Skip to content
2000
image of Matrix Metalloproteinase-9: A Key Diagnostic Biomarker in Cancer Progression

Abstract

Matrix metalloproteinase-9, also known as MMP-9, gelatinase B, or 92 kDa type IV collagenase, is an enzyme that belongs to the matrix metalloproteinase (MMP) family. It is involved in the remodeling of the extracellular matrix in various physiological and pathological processes. MMPs are expressed in low, tightly regulated concentrations; their overexpression or dysregulation can lead to diseases, including cancer. MMP-9 is increasingly recognized as a significant drug target in cancer therapy due to its involvement in tumorigenesis, including processes like cell migration, angiogenesis, and pro-apoptotic and anti-apoptotic activities. Despite MMP-9's significance as a cancer target, developing effective inhibitors remains challenging due to MMP structural similarities. Utilizing MMP-9 as a cancer biomarker could advance cancer diagnosis, prognosis, disease monitoring, recurrence prediction, and other procedures. Biosensors are emerging as pivotal tools in cancer diagnosis and treatment, leveraging their ability to detect specific biomarkers associated with various cancers. Recent advancements have led to the development of both cleavage-based and non-cleavage-based biosensors that enable rapid and sensitive analysis at clinically relevant concentrations of biomarkers while allowing specificity and low detection limits, enhancing point-of-care diagnostics. The cleavage-based biosensors leverage the enzymatic activity of MMP-9, utilizing substrates that are specifically cleaved by MMP-9, while the non-cleavage-based biosensors employ affinity methods, such as antibodies and aptamers for detection. The present review aims to evaluate the role of MMP-9 as a significant biomarker in cancer and its detection through innovative biosensor technologies, while exploring its involvement in various cancer-related processes. This review discusses the significance of MMP-9 in cancer progression, highlighting clinical trials that assess MMP-9 inhibitors as potential therapeutic agents to halt metastatic spread. Furthermore, MMP-9 is detected biosensors, and insights into the translational potential of MMP-9 both as a biomarker for early cancer detection and a viable target for therapeutic intervention are provided, ultimately contributing to improved patient outcomes in oncology.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501371763250628092643
2025-07-04
2025-11-07
Loading full text...

Full text loading...

References

  1. Bailar J.C. III Gornik H.L. Cancer undefeated. N. Engl. J. Med. 1997 336 22 1569 1574 10.1056/NEJM199705293362206 9164814
    [Google Scholar]
  2. Siegel RL Giaquinto AN Jemal A Cancer statistics. CA Cancer J Clin 2024 74 4 203 10.3322/caac.21830
    [Google Scholar]
  3. Roy R. Singh S. Misra S. Advancements in cancer immunotherapies. Vaccines 2022 11 1 59 10.3390/vaccines11010059 36679904
    [Google Scholar]
  4. Gambardella V. Tarazona N. Cejalvo J.M. Lombardi P. Huerta M. Roselló S. Fleitas T. Roda D. Cervantes A. Personalized medicine: Recent progress in cancer therapy. Cancers 2020 12 4 1009 10.3390/cancers12041009 32325878
    [Google Scholar]
  5. Hoeben A. Joosten E.A.J. van den Beuken-van Everdingen M.H.J. Personalized medicine: Recent progress in cancer therapy. Cancers 2021 13 2 242 10.3390/cancers13020242 33440729
    [Google Scholar]
  6. Armstrong G.T. Liu Q. Yasui Y. Neglia J.P. Leisenring W. Robison L.L. Mertens A.C. Late mortality among 5-year survivors of childhood cancer: A summary from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2009 27 14 2328 2338 10.1200/JCO.2008.21.1425 19332714
    [Google Scholar]
  7. Holtedahl K. Challenges in early diagnosis of cancer: The fast track. Scand. J. Prim. Health Care 2020 38 3 251 252 10.1080/02813432.2020.1794415 32791936
