Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

B-cell lymphoma-2 (BCL-2) plays a key role in regulating apoptosis. Venetoclax (VEN), a BCL-2 inhibitor, has been approved for the treatment of a variety of hematologic malignancies. VEN is primarily metabolized by CYP3A, and a variety of factors (such as CYP3A inhibitors, as well as food and hepatic functions) have been reported to significantly influence the metabolic process. There is significant interindividual variability in VEN plasma concentrations, and studies have shown that its exposure levels are correlated with efficacy, although the relationship with adverse effects remains controversial. The value of applying of therapeutic drug monitoring (TDM) in individualized VEN therapy has been confirmed by some studies, but the optimal therapeutic window for different malignancies is still unclear. This review summarizes the pharmacokinetic characteristics, along with the factors influencing VEN pharmacokinetics, drug-drug interactions, and advancements in TDM research on VEN, aiming to provide a theoretical basis for TDM-guided individualized therapy.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501376271250710221018
2025-07-16
2025-12-08
Loading full text...

Full text loading...

References

  1. KhanN. KahlB. Targeting BCL-2 in hematologic malignancies.Target. Oncol.201813325726710.1007/s11523‑018‑0560‑729520705
    [Google Scholar]
  2. YeF. ZhangW. FanC. DongJ. PengM. DengW. ZhangH. YangL. Antileukemic effect of venetoclax and hypomethylating agents via caspase-3/GSDME-mediated pyroptosis.J. Transl. Med.202321160610.1186/s12967‑023‑04481‑037679782
    [Google Scholar]
  3. CangS. IragavarapuC. SavoojiJ. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development.J. Hematol. Oncol.20158112910.1186/s13045‑015‑0224‑326589495
    [Google Scholar]
  4. SouersA.J. LeversonJ.D. BoghaertE.R. AcklerS.L. CatronN.D. ChenJ. DaytonB.D. DingH. EnschedeS.H. FairbrotherW.J. HuangD.C.S. HymowitzS.G. JinS. KhawS.L. KovarP.J. LamL.T. LeeJ. MaeckerH.L. MarshK.C. MasonK.D. MittenM.J. NimmerP.M. OleksijewA. ParkC.H. ParkC.M. PhillipsD.C. RobertsA.W. SampathD. SeymourJ.F. SmithM.L. SullivanG.M. TahirS.K. TseC. WendtM.D. XiaoY. XueJ.C. ZhangH. HumerickhouseR.A. RosenbergS.H. ElmoreS.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets.Nat. Med.201319220220810.1038/nm.304823291630
    [Google Scholar]
  5. EichhorstB. NiemannC.U. KaterA.P. FürstenauM. von TresckowJ. ZhangC. RobrechtS. GregorM. JuliussonG. ThorntonP. StaberP.B. TadmorT. LindströmV. da Cunha-BangC. SchneiderC. PoulsenC.B. IllmerT. SchöttkerB. NösslingerT. JanssensA. ChristiansenI. BaumannM. FrederiksenH. van der KliftM. JägerU. LeysM.B.L. HoogendoornM. LotfiK. HebartH. GaskaT. KoeneH. EnggaardL. GoedeJ. RegelinkJ.C. WidmerA. SimonF. De SilvaN. FinkA.M. BahloJ. FischerK. WendtnerC.M. KreuzerK.A. RitgenM. BrüggemannM. TauschE. LevinM.D. van OersM. GeislerC. StilgenbauerS. HallekM. GCLLSG, the HOVON and Nordic CLL Study Groups, the SAKK, the Israeli CLL Association, and Cancer Trials Ireland First-line venetoclax combinations in chronic lymphocytic leukemia.N. Engl. J. Med.2023388191739175410.1056/NEJMoa221309337163621
