Skip to content
2000
Volume 26, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Matrix metalloproteinase-9, also known as MMP-9, gelatinase B, or 92 kDa type IV collagenase, is an enzyme that belongs to the matrix metalloproteinase (MMP) family. It is involved in the remodeling of the extracellular matrix in various physiological and pathological processes. MMPs are expressed in low, tightly regulated concentrations; their overexpression or dysregulation can lead to diseases, including cancer. MMP-9 is increasingly recognized as a significant drug target in cancer therapy due to its involvement in tumorigenesis, including processes like cell migration, angiogenesis, and pro-apoptotic and anti-apoptotic activities. Despite MMP-9's significance as a cancer target, developing effective inhibitors remains challenging due to MMP structural similarities. Utilizing MMP-9 as a cancer biomarker could advance cancer diagnosis, prognosis, disease monitoring, recurrence prediction, and other procedures. Biosensors are emerging as pivotal tools in cancer diagnosis and treatment, leveraging their ability to detect specific biomarkers associated with various cancers. Recent advancements have led to the development of both cleavage-based and non-cleavage-based biosensors that enable rapid and sensitive analysis at clinically relevant concentrations of biomarkers while allowing specificity and low detection limits, enhancing point-of-care diagnostics. The cleavage-based biosensors leverage the enzymatic activity of MMP-9, utilizing substrates that are specifically cleaved by MMP-9, while the non-cleavage-based biosensors employ affinity methods, such as antibodies and aptamers for detection. The present review aims to evaluate the role of MMP-9 as a significant biomarker in cancer and its detection through innovative biosensor technologies, while exploring its involvement in various cancer-related processes. This review discusses the significance of MMP-9 in cancer progression, highlighting clinical trials that assess MMP-9 inhibitors as potential therapeutic agents to halt metastatic spread. Furthermore, MMP-9 is detected biosensors, and insights into the translational potential of MMP-9 both as a biomarker for early cancer detection and a viable target for therapeutic intervention are provided, ultimately contributing to improved patient outcomes in oncology.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501371763250628092643
2025-07-04
2025-12-08
Loading full text...

Full text loading...