    [Google Scholar]
  8. Yue B. Biology of the extracellular matrix: An overview. J. Glaucoma 2014 23 8 Suppl. 1 S20 S23 10.1097/IJG.0000000000000108 25275899
    [Google Scholar]
  9. Sala M Ros M Saltel F. A complex and evolutive character: Two face aspects of ECM in tumor progression. Front Oncol. 1620 10 1620 10.3389/fonc.2020.01620 32984031
    [Google Scholar]
  10. Huang J. Zhang L. Wan D. Zhou L. Zheng S. Lin S. Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther. 2021 6 1 153 10.1038/s41392‑021‑00544‑0 33888679
    [Google Scholar]
  11. Lu P. Takai K. Weaver V.M. Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 2011 3 12 a005058 a005058 10.1101/cshperspect.a005058 21917992
    [Google Scholar]
  12. Loud J.T. Murphy J. Cancer screening and early detection in the 21 st century. Semin. Oncol. Nurs. 2017 33 2 121 128 10.1016/j.soncn.2017.02.002 28343835
    [Google Scholar]
  13. Pulumati A. Pulumati A. Dwarakanath B.S. Verma A. Papineni R.V.L. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep. 2023 6 2 e1764 10.1002/cnr2.1764 36607830
    [Google Scholar]
  14. Schiffman J.D. Fisher P.G. Gibbs P. Early detection of cancer: Past, present, and future. Am. Soc. Clin. Oncol. Educ. Book 2015 35 57 65 10.14694/EdBook_AM.2015.35.57 25993143
    [Google Scholar]
  15. Vittone J. Gill D. Goldsmith A. Klein E.A. Karlitz J.J. A multi- cancer early detection blood test using machine learning detects early-stage cancers lacking USPSTF-recommended screening. NPJ Precis. Oncol. 2024 8 1 91 10.1038/s41698‑024‑00568‑z 38632333
    [Google Scholar]
  16. Tappia P.S. Ramjiawan B. Biomarkers for early detection of cancer: Molecular aspects. Int. J. Mol. Sci. 2023 24 6 5272 10.3390/ijms24065272 36982344
    [Google Scholar]
  17. Zhou Y. Tao L. Qiu J. Xu J. Yang X. Zhang Y. Tian X. Guan X. Cen X. Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 2024 9 1 132 10.1038/s41392‑024‑01823‑2 38763973
    [Google Scholar]
  18. Henry N.L. Hayes D.F. Cancer biomarkers. Mol. Oncol. 2012 6 2 140 146 10.1016/j.molonc.2012.01.010 22356776
    [Google Scholar]
  19. Cabral-Pacheco G.A. Garza-Veloz I. Castruita-De la Rosa C. Ramirez-Acuña J.M. Perez-Romero B.A. Guerrero-Rodriguez J.F. Martinez-Avila N. Martinez-Fierro M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020 21 24 9739 10.3390/ijms21249739 33419373
    [Google Scholar]
  20. Visse R. Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003 92 8 827 839 10.1161/01.RES.0000070112.80711.3D 12730128
    [Google Scholar]
  21. Nassa M. Anand P. Jain A. Chhabra A. Jaiswal A. Malhotra U. Rani V. Analysis of human collagen sequences. Bioinformation 2012 8 1 26 33 10.6026/97320630008026 22359431
    [Google Scholar]
  22. Hayami T. Kapila Y.L. Kapila S. MMP-1 (collagenase-1) and MMP-13 (collagenase-3) differentially regulate markers of osteoblastic differentiation in osteogenic cells. Matrix Biol. 2008 27 8 682 692 10.1016/j.matbio.2008.07.005 18755271
    [Google Scholar]
  23. Forsyth P.A. Wong H. Laing T.D. Rewcastle N.B. Morris D.G. Muzik H. Leco K.J. Johnston R.N. Brasher P.M.A. Sutherland G. Edwards D.R. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer 1999 79 11-12 1828 1835 10.1038/sj.bjc.6990291 10206300
    [Google Scholar]
  24. Piskór B.M. Przylipiak A. Dąbrowska E. Niczyporuk M. Ławicki S. Matrilysins and stromelysins in pathogenesis and diagnostics of cancers. Cancer Manag. Res. 2020 12 10949 10964 10.2147/CMAR.S235776 33154674
    [Google Scholar]
  25. Liu M. Huang L. Liu Y. Yang S. Rao Y. Chen X. Nie M. Liu X. Identification of the MMP family as therapeutic targets and prognostic biomarkers in the microenvironment of head and neck squamous cell carcinoma. J. Transl. Med. 2023 21 1 208 10.1186/s12967‑023‑04052‑3 36941602
    [Google Scholar]