    [Google Scholar]
  6. KadiaT.M. RevilleP.K. WangX. RauschC.R. BorthakurG. PemmarajuN. DaverN.G. DiNardoC.D. SasakiK. IssaG.C. OhanianM. Montalban-BravoG. ShortN.J. JainN. FerrajoliA. BhallaK.N. JabbourE. TakahashiK. MallaR. QuagliatoK. Kanagal-ShamannaR. PopatU.R. AndreeffM. Garcia-ManeroG. KonoplevaM.Y. RavandiF. KantarjianH.M. Phase II study of venetoclax added to cladribine plus low-dose cytarabine alternating with 5-azacitidine in older patients with newly diagnosed acute myeloid leukemia.J. Clin. Oncol.202240333848385710.1200/JCO.21.0282335704787
    [Google Scholar]
  7. RyanC.E. DavidsM.S. HermannR. ShahkaramiM. BiondoJ. AbhyankarS. AlhasaniH. SharmanJ.P. MatoA.R. RoekerL.E. MAJIC: A phase III trial of acalabrutinib+venetoclax versus venetoclax+obinutuzumab in previously untreated chronic lymphocytic leukemia or small lymphocytic lymphoma.Future Oncol.202218333689369910.2217/fon‑2022‑045636102212
    [Google Scholar]
  8. DiNardoC.D. JonasB.A. PullarkatV. ThirmanM.J. GarciaJ.S. WeiA.H. KonoplevaM. DöhnerH. LetaiA. FenauxP. KollerE. HavelangeV. LeberB. EsteveJ. WangJ. PejsaV. HájekR. PorkkaK. IllésÁ. LavieD. LemoliR.M. YamamotoK. YoonS.S. JangJ.H. YehS.P. TurgutM. HongW.J. ZhouY. PotluriJ. PratzK.W. Azacitidine and venetoclax in previously untreated acute myeloid leukemia.N. Engl. J. Med.2020383761762910.1056/NEJMoa201297132786187
    [Google Scholar]
  9. WeiA.H. StricklandS.A.Jr HouJ.Z. FiedlerW. LinT.L. WalterR.B. EnjetiA. TiongI.S. SavonaM. LeeS. ChylaB. PopovicR. SalemA.H. AgarwalS. XuT. FakouhiK.M. HumerickhouseR. HongW.J. HayslipJ. RobozG.J. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: Results from a phase Ib/II study.J. Clin. Oncol.201937151277128410.1200/JCO.18.0160030892988
    [Google Scholar]
  10. YangX. MeiC. HeX. HeL. LuX. TongH. LouY. Quantification of venetoclax for therapeutic drug monitoring in chinese acute myeloid leukemia patients by a validated UPLC-MS/MS method.Molecules2022275160710.3390/molecules2705160735268708
    [Google Scholar]
  11. PhilippeM. GuittonJ. GoutelleS. ThomaY. FavierB. ChtibaN. MichalletM. BelhabriA. Pharmacokinetic consideration of venetoclax in acute myeloid leukemia patients: A potential candidate for TDM? A short communication.Ther. Drug Monit.202446112713110.1097/FTD.000000000000115137941111
    [Google Scholar]
  12. KobayashiM. YasuT. SuzakiK. Utility of therapeutic drug monitoring of venetoclax in acute myeloid leukemia.Med. Oncol.2022391225910.1007/s12032‑022‑01865‑y36224276
    [Google Scholar]
  13. WangL. GaoL. LiangZ. Efficacy and safety of coadministration of venetoclax and anti-fungal agents under therapeutic drug monitor in unfit acute myeloid leukemia and high-risk myelodysplastic syndrome with neutropenia: A single- center retrospective study.Leuk. Lymphoma202465335336210.1080/10428194.2023.229046538069781
    [Google Scholar]
  14. KobayashiT. SatoH. MiuraM. FukushiY. KurokiW. ItoF. TeshimaK. WatanabeA. FujishimaN. KobayashiI. KameokaY. TakahashiN. Overexposure to venetoclax is associated with prolonged-duration of neutropenia during venetoclax and azacitidine therapy in Japanese patients with acute myeloid leukemia.Cancer Chemother. Pharmacol.202494228529610.1007/s00280‑024‑04673‑538782790
