Skip to content
2000
image of Therapeutic Drug Monitoring: A New Hope for Individualised Treatment with Venetoclax

Abstract

B-cell lymphoma-2 (BCL-2) plays a key role in regulating apoptosis. Venetoclax (VEN), a BCL-2 inhibitor, has been approved for the treatment of a variety of hematologic malignancies. VEN is primarily metabolized by CYP3A, and a variety of factors (such as CYP3A inhibitors, as well as food and hepatic functions) have been reported to significantly influence the metabolic process. There is significant interindividual variability in VEN plasma concentrations, and studies have shown that its exposure levels are correlated with efficacy, although the relationship with adverse effects remains controversial. The value of applying of therapeutic drug monitoring (TDM) in individualized VEN therapy has been confirmed by some studies, but the optimal therapeutic window for different malignancies is still unclear. This review summarizes the pharmacokinetic characteristics, along with the factors influencing VEN pharmacokinetics, drug-drug interactions, and advancements in TDM research on VEN, aiming to provide a theoretical basis for TDM-guided individualized therapy.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501376271250710221018
2025-07-16
2025-11-08
Loading full text...

Full text loading...

References

  1. Khan N. Kahl B. Targeting BCL-2 in hematologic malignancies. Target. Oncol. 2018 13 3 257 267 10.1007/s11523‑018‑0560‑7 29520705
    [Google Scholar]
  2. Ye F. Zhang W. Fan C. Dong J. Peng M. Deng W. Zhang H. Yang L. Antileukemic effect of venetoclax and hypomethylating agents via caspase-3/GSDME-mediated pyroptosis. J. Transl. Med. 2023 21 1 606 10.1186/s12967‑023‑04481‑0 37679782
    [Google Scholar]
  3. Cang S. Iragavarapu C. Savooji J. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J. Hematol. Oncol. 2015 8 1 129 10.1186/s13045‑015‑0224‑3 26589495
    [Google Scholar]
  4. Souers A.J. Leverson J.D. Boghaert E.R. Ackler S.L. Catron N.D. Chen J. Dayton B.D. Ding H. Enschede S.H. Fairbrother W.J. Huang D.C.S. Hymowitz S.G. Jin S. Khaw S.L. Kovar P.J. Lam L.T. Lee J. Maecker H.L. Marsh K.C. Mason K.D. Mitten M.J. Nimmer P.M. Oleksijew A. Park C.H. Park C.M. Phillips D.C. Roberts A.W. Sampath D. Seymour J.F. Smith M.L. Sullivan G.M. Tahir S.K. Tse C. Wendt M.D. Xiao Y. Xue J.C. Zhang H. Humerickhouse R.A. Rosenberg S.H. Elmore S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013 19 2 202 208 10.1038/nm.3048 23291630
    [Google Scholar]
  5. Eichhorst B. Niemann C.U. Kater A.P. Fürstenau M. von Tresckow J. Zhang C. Robrecht S. Gregor M. Juliusson G. Thornton P. Staber P.B. Tadmor T. Lindström V. da Cunha-Bang C. Schneider C. Poulsen C.B. Illmer T. Schöttker B. Nösslinger T. Janssens A. Christiansen I. Baumann M. Frederiksen H. van der Klift M. Jäger U. Leys M.B.L. Hoogendoorn M. Lotfi K. Hebart H. Gaska T. Koene H. Enggaard L. Goede J. Regelink J.C. Widmer A. Simon F. De Silva N. Fink A.M. Bahlo J. Fischer K. Wendtner C.M. Kreuzer K.A. Ritgen M. Brüggemann M. Tausch E. Levin M.D. van Oers M. Geisler C. Stilgenbauer S. Hallek M. GCLLSG, the HOVON and Nordic CLL Study Groups, the SAKK, the Israeli CLL Association, and Cancer Trials Ireland First-line venetoclax combinations in chronic lymphocytic leukemia. N. Engl. J. Med. 2023 388 19 1739 1754 10.1056/NEJMoa2213093 37163621