  26. Swain N. Pathak J. Patel S. Hosalkar R.M. MMP-9. Encyclopedia of Signaling Molecules. Choi S. New York, NY Springer 2017 26 1 6 10.1007/978‑1‑4614‑6438‑9_102000‑1
    [Google Scholar]
  27. Wang Y. Jiao L. Qiang C. Chen C. Shen Z. Ding F. Lv L. Zhu T. Lu Y. Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed. Pharmacother. 2024 171 116116 10.1016/j.biopha.2023.116116 38181715
    [Google Scholar]
  28. Lee H.S. Kim W.J. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases. Int. J. Mol. Sci. 2022 23 18 10546 10.3390/ijms231810546 36142454
    [Google Scholar]
  29. Reinhard S.M. Razak K. Ethell I.M. A delicate balance: Role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front. Cell. Neurosci. 2015 9 280 10.3389/fncel.2015.00280 26283917
    [Google Scholar]
  30. Yabluchanskiy A. Ma Y. Iyer R.P. Hall M.E. Lindsey M.L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology 2013 28 6 391 403 10.1152/physiol.00029.2013 24186934
    [Google Scholar]
  31. Rashid Z.A. Bardaweel S.K. Novel matrix metalloproteinase-9 (MMP-9) inhibitors in cancer treatment. Int. J. Mol. Sci. 2023 24 15 12133 10.3390/ijms241512133 37569509
    [Google Scholar]
  32. Mondal S. Adhikari N. Banerjee S. Amin S.A. Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020 194 112260 112260 10.1016/j.ejmech.2020.112260 32224379
    [Google Scholar]
  33. Charzewski Ł. Krzyśko K.A. Lesyng B. Structural characterisation of inhibitory and non-inhibitory MMP-9–TIMP-1 complexes and implications for regulatory mechanisms of MMP-9. Sci. Rep. 2021 11 1 13376 10.1038/s41598‑021‑92881‑x 34183752
    [Google Scholar]
  34. Farina A. Mackay A. Gelatinase B/MMP-9 in tumour pathogenesis and progression. Cancers 2014 6 1 240 296 10.3390/cancers6010240 24473089
    [Google Scholar]
  35. Akers W.J. Xu B. Lee H. Sudlow G.P. Fields G.B. Achilefu S. Edwards W.B. Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjug. Chem. 2012 23 3 656 663 10.1021/bc300027y 22309692
    [Google Scholar]
  36. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors 2018 18 10 3249 10.3390/s18103249 30262739
    [Google Scholar]
  37. Gonzalez-Avila G. Sommer B. Mendoza-Posada D.A. Ramos C. Garcia-Hernandez A.A. Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit. Rev. Oncol. Hematol. 2019 137 57 83 10.1016/j.critrevonc.2019.02.010 31014516
    [Google Scholar]
  38. He L. Kang Q. Chan K.I. Zhang Y. Zhong Z. Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front. Immunol. 2023 13 1093990 10.3389/fimmu.2022.1093990 36776395
    [Google Scholar]
  39. Agrawal A. Romero-Perez D. Jacobsen J.A. Villarreal F.J. Cohen S.M. Zinc-binding groups modulate selective inhibition of MMPs. ChemMedChem 2008 3 5 812 820 10.1002/cmdc.200700290 18181119
    [Google Scholar]
  40. Cui N. Hu M. Khalil R. A. Biochemical and biological attributes of matrix metalloproteinases. Progress in Molecular Biology and Translational Science Elsevier 2017 1 73 10.1016/bs.pmbts.2017.02.005
    [Google Scholar]
  41. Luchian I. Goriuc A. Sandu D. Covasa M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int. J. Mol. Sci. 2022 23 3 1806 10.3390/ijms23031806 35163727
    [Google Scholar]
  42. Hadler-Olsen E. Fadnes B. Sylte I. Uhlin-Hansen L. Winberg J.O. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 2011 278 1 28 45 10.1111/j.1742‑4658.2010.07920.x 21087458
    [Google Scholar]
  43. Björklund M. Heikkilä P. Koivunen E. Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion. J. Biol. Chem. 2004 279 28 29589 29597 10.1074/jbc.M401601200 15123665
    [Google Scholar]
  44. Dayer C. Stamenkovic I. Recruitment of matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface by lysyl hydroxylase 3 (LH3) triggers transforming growth factor-β (TGF-β) activation and fibroblast differentiation. J. Biol. Chem. 2015 290 22 13763 13778 10.1074/jbc.M114.622274 25825495