    [Google Scholar]
  15. LiuH. MichmerhuizenM.J. LaoY. WanK. SalemA.H. SawickiJ. SerbyM. VaidyanathanS. WongS.L. AgarwalS. DunbarM. SydorJ. de MoraisS.M. LeeA.J. Metabolism and disposition of a novel B-cell lymphoma-2 inhibitor venetoclax in humans and characterization of its unusual metabolites.Drug Metab. Dispos.201745329430510.1124/dmd.116.07161327993930
    [Google Scholar]
  16. Megías-VericatJ.E. Solana-AltabellaA. Ballesta-LópezO. Drug-drug interactions of newly approved small molecule inhibitors for acute myeloid leukemia.Ann. Hematol.20209991989200710.1007/s00277‑020‑04186‑032683457
    [Google Scholar]
  17. AgarwalS.K. DiNardoC.D. PotluriJ. DunbarM. KantarjianH.M. HumerickhouseR.A. WongS.L. MenonR.M. KonoplevaM.Y. SalemA.H. Management of venetoclax-posaconazole interaction in acute myeloid leukemia patients: Evaluation of dose adjustments.Clin. Ther.201739235936710.1016/j.clinthera.2017.01.00328161120
    [Google Scholar]
  18. AgarwalS.K. SalemA.H. DanilovA.V. HuB. PuvvadaS. GutierrezM. ChienD. LewisL.D. WongS.L. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL-2 inhibitor, in patients with non-Hodgkin lymphoma.Br. J. Clin. Pharmacol.201783484685410.1111/bcp.1317527859472
    [Google Scholar]
  19. UdomkarnjananunS. FranckeM.I. De WinterB.C.M. MulderM.B. BaanC.C. MetselaarH.J. den HoedC.M. HesselinkD.A. Therapeutic drug monitoring of immunosuppressive drugs in hepatology and gastroenterology.Best Pract. Res. Clin. Gastroenterol.202154-5510175610.1016/j.bpg.2021.10175634874840
    [Google Scholar]
  20. SalemA.H. AgarwalS.K. DunbarM. NuthalapatiS. ChienD. FreiseK.J. WongS.L. Effect of low- and high-fat meals on the pharmacokinetics of venetoclax, a selective first-in-class BCL-2 inhibitor.J. Clin. Pharmacol.201656111355136110.1002/jcph.74127029823
    [Google Scholar]
  21. RobertsA.W. DavidsM.S. PagelJ.M. KahlB.S. PuvvadaS.D. GerecitanoJ.F. KippsT.J. AndersonM.A. BrownJ.R. GressickL. WongS. DunbarM. ZhuM. DesaiM.B. CerriE. Heitner EnschedeS. HumerickhouseR.A. WierdaW.G. SeymourJ.F. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia.N. Engl. J. Med.2016374431132210.1056/NEJMoa151325726639348
    [Google Scholar]
  22. SalemA.H. AgarwalS.K. DunbarM. Pharmacokinetics of venetoclax, a novel BCL-2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non-hodgkin lymphoma.J. Clin. Pharmacol.201757448449210.1002/jcph.82127558232
    [Google Scholar]
  23. MinochaM. ZengJ. MedemaJ.K. Pharmacokinetics of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax in female subjects with systemic lupus erythematosus.Clin. Pharmacokinet.20185791185119810.1007/s40262‑017‑0625‑229333561
    [Google Scholar]
  24. Emami RiedmaierA. LindleyD.J. HallJ.A. CastleberryS. SladeR.T. StuartP. CarrR.A. BorchardtT.B. BowD.A.J. NijsenM. Mechanistic physiologically based pharmacokinetic modeling of the dissolution and food effect of a biopharmaceutics classification system IV compound—the venetoclax story.J. Pharm. Sci.2018107149550210.1016/j.xphs.2017.09.02728993217
    [Google Scholar]