    [Google Scholar]
  6. Kadia T.M. Reville P.K. Wang X. Rausch C.R. Borthakur G. Pemmaraju N. Daver N.G. DiNardo C.D. Sasaki K. Issa G.C. Ohanian M. Montalban-Bravo G. Short N.J. Jain N. Ferrajoli A. Bhalla K.N. Jabbour E. Takahashi K. Malla R. Quagliato K. Kanagal-Shamanna R. Popat U.R. Andreeff M. Garcia-Manero G. Konopleva M.Y. Ravandi F. Kantarjian H.M. Phase II study of venetoclax added to cladribine plus low-dose cytarabine alternating with 5-azacitidine in older patients with newly diagnosed acute myeloid leukemia. J. Clin. Oncol. 2022 40 33 3848 3857 10.1200/JCO.21.02823 35704787
    [Google Scholar]
  7. Ryan C.E. Davids M.S. Hermann R. Shahkarami M. Biondo J. Abhyankar S. Alhasani H. Sharman J.P. Mato A.R. Roeker L.E. MAJIC: A phase III trial of acalabrutinib+venetoclax versus venetoclax+obinutuzumab in previously untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Future Oncol. 2022 18 33 3689 3699 10.2217/fon‑2022‑0456 36102212
    [Google Scholar]
  8. DiNardo C.D. Jonas B.A. Pullarkat V. Thirman M.J. Garcia J.S. Wei A.H. Konopleva M. Döhner H. Letai A. Fenaux P. Koller E. Havelange V. Leber B. Esteve J. Wang J. Pejsa V. Hájek R. Porkka K. Illés Á. Lavie D. Lemoli R.M. Yamamoto K. Yoon S.S. Jang J.H. Yeh S.P. Turgut M. Hong W.J. Zhou Y. Potluri J. Pratz K.W. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020 383 7 617 629 10.1056/NEJMoa2012971 32786187
    [Google Scholar]
  9. Wei A.H. Strickland S.A. Jr Hou J.Z. Fiedler W. Lin T.L. Walter R.B. Enjeti A. Tiong I.S. Savona M. Lee S. Chyla B. Popovic R. Salem A.H. Agarwal S. Xu T. Fakouhi K.M. Humerickhouse R. Hong W.J. Hayslip J. Roboz G.J. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: Results from a phase Ib/II study. J. Clin. Oncol. 2019 37 15 1277 1284 10.1200/JCO.18.01600 30892988
    [Google Scholar]
  10. Yang X. Mei C. He X. He L. Lu X. Tong H. Lou Y. Quantification of venetoclax for therapeutic drug monitoring in chinese acute myeloid leukemia patients by a validated UPLC-MS/MS method. Molecules 2022 27 5 1607 10.3390/molecules27051607 35268708
    [Google Scholar]
  11. Philippe M. Guitton J. Goutelle S. Thoma Y. Favier B. Chtiba N. Michallet M. Belhabri A. Pharmacokinetic consideration of venetoclax in acute myeloid leukemia patients: A potential candidate for TDM? A short communication. Ther. Drug Monit. 2024 46 1 127 131 10.1097/FTD.0000000000001151 37941111
    [Google Scholar]
  12. Kobayashi M. Yasu T. Suzaki K. Utility of therapeutic drug monitoring of venetoclax in acute myeloid leukemia. Med. Oncol. 2022 39 12 259 10.1007/s12032‑022‑01865‑y 36224276
    [Google Scholar]
  13. Wang L. Gao L. Liang Z. Efficacy and safety of coadministration of venetoclax and anti-fungal agents under therapeutic drug monitor in unfit acute myeloid leukemia and high-risk myelodysplastic syndrome with neutropenia: A single- center retrospective study. Leuk. Lymphoma 2024 65 3 353 362 10.1080/10428194.2023.2290465 38069781
    [Google Scholar]
  14. Kobayashi T. Sato H. Miura M. Fukushi Y. Kuroki W. Ito F. Teshima K. Watanabe A. Fujishima N. Kobayashi I. Kameoka Y. Takahashi N. Overexposure to venetoclax is associated with prolonged-duration of neutropenia during venetoclax and azacitidine therapy in Japanese patients with acute myeloid leukemia. Cancer Chemother. Pharmacol. 2024 94 2 285 296 10.1007/s00280‑024‑04673‑5 38782790