    [Google Scholar]
  45. de Almeida L.G.N. Thode H. Eslambolchi Y. Chopra S. Young D. Gill S. Devel L. Dufour A. Matrix metalloproteinases: From molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 2022 74 3 714 770 10.1124/pharmrev.121.000349 35738680
    [Google Scholar]
  46. Dufour A. Sampson N.S. Zucker S. Cao J. Role of the hemopexin domain of matrix metalloproteinases in cell migration. J. Cell. Physiol. 2008 217 3 643 651 10.1002/jcp.21535 18636552
    [Google Scholar]
  47. Niland S. Riscanevo A.X. Eble J.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int. J. Mol. Sci. 2021 23 1 146 10.3390/ijms23010146 35008569
    [Google Scholar]
  48. Gong Y. Hart E. Shchurin A. Hoover-Plow J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J. Clin. Invest. 2008 118 9 3012 3024 10.1172/JCI32750 18677407
    [Google Scholar]
  49. Gounko N.V. Martens E. Opdenakker G. Rybakin V. Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B. Sci. Rep. 2016 6 1 29852 10.1038/srep29852 27432536
    [Google Scholar]
  50. Juric V. O’Sullivan C. Stefanutti E. Kovalenko M. Greenstein A. Barry-Hamilton V. Mikaelian I. Degenhardt J. Yue P. Smith V. Mikels-Vigdal A. MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors. PLoS One 2018 13 11 e0207255 10.1371/journal.pone.0207255 30500835
    [Google Scholar]
  51. Hidalgo M. Eckhardt S.G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst. 2001 93 3 178 193 10.1093/jnci/93.3.178 11158186
    [Google Scholar]
  52. Zucker S. Cao J. Chen W.T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 2000 19 56 6642 6650 10.1038/sj.onc.1204097 11426650
    [Google Scholar]
  53. Kohn E.C. Invasion and metastasis: Biology and clinical potential. Pharmacol. Ther. 1991 52 2 235 244 10.1016/0163‑7258(91)90011‑A 1818338
    [Google Scholar]
  54. Li Y. He J. Wang F. Wang X. Yang F. Zhao C. Feng C. Li T. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J. Surg. Oncol. 2020 18 1 181 10.1186/s12957‑020‑01958‑w 32698816
    [Google Scholar]
  55. Vandooren J. Van den Steen P.E. Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Crit. Rev. Biochem. Mol. Biol. 2013 48 3 222 272 10.3109/10409238.2013.770819 23547785
    [Google Scholar]
  56. Adair J.C. Charlie J. Dencoff J.E. Kaye J.A. Quinn J.F. Camicioli R.M. Stetler-Stevenson W.G. Rosenberg G.A. Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Stroke 2004 35 6 e159 e162 10.1161/01.STR.0000127420.10990.76 15105518
    [Google Scholar]
  57. Viallard C. Larrivée B. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis 2017 20 4 409 426 10.1007/s10456‑017‑9562‑9 28660302
    [Google Scholar]
  58. a Wang J.J. Lei K.F. Han F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci. 2018 22 12 3855 3864 29949179
    [Google Scholar]
  59. b Löffek S. Schilling O. Franzke C-W. Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J. 2011 38 1 191 208 10.1183/09031936.00146510 21177845
    [Google Scholar]
  60. Quintero-Fabián S. Arreola R. Becerril-Villanueva E. Torres-Romero J.C. Arana-Argáez V. Lara-Riegos J. Ramírez-Camacho M.A. Alvarez-Sánchez M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 2019 9 1370 10.3389/fonc.2019.01370 31921634
    [Google Scholar]
  61. Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  62. Appleby T.C. Greenstein A.E. Hung M. Liclican A. Velasquez M. Villaseñor A.G. Wang R. Wong M.H. Liu X. Papalia G.A. Schultz B.E. Sakowicz R. Smith V. Kwon H.J. Biochemical characterization and structure determination of a potent, selective antibody inhibitor of human MMP9. J. Biol. Chem. 2017 292 16 6810 6820 10.1074/jbc.M116.760579 28235803
    [Google Scholar]
  63. Marshall D.C. Lyman S.K. McCauley S. Kovalenko M. Spangler R. Liu C. Lee M. O’Sullivan C. Barry-Hamilton V. Ghermazien H. Mikels-Vigdal A. Garcia C.A. Jorgensen B. Velayo A.C. Wang R. Adamkewicz J.I. Smith V. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One 2015 10 5 e0127063 10.1371/journal.pone.0127063 25961845