  25. EisenmannE.D. GarrisonD.A. TalebiZ. JinY. SilvaroliJ.A. KimJ.G. SparreboomA. SavonaM.R. MimsA.S. BakerS.D. Interaction of antifungal drugs with CYP3A- and OATP1B-mediated venetoclax elimination.Pharmaceutics202214469410.3390/pharmaceutics1404069435456528
    [Google Scholar]
  26. JohnsonB.A. CheangM.S. GoldenbergG.J. Comparison of adriamycin uptake in chick embryo heart and liver cells an murine L5178Y lymphoblasts in vitro : Role of drug uptake in cardiotoxicity.Cancer Res.19864612182233940192
    [Google Scholar]
  27. FreiseK.J. HuB. SalemA.H. Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics.Eur. J. Clin. Pharmacol.201874441342110.1007/s00228‑017‑2403‑329302721
    [Google Scholar]
  28. AgarwalS.K. HuB. ChienD. Evaluation of rifampin’s transporter inhibitory and CYP3A inductive effects on the pharmacokinetics of venetoclax, a BCL-2 inhibitor: Results of a single- and multiple-dose study.J. Clin. Pharmacol.201656111335134310.1002/jcph.73026953185
    [Google Scholar]
  29. AgarwalS.K. TongB. BuenoO.F. Effect of azithromycin on venetoclax pharmacokinetics in healthy volunteers: Implications for dosing venetoclax with P-gp inhibitors.Adv. Ther.201835112015202310.1007/s12325‑018‑0793‑y30264382
    [Google Scholar]
  30. KuboT. MatsuoS. SogawaR. YasuT. NagaieT. OkamotoS. KimuraS. ShimanoeC. Monitoring of blood levels in patients administered CYP3A4 inhibitor during the maintenance phase of venetoclax administration
.Int. J. Clin. Pharmacol. Ther.2024621566010.5414/CP20449037969095
    [Google Scholar]
  31. AlhadabA.A. SalemA.H. FreiseK.J. Semimechanistic modeling to guide venetoclax coadministration with ritonavir and digoxin.Clin. Transl. Sci.202013355556210.1111/cts.1273931961475
    [Google Scholar]
  32. ChineyM.S. MenonR.M. BuenoO.F. Clinical evaluation of P-glycoprotein inhibition by venetoclax: A drug interaction study with digoxin.Xenobiotica201848990491010.1080/00498254.2017.138177929027832
    [Google Scholar]
  33. SalemA.H. HuB. FreiseK.J. Evaluation of the pharmacokinetic interaction between venetoclax, a selective BCL-2 inhibitor, and warfarin in healthy volunteers.Clin. Drug Investig.201737330330910.1007/s40261‑016‑0485‑927910036
    [Google Scholar]
  34. FlanaganS. WalkerH. OngV. Absence of clinically meaningful drug-drug interactions with rezafungin: Outcome of investigations.Microbiol. Spectr.2023113e01339-2310.1128/spectrum.01339‑2337154682
    [Google Scholar]
  35. FreiseK.J. ShebleyM. SalemA.H. Quantitative prediction of the effect of CYP3A inhibitors and inducers on venetoclax pharmacokinetics using a physiologically based pharmacokinetic model.J. Clin. Pharmacol.201757679680410.1002/jcph.85828052338
    [Google Scholar]
  36. MukherjeeD. BrackmanD.J. SuleimanA.A. Impact of multiple concomitant CYP3A inhibitors on venetoclax pharmacokinetics: A PBPK and population PK-informed analysis.J. Clin. Pharmacol.202363111912510.1002/jcph.214035996877
    [Google Scholar]
  37. GongJ.Q.X. SuleimanA.A. MenonR. Pooled population pharmacokinetic analyses of venetoclax in patients across indications and healthy subjects from phase 1, 2, and 3 clinical trials.J. Clin. Pharmacol.202363895096010.1002/jcph.224837055934
    [Google Scholar]
