
    [Google Scholar]
  191. MickymarayS. Al AboodyM.S. in vitro antioxidant and bactericidal efficacy of 15 common spices: novel therapeutics for urinary tract infections?Medicina201955628910.3390/medicina5506028931248181
    [Google Scholar]
  192. PetroliniF.V.B. LucariniR. SouzaM.G.M. PiresR.H. CunhaW.R. MartinsC.H.G. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections.Braz. J. Microbiol.201344382983410.1590/S1517‑8382201300500006124516424
    [Google Scholar]
  193. HarjaiK. KumarR. SinghS. Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa.FEMS Immunol. Med. Microbiol.201058216116810.1111/j.1574‑695X.2009.00614.x19878318
    [Google Scholar]
  194. SohnD.W. HanC.H. JungY.S. KimS.I. KimS.W. ChoY.H. Anti-inflammatory and antimicrobial effects of garlic and synergistic effect between garlic and ciprofloxacin in a chronic bacterial prostatitis rat model.Int. J. Antimicrob. Agents200934321521910.1016/j.ijantimicag.2009.02.01219375896
    [Google Scholar]
  195. VadekeetilA. ChhibberS. HarjaiK. Efficacy of intravesical targeting of novel quorum sensing inhibitor nanoparticles against Pseudomonas aeruginosa biofilm-associated murine pyelonephritis.J. Drug Target.2019279995100310.1080/1061186X.2019.157480230741037
    [Google Scholar]
  196. VadekeetilA. AlexandarV. ChhibberS. HarjaiK. Adjuvant effect of cranberry proanthocyanidin active fraction on antivirulent property of ciprofloxacin against Pseudomonas aeruginosa.Microb. Pathog.2016909810310.1016/j.micpath.2015.11.02426620081
    [Google Scholar]
  197. AyyashM. ShehabiA.A. MahmoudN.N. Al-BakriA.G. Antibiofilm properties of triclosan with EDTA or cranberry as Foley Catheter lock solutions.J. Appl. Microbiol.201912761876188810.1111/jam.1443931502331
    [Google Scholar]
  198. LauI. AlbrechtU. Kirschner-HermannsR. Phytotherapy in catheter-associated urinary tract infection.Urologe A201857121472148010.1007/s00120‑018‑0740‑130054678
    [Google Scholar]
  199. NauschB. PaceS. PeinH. KoeberleA. RossiA. KünstleG. WerzO. The standardized herbal combination BNO 2103 contained in Canephron ® N alleviates inflammatory pain in experimental cystitis and prostatitis.Phytomedicine20196015298710.1016/j.phymed.2019.15298731257118
    [Google Scholar]
  200. BodduS. RK. MandavaK. A comprehensive review of urinary tract infections: Pathophysiology, antibiotic resistance, and therapeutic strategies, with emphasis on herbal alternatives.Rev. Res. Med. Microbiol.202410109710.1097/MRM.0000000000000400
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501371882250713174322
Loading
/content/journals/cdt/10.2174/0113894501371882250713174322
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test