    [Google Scholar]
  15. Liu H. Michmerhuizen M.J. Lao Y. Wan K. Salem A.H. Sawicki J. Serby M. Vaidyanathan S. Wong S.L. Agarwal S. Dunbar M. Sydor J. de Morais S.M. Lee A.J. Metabolism and disposition of a novel B-cell lymphoma-2 inhibitor venetoclax in humans and characterization of its unusual metabolites. Drug Metab. Dispos. 2017 45 3 294 305 10.1124/dmd.116.071613 27993930
    [Google Scholar]
  16. Megías-Vericat J.E. Solana-Altabella A. Ballesta-López O. Drug-drug interactions of newly approved small molecule inhibitors for acute myeloid leukemia. Ann. Hematol. 2020 99 9 1989 2007 10.1007/s00277‑020‑04186‑0 32683457
    [Google Scholar]
  17. Agarwal S.K. DiNardo C.D. Potluri J. Dunbar M. Kantarjian H.M. Humerickhouse R.A. Wong S.L. Menon R.M. Konopleva M.Y. Salem A.H. Management of venetoclax-posaconazole interaction in acute myeloid leukemia patients: Evaluation of dose adjustments. Clin. Ther. 2017 39 2 359 367 10.1016/j.clinthera.2017.01.003 28161120
    [Google Scholar]
  18. Agarwal S.K. Salem A.H. Danilov A.V. Hu B. Puvvada S. Gutierrez M. Chien D. Lewis L.D. Wong S.L. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL-2 inhibitor, in patients with non-Hodgkin lymphoma. Br. J. Clin. Pharmacol. 2017 83 4 846 854 10.1111/bcp.13175 27859472
    [Google Scholar]
  19. Udomkarnjananun S. Francke M.I. De Winter B.C.M. Mulder M.B. Baan C.C. Metselaar H.J. den Hoed C.M. Hesselink D.A. Therapeutic drug monitoring of immunosuppressive drugs in hepatology and gastroenterology. Best Pract. Res. Clin. Gastroenterol. 2021 54-55 101756 10.1016/j.bpg.2021.101756 34874840
    [Google Scholar]
  20. Salem A.H. Agarwal S.K. Dunbar M. Nuthalapati S. Chien D. Freise K.J. Wong S.L. Effect of low- and high-fat meals on the pharmacokinetics of venetoclax, a selective first-in-class BCL-2 inhibitor. J. Clin. Pharmacol. 2016 56 11 1355 1361 10.1002/jcph.741 27029823
    [Google Scholar]
  21. Roberts A.W. Davids M.S. Pagel J.M. Kahl B.S. Puvvada S.D. Gerecitano J.F. Kipps T.J. Anderson M.A. Brown J.R. Gressick L. Wong S. Dunbar M. Zhu M. Desai M.B. Cerri E. Heitner Enschede S. Humerickhouse R.A. Wierda W.G. Seymour J.F. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2016 374 4 311 322 10.1056/NEJMoa1513257 26639348
    [Google Scholar]
  22. Salem A.H. Agarwal S.K. Dunbar M. Pharmacokinetics of venetoclax, a novel BCL-2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non-hodgkin lymphoma. J. Clin. Pharmacol. 2017 57 4 484 492 10.1002/jcph.821 27558232
    [Google Scholar]
  23. Minocha M. Zeng J. Medema J.K. Pharmacokinetics of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax in female subjects with systemic lupus erythematosus. Clin. Pharmacokinet. 2018 57 9 1185 1198 10.1007/s40262‑017‑0625‑2 29333561
    [Google Scholar]
  24. Emami Riedmaier A. Lindley D.J. Hall J.A. Castleberry S. Slade R.T. Stuart P. Carr R.A. Borchardt T.B. Bow D.A.J. Nijsen M. Mechanistic physiologically based pharmacokinetic modeling of the dissolution and food effect of a biopharmaceutics classification system IV compound—the venetoclax story. J. Pharm. Sci. 2018 107 1 495 502 10.1016/j.xphs.2017.09.027 28993217
    [Google Scholar]