    [Google Scholar]
  64. Ndinguri M. Bhowmick M. Tokmina-Roszyk D. Robichaud T. Fields G. Peptide-based selective inhibitors of matrix metalloproteinase-mediated activities. Molecules 2012 17 12 14230 14248 10.3390/molecules171214230 23201642
    [Google Scholar]
  65. Hayun H. Coban M. Bhagat A.K. Ozer E. Alfonta L. Caulfield T.R. Radisky E.S. Papo N. Utilizing genetic code expansion to modify N-TIMP2 specificity towards MMP-2, MMP-9, and MMP-14. Sci. Rep. 2023 13 1 5186 10.1038/s41598‑023‑32019‑3 36997589
    [Google Scholar]
  66. Ma Y. Sugiura R. Koike A. Ebina H. Sio S.O. Kuno T. Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 2011 6 7 e22421 10.1371/journal.pone.0022421 21811607
    [Google Scholar]
  67. Noh S. Jung J.J. Jung M. Kim K.H. Lee H.Y. Wang B. Cho J. Kim T.S. Jeung H.C. Rha S.Y. Body fluid MMP-2 as a putative biomarker in metastatic breast cancer. Oncol. Lett. 2012 3 3 699 703 10.3892/ol.2012.549 22740979
    [Google Scholar]
  68. Landes V. Javed A. Jao T. Qin Q. Nayak K. Improved velocity-selective labeling pulses for myocardial ASL. Magn. Reson. Med. 2020 84 4 1909 1918 10.1002/mrm.28253 32173909
    [Google Scholar]
  69. Li O. Yi W. Yang P. Guo C. Peng C. Relationship between serum MMP-9 level and prognosis after radical resection for Hilar cholangiocarcinoma patients. Acta Cir. Bras. 2019 34 4 e201900409 10.1590/s0102‑865020190040000009 31038586
    [Google Scholar]
  70. Dobra G. Gyukity-Sebestyén E. Bukva M. Harmati M. Nagy V. Szabó Z. Pankotai T. Klekner Á. Buzás K. MMP-9 as prognostic marker for brain tumours: A comparative study on serum-derived small extracellular vesicles. Cancers 2023 15 3 712 10.3390/cancers15030712 36765669
    [Google Scholar]
  71. Castellano G. Malaponte G. Mazzarino M.C. Figini M. Marchese F. Gangemi P. Travali S. Stivala F. Canevari S. Libra M. Activation of the osteopontin/matrix metalloproteinase-9 pathway correlates with prostate cancer progression. Clin. Cancer Res. 2008 14 22 7470 7480 10.1158/1078‑0432.CCR‑08‑0870 19010864
    [Google Scholar]
  72. Kwon M.J. Matrix metalloproteinases as therapeutic targets in breast cancer. Front. Oncol. 2023 12 1108695 10.3389/fonc.2022.1108695 36741729
    [Google Scholar]
  73. Jiang H. Li H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis. BMC Cancer 2021 21 1 149 10.1186/s12885‑021‑07860‑2 33568081
    [Google Scholar]
  74. Iizasa T. Fujisawa T. Suzuki M. Motohashi S. Yasufuku K. Yasukawa T. Baba M. Shiba M. Elevated levels of circulating plasma matrix metalloproteinase 9 in non-small cell lung cancer patients. Clin. Cancer Res. 1999 5 1 149 153 9918213
    [Google Scholar]
  75. Benitha G. Ramani P. Jayaraman S. R A. Ramalingam K. Krishnan M. Evaluation of serum levels of matrix metalloproteinase-9 (MMP-9) in oral squamous cell carcinoma and its clinicopathological correlation. Cureus 2023 15 2 e34954 10.7759/cureus.34954 36938194
    [Google Scholar]
  76. Gialeli C. Theocharis A.D. Karamanos N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011 278 1 16 27 10.1111/j.1742‑4658.2010.07919.x 21087457
    [Google Scholar]
  77. Barillari G. The impact of matrix metalloproteinase-9 on the sequential steps of the metastatic process. Int. J. Mol. Sci. 2020 21 12 4526 10.3390/ijms21124526 32630531
    [Google Scholar]
  78. Leifler K.S. Svensson S. Abrahamsson A. Bendrik C. Robertson J. Gauldie J. Olsson A.K. Dabrosin C. Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J. Immunol. 2013 190 8 4420 4430 10.4049/jimmunol.1202610 23509357
    [Google Scholar]
  79. Knight B.E. Kozlowski N. Havelin J. King T. Crocker S.J. Young E.E. Baumbauer K.M. TIMP-1 attenuates the development of inflammatory pain through MMP-dependent and receptor-mediated cell signaling mechanisms. Front. Mol. Neurosci. 2019 12 220 10.3389/fnmol.2019.00220 31616247