  38. SalemA.H. DaveN. MarburyT. HuB. MilesD. AgarwalS.K. BuenoO.F. MenonR.M. Pharmacokinetics of the BCL-2 inhibitor venetoclax in subjects with hepatic impairment.Clin. Pharmacokinet.20195881091110010.1007/s40262‑019‑00746‑430949874
    [Google Scholar]
  39. JonesA.K. FreiseK.J. AgarwalS.K. Clinical predictors of venetoclax pharmacokinetics in chronic lymphocytic leukemia and non-hodgkin’s lymphoma patients: A pooled population pharmacokinetic analysis.AAPS J.20161851192120210.1208/s12248‑016‑9927‑927233802
    [Google Scholar]
  40. NooraniB. MenonR.M. ChenX. MarshK.C. HuangW. GuptaS. DobkowskaE. MarburyT. SalemA.H. Venetoclax pharmacokinetics in participants with end-stage renal disease undergoing hemodialysis.Br. J. Clin. Pharmacol.202490374875810.1111/bcp.1593537855131
    [Google Scholar]
  41. Westlind-JohnssonA. MalmeboS. JohanssonA. OtterC. AnderssonT.B. JohanssonI. EdwardsR.J. BoobisA.R. Ingelman-SundbergM. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism.Drug Metab. Dispos.200331675576110.1124/dmd.31.6.75512756208
    [Google Scholar]
  42. ShimadaT. YamazakiH. MimuraM. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians.J. Pharmacol. Exp. Ther.1994270141442310.1016/S0022‑3565(25)22379‑58035341
    [Google Scholar]
  43. WestlindA. LöfbergL. TindbergN. Interindividual differences in hepatic expression of CYP3A4: Relationship to genetic polymorphism in the 5′-upstream regulatory region.Biochem. Biophys. Res. Commun.1999259120120510.1006/bbrc.1999.075210334940
    [Google Scholar]
  44. LambaJ.K. LinY.S. SchuetzE.G. Genetic contribution to variable human CYP3A-mediated metabolism.Adv. Drug Deliv. Rev.200254101271129410.1016/S0169‑409X(02)00066‑212406645
    [Google Scholar]
  45. LiY. WanQ. WanJ. XiaoX. HuJ. YangX. KongF. WangJ. SongB. LiZ. LiF. RenS. PengH. Plasma concentrations of venetoclax and Pharmacogenetics correlated with drug efficacy in treatment naive leukemia patients: A retrospective study.Pharmacogenomics J.20242463710.1038/s41397‑024‑00359‑639578425
    [Google Scholar]
  46. FreiseK.J. JonesA.K. MenonR.M. VerdugoM.E. HumerickhouseR.A. AwniW.M. SalemA.H. Relationship between venetoclax exposure, rituximab coadministration, and progression-free survival in patients with relapsed or refractory chronic lymphocytic leukemia: Demonstration of synergy.Hematol. Oncol.201735467968410.1002/hon.237327982454
    [Google Scholar]
  47. FreiseK.J. JonesA.K. EckertD. MensingS. WongS.L. HumerickhouseR.A. AwniW.M. SalemA.H. Impact of venetoclax exposure on clinical efficacy and safety in patients with relapsed or refractory chronic lymphocytic leukemia.Clin. Pharmacokinet.201756551552310.1007/s40262‑016‑0453‑927638334
    [Google Scholar]
  48. ChenX. LiuZ.Y. ZhangR.L. ZhaiW.H. MaQ.L. PangA.M. YangD.L. HeY. WeiJ.L. FengS.Z. HanM.Z. JiangE.L. Efficacy and safety of Venetoclax in the treatment of 25 patients with recurrent hematologic malignancies after an allogeneic hematopoietic stem cell transplantation.Zhonghua Xue Ye Xue Za Zhi202243754254910.3760/cma.j.issn.0253‑2727.2022.07.00336709130
    [Google Scholar]