  25. Eisenmann E.D. Garrison D.A. Talebi Z. Jin Y. Silvaroli J.A. Kim J.G. Sparreboom A. Savona M.R. Mims A.S. Baker S.D. Interaction of antifungal drugs with CYP3A- and OATP1B-mediated venetoclax elimination. Pharmaceutics 2022 14 4 694 10.3390/pharmaceutics14040694 35456528
    [Google Scholar]
  26. Johnson B.A. Cheang M.S. Goldenberg G.J. Comparison of adriamycin uptake in chick embryo heart and liver cells an murine L5178Y lymphoblasts in vitro: Role of drug uptake in cardiotoxicity. Cancer Res. 1986 46 1 218 223 3940192
    [Google Scholar]
  27. Freise K.J. Hu B. Salem A.H. Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics. Eur. J. Clin. Pharmacol. 2018 74 4 413 421 10.1007/s00228‑017‑2403‑3 29302721
    [Google Scholar]
  28. Agarwal S.K. Hu B. Chien D. Evaluation of rifampin’s transporter inhibitory and CYP3A inductive effects on the pharmacokinetics of venetoclax, a BCL-2 inhibitor: Results of a single- and multiple-dose study. J. Clin. Pharmacol. 2016 56 11 1335 1343 10.1002/jcph.730 26953185
    [Google Scholar]
  29. Agarwal S.K. Tong B. Bueno O.F. Effect of azithromycin on venetoclax pharmacokinetics in healthy volunteers: Implications for dosing venetoclax with P-gp inhibitors. Adv. Ther. 2018 35 11 2015 2023 10.1007/s12325‑018‑0793‑y 30264382
    [Google Scholar]
  30. Kubo T. Matsuo S. Sogawa R. Yasu T. Nagaie T. Okamoto S. Kimura S. Shimanoe C. Monitoring of blood levels in patients administered CYP3A4 inhibitor during the maintenance phase of venetoclax administration
. Int. J. Clin. Pharmacol. Ther. 2024 62 1 56 60 10.5414/CP204490 37969095
    [Google Scholar]
  31. Alhadab A.A. Salem A.H. Freise K.J. Semimechanistic modeling to guide venetoclax coadministration with ritonavir and digoxin. Clin. Transl. Sci. 2020 13 3 555 562 10.1111/cts.12739 31961475
    [Google Scholar]
  32. Chiney M.S. Menon R.M. Bueno O.F. Clinical evaluation of P-glycoprotein inhibition by venetoclax: A drug interaction study with digoxin. Xenobiotica 2018 48 9 904 910 10.1080/00498254.2017.1381779 29027832
    [Google Scholar]
  33. Salem A.H. Hu B. Freise K.J. Evaluation of the pharmacokinetic interaction between venetoclax, a selective BCL-2 inhibitor, and warfarin in healthy volunteers. Clin. Drug Investig. 2017 37 3 303 309 10.1007/s40261‑016‑0485‑9 27910036
    [Google Scholar]
  34. Flanagan S. Walker H. Ong V. Absence of clinically meaningful drug-drug interactions with rezafungin: Outcome of investigations. Microbiol. Spectr. 2023 11 3 e01339-23 10.1128/spectrum.01339‑23 37154682
    [Google Scholar]
  35. Freise K.J. Shebley M. Salem A.H. Quantitative prediction of the effect of CYP3A inhibitors and inducers on venetoclax pharmacokinetics using a physiologically based pharmacokinetic model. J. Clin. Pharmacol. 2017 57 6 796 804 10.1002/jcph.858 28052338
    [Google Scholar]
  36. Mukherjee D. Brackman D.J. Suleiman A.A. Impact of multiple concomitant CYP3A inhibitors on venetoclax pharmacokinetics: A PBPK and population PK-informed analysis. J. Clin. Pharmacol. 2023 63 1 119 125 10.1002/jcph.2140 35996877
    [Google Scholar]
  37. Gong J.Q.X. Suleiman A.A. Menon R. Pooled population pharmacokinetic analyses of venetoclax in patients across indications and healthy subjects from phase 1, 2, and 3 clinical trials. J. Clin. Pharmacol. 2023 63 8 950 960 10.1002/jcph.2248 37055934
    [Google Scholar]