    [Google Scholar]
  80. Fields G.B. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells 2019 8 9 984 10.3390/cells8090984 31461880
    [Google Scholar]
  81. Yano H. Nishimiya D. Kawaguchi Y. Tamura M. Hashimoto R. Discovery of potent and specific inhibitors targeting the active site of MMP-9 from the engineered SPINK2 library. PLoS One 2020 15 12 e0244656 10.1371/journal.pone.0244656 33373399
    [Google Scholar]
  82. Jain A. Atale N. Kohli S. Bhattacharya S. Sharma M. Rani V. An assessment of norepinephrine mediated hypertrophy to apoptosis transition in cardiac cells: A signal for cell death. Chem. Biol. Interact. 2015 225 54 62 10.1016/j.cbi.2014.11.017 25437044
    [Google Scholar]
  83. Jindal D. Rani V. in silico studies of phytoconstituents from Piper longum and Ocimum sanctum as ACE2 and TMRSS2 inhibitors: Strategies to combat covid-19. Appl. Biochem. Biotechnol. 2023 195 4 2618 2635 10.1007/s12010‑022‑03827‑6 35157239
    [Google Scholar]
  84. Jain A. Rani V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci. 2018 205 97 106 10.1016/j.lfs.2018.05.021 29752960
    [Google Scholar]
  85. Sarhadi V.K. Armengol G. Molecular biomarkers in cancer. Biomolecules 2022 12 8 1021 10.3390/biom12081021 35892331
    [Google Scholar]
  86. Costantini S. Budillon A. New prognostic and predictive markers in cancer progression. Int. J. Mol. Sci. 2020 21 22 8667 10.3390/ijms21228667 33212936
    [Google Scholar]
  87. Califf R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018 243 3 213 221 10.1177/1535370217750088 29405771
    [Google Scholar]
  88. Mehner C. Hockla A. Miller E. Ran S. Radisky D.C. Radisky E.S. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 2014 5 9 2736 2749 10.18632/oncotarget.1932 24811362
    [Google Scholar]
  89. Yu X. Huang J. Wu S. Huang Y. Shan Y. Lu C. Copy number variations of MMP-9 are prognostic biomarkers for hepatocellular carcinoma. Transl. Cancer Res. 2020 9 2 698 706 10.21037/tcr.2019.11.52 35117415
    [Google Scholar]
  90. Jin H. Liu T. Sun D. Target-induced hot spot construction for sensitive and selective surface-enhanced Raman scattering detection of matrix metalloproteinase MMP-9. Mikrochim. Acta 2024 191 2 105 10.1007/s00604‑024‑06183‑w 38240894
    [Google Scholar]
  91. Otero-Estévez O. Chiara L.D. Rodríguez-Girondo M. Rodríguez-Berrocal F.J. Cubiella J. Castro I. Hernández V. Martínez-Zorzano V.S. Serum matrix metalloproteinase-9 in colorectal cancer family-risk population screening. Sci. Rep. 2015 5 1 13030 10.1038/srep13030 26264519
    [Google Scholar]
  92. Kimman M.L. Voogd A.C. Dirksen C.D. Falger P. Hupperets P. Keymeulen K. Hebly M. Dehing C. Lambin P. Boersma L.J. Improving the quality and efficiency of follow-up after curative treatment for breast cancer – rationale and study design of the MaCare trial. BMC Cancer 2007 7 1 1 10.1186/1471‑2407‑7‑1 17199887
    [Google Scholar]
  93. Peng L. Zhang X. Zhang M.L. Jiang T. Zhang P.J. Diagnostic value of matrix metalloproteinases 2, 7 and 9 in urine for early detection of colorectal cancer. World J. Gastrointest. Surg. 2023 15 5 931 939 10.4240/wjgs.v15.i5.931 37342853
    [Google Scholar]
  94. Zhang S. Editorial: Current development on wearable biosensors towards biomedical applications. Front. Bioeng. Biotechnol. 2023 11 1264337 10.3389/fbioe.2023.1264337 37614631
    [Google Scholar]
  95. Smith A.A. Li R. Tse Z.T.H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023 13 1 4998 10.1038/s41598‑022‑26951‑z 36973262
    [Google Scholar]
  96. Bohunicky B. Mousa S.A. Biosensors: The new wave in cancer diagnosis. Nanotechnol. Sci. Appl. 2010 4 1 10 10.2147/NSA.S13465 24198482
    [Google Scholar]