  49. BrackmanD. EckertD. MenonR. SalemA.H. PotluriJ. SmithB.D. WeiA.H. HayslipJ. MilesD. MensingS. GopalakrishnanS. ZhaJ. Venetoclax exposure-efficacy and exposure-safety relationships in patients with treatment- naïve acute myeloid leukemia who are ineligible for intensive chemotherapy.Hematol. Oncol.202240226927910.1002/hon.296435043428
    [Google Scholar]
  50. AgarwalS. GopalakrishnanS. MensingS. PotluriJ. HayslipJ. KirschbrownW. FriedelA. MenonR. SalemA.H. Optimizing venetoclax dose in combination with low intensive therapies in elderly patients with newly diagnosed acute myeloid leukemia: An exposure-response analysis.Hematol. Oncol.201937446447310.1002/hon.264631251400
    [Google Scholar]
  51. GaoP. ZhangW. FangX. LengB. ZhangY. LiuX. WangX. GuoN. Simultaneous quantification of venetoclax and voriconazole in human plasma by UHPLC-MS/MS and its application in acute myeloid leukemia patients.J. Pharm. Biomed. Anal.202322711527910.1016/j.jpba.2023.11527936739719
    [Google Scholar]
  52. De GregoriS. GelliE. CaponeM. GambiniG. RoncoroniE. RossiM. Tobar CabreraC.P. MartiniG. CalabrettaL. ArcainiL. AlbertiniR. ZappasodiP. Pharmacokinetics of venetoclax co-administered with posaconazole in patients with acute myeloid leukemia.Pharmaceutics2023156168010.3390/pharmaceutics1506168037376128
    [Google Scholar]
  53. EisenmannE.D. JinY. WeberR.H. SparreboomA. BakerS.D. Development and validation of a sensitive UHPLC-MS/MS analytical method for venetoclax in mouse plasma, and its application to pharmacokinetic studies.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2020115212217610.1016/j.jchromb.2020.12217632534260
    [Google Scholar]
  54. YangY.L. QianZ.Y. ZhaoY. ChenX.L. HuangQ.Y. GuoY.J. SunL.N. WangY.Q. LC–MS/MS methods for determination of venetoclax in human plasma and cerebrospinal fluid.Biomed. Chromatogr.20233712573810.1002/bmc.573837724003
    [Google Scholar]
  55. YasuT. GandoY. NomuraY. Determination of venetoclax concentration in plasma using high-performance liquid chromatography.J. Chromatogr. Sci.202361548048310.1093/chromsci/bmac02735383356
    [Google Scholar]
  56. FukudaN. KobayashiT. SatoH. Quantitation of venetoclax in human plasma by high-performance liquid chromatography with ultraviolet detection.J. Chromatogr. Sci.2023621586410.1093/chromsci/bmac08036316274
    [Google Scholar]
  57. TangY. RaoP. LiS. Individualized medication of venetoclax based on therapeutic drug monitoring in Chinese acute myeloid leukemia patients using an HPLC method.Anticancer Drugs202435985285810.1097/CAD.000000000000163238995659
    [Google Scholar]
  58. SeyfinejadB. JouybanA. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices.J. Pharm. Biomed. Anal.202120511431510.1016/j.jpba.2021.11431534399192
    [Google Scholar]
  59. DiNardoC.D. PratzK.W. LetaiA. JonasB.A. WeiA.H. ThirmanM. ArellanoM. FrattiniM.G. KantarjianH. PopovicR. ChylaB. XuT. DunbarM. AgarwalS.K. HumerickhouseR. MabryM. PotluriJ. KonoplevaM. PollyeaD.A. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study.Lancet Oncol.201819221622810.1016/S1470‑2045(18)30010‑X29339097
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501376271250710221018
Loading
/content/journals/cdt/10.2174/0113894501376271250710221018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test