  38. Salem A.H. Dave N. Marbury T. Hu B. Miles D. Agarwal S.K. Bueno O.F. Menon R.M. Pharmacokinetics of the BCL-2 inhibitor venetoclax in subjects with hepatic impairment. Clin. Pharmacokinet. 2019 58 8 1091 1100 10.1007/s40262‑019‑00746‑4 30949874
    [Google Scholar]
  39. Jones A.K. Freise K.J. Agarwal S.K. Clinical predictors of venetoclax pharmacokinetics in chronic lymphocytic leukemia and non-hodgkin’s lymphoma patients: A pooled population pharmacokinetic analysis. AAPS J. 2016 18 5 1192 1202 10.1208/s12248‑016‑9927‑9 27233802
    [Google Scholar]
  40. Noorani B. Menon R.M. Chen X. Marsh K.C. Huang W. Gupta S. Dobkowska E. Marbury T. Salem A.H. Venetoclax pharmacokinetics in participants with end-stage renal disease undergoing hemodialysis. Br. J. Clin. Pharmacol. 2024 90 3 748 758 10.1111/bcp.15935 37855131
    [Google Scholar]
  41. Westlind-Johnsson A. Malmebo S. Johansson A. Otter C. Andersson T.B. Johansson I. Edwards R.J. Boobis A.R. Ingelman-Sundberg M. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab. Dispos. 2003 31 6 755 761 10.1124/dmd.31.6.755 12756208
    [Google Scholar]
  42. Shimada T. Yamazaki H. Mimura M. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 1994 270 1 414 423 10.1016/S0022‑3565(25)22379‑5 8035341
    [Google Scholar]
  43. Westlind A. Löfberg L. Tindberg N. Interindividual differences in hepatic expression of CYP3A4: Relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem. Biophys. Res. Commun. 1999 259 1 201 205 10.1006/bbrc.1999.0752 10334940
    [Google Scholar]
  44. Lamba J.K. Lin Y.S. Schuetz E.G. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 2002 54 10 1271 1294 10.1016/S0169‑409X(02)00066‑2 12406645
    [Google Scholar]
  45. Li Y. Wan Q. Wan J. Xiao X. Hu J. Yang X. Kong F. Wang J. Song B. Li Z. Li F. Ren S. Peng H. Plasma concentrations of venetoclax and Pharmacogenetics correlated with drug efficacy in treatment naive leukemia patients: A retrospective study. Pharmacogenomics J. 2024 24 6 37 10.1038/s41397‑024‑00359‑6 39578425
    [Google Scholar]
  46. Freise K.J. Jones A.K. Menon R.M. Verdugo M.E. Humerickhouse R.A. Awni W.M. Salem A.H. Relationship between venetoclax exposure, rituximab coadministration, and progression-free survival in patients with relapsed or refractory chronic lymphocytic leukemia: Demonstration of synergy. Hematol. Oncol. 2017 35 4 679 684 10.1002/hon.2373 27982454
    [Google Scholar]
  47. Freise K.J. Jones A.K. Eckert D. Mensing S. Wong S.L. Humerickhouse R.A. Awni W.M. Salem A.H. Impact of venetoclax exposure on clinical efficacy and safety in patients with relapsed or refractory chronic lymphocytic leukemia. Clin. Pharmacokinet. 2017 56 5 515 523 10.1007/s40262‑016‑0453‑9 27638334
    [Google Scholar]
  48. Chen X. Liu Z.Y. Zhang R.L. Zhai W.H. Ma Q.L. Pang A.M. Yang D.L. He Y. Wei J.L. Feng S.Z. Han M.Z. Jiang E.L. Efficacy and safety of Venetoclax in the treatment of 25 patients with recurrent hematologic malignancies after an allogeneic hematopoietic stem cell transplantation. Zhonghua Xue Ye Xue Za Zhi 2022 43 7 542 549 10.3760/cma.j.issn.0253‑2727.2022.07.003 36709130
    [Google Scholar]
  49. Brackman D. Eckert D. Menon R. Salem A.H. Potluri J. Smith B.D. Wei A.H. Hayslip J. Miles D. Mensing S. Gopalakrishnan S. Zha J. Venetoclax exposure-efficacy and exposure-safety relationships in patients with treatment- naïve acute myeloid leukemia who are ineligible for intensive chemotherapy. Hematol. Oncol. 2022 40 2 269 279 10.1002/hon.2964 35043428