  97. Iqbal M.J. Javed Z. Herrera-Bravo J. Sadia H. Anum F. Raza S. Tahir A. Shahwani M.N. Sharifi-Rad J. Calina D. Cho W.C. Biosensing chips for cancer diagnosis and treatment: A new wave towards clinical innovation. Cancer Cell Int. 2022 22 1 354 10.1186/s12935‑022‑02777‑7 36376956
    [Google Scholar]
  98. Alekhmimi N. Raddadi Z. Alabdulwahed A. Eissa S. Cialla-May D. Popp J. Al-Kattan K. Zourob M. Paper-based biosensor for the detection of sepsis using MMP-9 biomarker in FIP mice model. Biosensors 2023 13 8 804 10.3390/bios13080804 37622890
    [Google Scholar]
  99. Martins B.R. Barbosa Y.O. Andrade C.M.R. Pereira L.Q. Simão G.F. de Oliveira C.J. Correia D. Oliveira R.T.S. Jr da Silva M.V. Silva A.C.A. Dantas N.O. Rodrigues V. Jr Muñoz R.A.A. Alves-Balvedi R.P. Development of an electrochemical immunosensor for specific detection of visceral leishmaniasis using gold-modified screen-printed carbon electrodes. Biosensors 2020 10 8 81 10.3390/bios10080081 32717832
    [Google Scholar]
  100. Valero-Calvo D. Toyos-Rodriguez C. García-Alonso F.J. de la Escosura-Muñiz A. Electrochemical monitoring of enzymatic cleavage in nanochannels with nanoparticle-based enhancement: Determination of MMP-9 biomarker. Mikrochim. Acta 2023 190 7 257 10.1007/s00604‑023‑05835‑7 37303001
    [Google Scholar]
  101. Meng S. Wang L. Ji X. Yu J. Ma X. Zhang J. Zhao W. Ji H. Li M. Feng H. Facile gold-nanoparticle boosted graphene sensor fabrication enhanced biochemical signal detection. Nanomaterials 2022 12 8 1327 10.3390/nano12081327 35458034
    [Google Scholar]
  102. Baruah A. Newar R. Das S. Kalita N. Nath M. Ghosh P. Chinnam S. Sarma H. Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. Discov. Nano 2024 19 1 103 10.1186/s11671‑024‑04032‑6 38884869
    [Google Scholar]
  103. Nguyen H.T.N. Duhon B.H. Kuo H.C. Fisher M. Brickey O.M. Zhang L. Otero J.J. Prevedello D.M. Adunka O.F. Ren Y. Matrix metalloproteinase 9: An emerging biomarker for classification of adherent vestibular schwannoma. Neurooncol. Adv. 2024 6 1 vdae058 10.1093/noajnl/vdae058 38887507
    [Google Scholar]
  104. Yousef E.M. Tahir M.R. St-Pierre Y. Gaboury L.A. MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer 2014 14 1 609 10.1186/1471‑2407‑14‑609 25151367
    [Google Scholar]
  105. Adhipandito C.F. Ludji D.P.K.S. Aprilianto E. Jenie R.I. Al-Najjar B. Hariono M. Matrix metalloproteinase9 as the protein target in anti-breast cancer drug discovery: An approach by targeting hemopexin domain. Future J. Pharm. Sci. 2019 5 1 1 10.1186/s43094‑019‑0001‑1
    [Google Scholar]
  106. Mudatsir L.I. Labeda I. Uwuratuw J.A. Hendarto J. Warsinggih Lusikooy R.E. Mappincara Sampetoding S. Kusuma M.I. Syarifuddin E. Arsyad A. Faruk M. Relationship between metalloproteinase-9 (MMP-9) expression and clinicopathology in colorectal cancer: A cross-sectional study. Ann. Med. Surg. 2023 85 9 4277 4282 10.1097/MS9.0000000000000892 37663709
    [Google Scholar]
  107. Wang Y. Wei Y. Huang J. Li X. You D. Wang L. Ma X. Prognostic value of matrix metalloproteinase-2 protein and matrix metalloproteinase-9 protein in colorectal cancer: A meta-analysis. BMC Cancer 2024 24 1 1065 10.1186/s12885‑024‑12775‑9 39210344
    [Google Scholar]
  108. Bhalla N. Jolly P. Formisano N. Estrela P. Introduction to biosensors. Essays Biochem. 2016 60 1 1 8 10.1042/EBC20150001 27365030
    [Google Scholar]
  109. Fischer T. Riedl R. Inhibitory antibodies designed for matrix metalloproteinase modulation. Molecules 2019 24 12 2265 10.3390/molecules24122265 31216704
    [Google Scholar]
  110. Katey B. Voiculescu I. Penkova A. N. Untaroiu A. A review of biosensors and their applications. ASME Open J Eng 2023 Jan 2 020201 10.1115/1.4063500
    [Google Scholar]
  111. Naresh V. Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021 21 4 1109 10.3390/s21041109 33562639
    [Google Scholar]