    [Google Scholar]
  50. Agarwal S. Gopalakrishnan S. Mensing S. Potluri J. Hayslip J. Kirschbrown W. Friedel A. Menon R. Salem A.H. Optimizing venetoclax dose in combination with low intensive therapies in elderly patients with newly diagnosed acute myeloid leukemia: An exposure-response analysis. Hematol. Oncol. 2019 37 4 464 473 10.1002/hon.2646 31251400
    [Google Scholar]
  51. Gao P. Zhang W. Fang X. Leng B. Zhang Y. Liu X. Wang X. Guo N. Simultaneous quantification of venetoclax and voriconazole in human plasma by UHPLC-MS/MS and its application in acute myeloid leukemia patients. J. Pharm. Biomed. Anal. 2023 227 115279 10.1016/j.jpba.2023.115279 36739719
    [Google Scholar]
  52. De Gregori S. Gelli E. Capone M. Gambini G. Roncoroni E. Rossi M. Tobar Cabrera C.P. Martini G. Calabretta L. Arcaini L. Albertini R. Zappasodi P. Pharmacokinetics of venetoclax co-administered with posaconazole in patients with acute myeloid leukemia. Pharmaceutics 2023 15 6 1680 10.3390/pharmaceutics15061680 37376128
    [Google Scholar]
  53. Eisenmann E.D. Jin Y. Weber R.H. Sparreboom A. Baker S.D. Development and validation of a sensitive UHPLC-MS/MS analytical method for venetoclax in mouse plasma, and its application to pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020 1152 122176 10.1016/j.jchromb.2020.122176 32534260
    [Google Scholar]
  54. Yang Y.L. Qian Z.Y. Zhao Y. Chen X.L. Huang Q.Y. Guo Y.J. Sun L.N. Wang Y.Q. LC–MS/MS methods for determination of venetoclax in human plasma and cerebrospinal fluid. Biomed. Chromatogr. 2023 37 12 5738 10.1002/bmc.5738 37724003
    [Google Scholar]
  55. Yasu T. Gando Y. Nomura Y. Determination of venetoclax concentration in plasma using high-performance liquid chromatography. J. Chromatogr. Sci. 2023 61 5 480 483 10.1093/chromsci/bmac027 35383356
    [Google Scholar]
  56. Fukuda N. Kobayashi T. Sato H. Quantitation of venetoclax in human plasma by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. Sci. 2023 62 1 58 64 10.1093/chromsci/bmac080 36316274
    [Google Scholar]
  57. Tang Y. Rao P. Li S. Individualized medication of venetoclax based on therapeutic drug monitoring in Chinese acute myeloid leukemia patients using an HPLC method. Anticancer Drugs 2024 35 9 852 858 10.1097/CAD.0000000000001632 38995659
    [Google Scholar]
  58. Seyfinejad B. Jouyban A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J. Pharm. Biomed. Anal. 2021 205 114315 10.1016/j.jpba.2021.114315 34399192
    [Google Scholar]
  59. DiNardo C.D. Pratz K.W. Letai A. Jonas B.A. Wei A.H. Thirman M. Arellano M. Frattini M.G. Kantarjian H. Popovic R. Chyla B. Xu T. Dunbar M. Agarwal S.K. Humerickhouse R. Mabry M. Potluri J. Konopleva M. Pollyea D.A. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. Lancet Oncol. 2018 19 2 216 228 10.1016/S1470‑2045(18)30010‑X 29339097
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501376271250710221018
Loading
/content/journals/cdt/10.2174/0113894501376271250710221018
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Venetoclax ; pharmacokinetics ; therapeutic drug monitoring ; drug-drug interactions
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test