  112. Fudala R. Ranjan A.P. Mukerjee A. Vishwanatha J.K. Gryczynski Z. Borejdo J. Sarkar P. Gryczynski I. Fluorescence detection of MMP-9. I. MMP-9 selectively cleaves Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys peptide. Curr. Pharm. Biotechnol. 2011 12 5 834 838 10.2174/138920111795470967 21446907
    [Google Scholar]
  113. Lee JaeWoong Yun Jun Yeon Lee Won Cheol Choi Seongwook Lim JaeHeung Jeong Hyeri Shin Dong-Sik Park Young June A reference electrode-free electrochemical biosensor for detecting MMP-9 using a concentric electrode device. Sens Actuators B Chem 2017 240 735 741 10.1016/j.snb.2016.09.026
    [Google Scholar]
  114. Zhou J. Electrochemical biosensors for the detection of matrix metalloproteinases. Int J Electrochem Sci 2022 17 10 221034 10.20964/2022.10.17
    [Google Scholar]
  115. Stawarski M. Rutkowska-Wlodarczyk I. Zeug A. Bijata M. Madej H. Kaczmarek L. Wlodarczyk J. Genetically encoded FRET-based biosensor for imaging MMP-9 activity. Biomaterials 2014 35 5 1402 1410 10.1016/j.biomaterials.2013.11.033 24290700
    [Google Scholar]
  116. Biela A. Watkinson M. Meier U.C. Baker D. Giovannoni G. Becer C.R. Krause S. Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosens. Bioelectron. 2015 68 660 667 10.1016/j.bios.2015.01.060 25660510
    [Google Scholar]
  117. Verma A.K. Noumani A. Yadav A.K. Solanki P.R. FRET based biosensor: Principle applications recent advances and challenges. Diagnostics 2023 13 8 1375 10.3390/diagnostics13081375 37189476
    [Google Scholar]
  118. Huang J. Wei F. Cui Y. Hou L. Lin T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Advances 2022 12 48 31369 31379 10.1039/D2RA04989A 36349017
    [Google Scholar]
  119. Ruiz-Vega G. García-Robaina A. Ben Ismail M. Pasamar H. García-Berrocoso T. Montaner J. Zourob M. Othmane A. del Campo F.J. Baldrich E. Detection of plasma MMP-9 within minutes. Unveiling some of the clues to develop fast and simple electrochemical magneto-immunosensors. Biosens. Bioelectron. 2018 115 45 52 10.1016/j.bios.2018.05.020 29800830
    [Google Scholar]
  120. Jarić S. Schobesberger S. Ertl P. Knežević N.Ž. Bobrinetskiy I. Electrochemical detection of MMP-2 using graphene-based aptasensor. Proceedings. 2024 97 1 57 10.3390/proceedings2024097057
    [Google Scholar]
  121. Scarano S. Dausse E. Crispo F. Toulmé J.J. Minunni M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal. Chim. Acta 2015 897 1 9 10.1016/j.aca.2015.07.009 26514999
    [Google Scholar]
  122. Kim J. Yu A.M. Kubelick K.P. Emelianov S.Y. Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9. Photoacoustics 2022 25 100307 10.1016/j.pacs.2021.100307 34703762
    [Google Scholar]
  123. Mohseni S. Moghadam T.T. Dabirmanesh B. Jabbari S. Khajeh K. Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip. Biosens. Bioelectron. 2016 81 510 516 10.1016/j.bios.2016.03.038 27016912
    [Google Scholar]
  124. Gruson D. Cobbaert C. Dabla P.K. Stankovic S. Homsak E. Kotani K. Samir Assaad R. Nichols J.H. Gouget B. Validation and verification framework and data integration of biosensors and in vitro diagnostic devices: A position statement of the IFCC committee on mobile health and bioengineering in laboratory medicine (C-MBHLM) and the IFCC scientific division. Clin. Chem. Lab. Med. 2024 62 10 1904 1917 10.1515/cclm‑2023‑1455 38379410
    [Google Scholar]
  125. Liu G. Grand challenges in biosensors and biomolecular electronics. Front. Bioeng. Biotechnol. 2021 9 707615 10.3389/fbioe.2021.707615 34422782
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501371763250628092643
Loading
/content/journals/cdt/10.2174/0113894501371763250628092643
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: extracellular matrix ; biomarker ; biomaterial ; sensors ; cancer ; diagnostics ; Matrix metalloproteinase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test