References

  1. BailarJ.C.III GornikH.L. Cancer undefeated.N. Engl. J. Med.1997336221569157410.1056/NEJM1997052933622069164814
    [Google Scholar]
  2. SiegelRL GiaquintoAN JemalA Cancer statistics.CA Cancer J Clin202474420310.3322/caac.21830
    [Google Scholar]
  3. RoyR. SinghS. MisraS. Advancements in cancer immunotherapies.Vaccines20221115910.3390/vaccines1101005936679904
    [Google Scholar]
  4. GambardellaV. TarazonaN. CejalvoJ.M. LombardiP. HuertaM. RosellóS. FleitasT. RodaD. CervantesA. Personalized medicine: Recent progress in cancer therapy.Cancers2020124100910.3390/cancers1204100932325878
    [Google Scholar]
  5. HoebenA. JoostenE.A.J. van den Beuken-van EverdingenM.H.J. Personalized medicine: Recent progress in cancer therapy.Cancers202113224210.3390/cancers1302024233440729
    [Google Scholar]
  6. ArmstrongG.T. LiuQ. YasuiY. NegliaJ.P. LeisenringW. RobisonL.L. MertensA.C. Late mortality among 5-year survivors of childhood cancer: A summary from the Childhood Cancer Survivor Study.J. Clin. Oncol.200927142328233810.1200/JCO.2008.21.142519332714
    [Google Scholar]
  7. HoltedahlK. Challenges in early diagnosis of cancer: The fast track.Scand. J. Prim. Health Care202038325125210.1080/02813432.2020.179441532791936
    [Google Scholar]
  8. YueB. Biology of the extracellular matrix: An overview.J. Glaucoma2014238Suppl. 1S20S2310.1097/IJG.000000000000010825275899
    [Google Scholar]
  9. SalaM RosM SaltelF. A complex and evolutive character: Two face aspects of ECM in tumor progression.Front Oncol.162010162010.3389/fonc.2020.0162032984031
    [Google Scholar]
  10. HuangJ. ZhangL. WanD. ZhouL. ZhengS. LinS. QiaoY. Extracellular matrix and its therapeutic potential for cancer treatment.Signal Transduct. Target. Ther.20216115310.1038/s41392‑021‑00544‑033888679
    [Google Scholar]
  11. LuP. TakaiK. WeaverV.M. WerbZ. Extracellular matrix degradation and remodeling in development and disease.Cold Spring Harb. Perspect. Biol.2011312a005058a00505810.1101/cshperspect.a00505821917992
    [Google Scholar]
  12. LoudJ.T. MurphyJ. Cancer screening and early detection in the 21 st century.Semin. Oncol. Nurs.201733212112810.1016/j.soncn.2017.02.00228343835
    [Google Scholar]
  13. PulumatiA. PulumatiA. DwarakanathB.S. VermaA. PapineniR.V.L. Technological advancements in cancer diagnostics: Improvements and limitations.Cancer Rep.202362e176410.1002/cnr2.176436607830
    [Google Scholar]
  14. SchiffmanJ.D. FisherP.G. GibbsP. Early detection of cancer: Past, present, and future.Am. Soc. Clin. Oncol. Educ. Book201535576510.14694/EdBook_AM.2015.35.5725993143
    [Google Scholar]
  15. VittoneJ. GillD. GoldsmithA. KleinE.A. KarlitzJ.J. A multi- cancer early detection blood test using machine learning detects early-stage cancers lacking USPSTF-recommended screening.NPJ Precis. Oncol.2024819110.1038/s41698‑024‑00568‑z38632333
    [Google Scholar]
  16. TappiaP.S. RamjiawanB. Biomarkers for early detection of cancer: Molecular aspects.Int. J. Mol. Sci.2023246527210.3390/ijms2406527236982344
    [Google Scholar]
  17. ZhouY. TaoL. QiuJ. XuJ. YangX. ZhangY. TianX. GuanX. CenX. ZhaoY. Tumor biomarkers for diagnosis, prognosis and targeted therapy.Signal Transduct. Target. Ther.20249113210.1038/s41392‑024‑01823‑238763973
    [Google Scholar]
  18. HenryN.L. HayesD.F. Cancer biomarkers.Mol. Oncol.20126214014610.1016/j.molonc.2012.01.01022356776
    [Google Scholar]
  19. Cabral-PachecoG.A. Garza-VelozI. Castruita-De la RosaC. Ramirez-AcuñaJ.M. Perez-RomeroB.A. Guerrero-RodriguezJ.F. Martinez-AvilaN. Martinez-FierroM.L. The roles of matrix metalloproteinases and their inhibitors in human diseases.Int. J. Mol. Sci.20202124973910.3390/ijms2124973933419373
    [Google Scholar]
  20. VisseR. NagaseH. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry.Circ. Res.200392882783910.1161/01.RES.0000070112.80711.3D12730128
    [Google Scholar]
  21. NassaM. AnandP. JainA. ChhabraA. JaiswalA. MalhotraU. RaniV. Analysis of human collagen sequences.Bioinformation201281263310.6026/9732063000802622359431
    [Google Scholar]
  22. HayamiT. KapilaY.L. KapilaS. MMP-1 (collagenase-1) and MMP-13 (collagenase-3) differentially regulate markers of osteoblastic differentiation in osteogenic cells.Matrix Biol.200827868269210.1016/j.matbio.2008.07.00518755271
    [Google Scholar]
  23. ForsythP.A. WongH. LaingT.D. RewcastleN.B. MorrisD.G. MuzikH. LecoK.J. JohnstonR.N. BrasherP.M.A. SutherlandG. EdwardsD.R. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas.Br. J. Cancer19997911-121828183510.1038/sj.bjc.699029110206300
    [Google Scholar]
  24. PiskórB.M. PrzylipiakA. DąbrowskaE. NiczyporukM. ŁawickiS. Matrilysins and stromelysins in pathogenesis and diagnostics of cancers.Cancer Manag. Res.202012109491096410.2147/CMAR.S23577633154674
    [Google Scholar]
  25. LiuM. HuangL. LiuY. YangS. RaoY. ChenX. NieM. LiuX. Identification of the MMP family as therapeutic targets and prognostic biomarkers in the microenvironment of head and neck squamous cell carcinoma.J. Transl. Med.202321120810.1186/s12967‑023‑04052‑336941602
    [Google Scholar]
  26. SwainN. PathakJ. PatelS. HosalkarR.M. MMP-9.Encyclopedia of Signaling Molecules. ChoiS. New York, NYSpringer2017261610.1007/978‑1‑4614‑6438‑9_102000‑1
    [Google Scholar]
  27. WangY. JiaoL. QiangC. ChenC. ShenZ. DingF. LvL. ZhuT. LuY. CuiX. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms.Biomed. Pharmacother.202417111611610.1016/j.biopha.2023.11611638181715
    [Google Scholar]
  28. LeeH.S. KimW.J. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases.Int. J. Mol. Sci.202223181054610.3390/ijms23181054636142454
    [Google Scholar]
  29. ReinhardS.M. RazakK. EthellI.M. A delicate balance: Role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders.Front. Cell. Neurosci.2015928010.3389/fncel.2015.0028026283917
    [Google Scholar]
  30. YabluchanskiyA. MaY. IyerR.P. HallM.E. LindseyM.L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease.Physiology201328639140310.1152/physiol.00029.201324186934
    [Google Scholar]
  31. RashidZ.A. BardaweelS.K. Novel matrix metalloproteinase-9 (MMP-9) inhibitors in cancer treatment.Int. J. Mol. Sci.202324151213310.3390/ijms24151213337569509
    [Google Scholar]
  32. MondalS. AdhikariN. BanerjeeS. AminS.A. JhaT. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview.Eur. J. Med. Chem.202019411226011226010.1016/j.ejmech.2020.11226032224379
    [Google Scholar]
  33. CharzewskiŁ. KrzyśkoK.A. LesyngB. Structural characterisation of inhibitory and non-inhibitory MMP-9–TIMP-1 complexes and implications for regulatory mechanisms of MMP-9.Sci. Rep.20211111337610.1038/s41598‑021‑92881‑x34183752
    [Google Scholar]
  34. FarinaA. MackayA. Gelatinase B/MMP-9 in tumour pathogenesis and progression.Cancers20146124029610.3390/cancers601024024473089
    [Google Scholar]
  35. AkersW.J. XuB. LeeH. SudlowG.P. FieldsG.B. AchilefuS. EdwardsW.B. Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe.Bioconjug. Chem.201223365666310.1021/bc300027y22309692
    [Google Scholar]
  36. HuangH. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances.Sensors20181810324910.3390/s1810324930262739
    [Google Scholar]
  37. Gonzalez-AvilaG. SommerB. Mendoza-PosadaD.A. RamosC. Garcia-HernandezA.A. Falfan-ValenciaR. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer.Crit. Rev. Oncol. Hematol.2019137578310.1016/j.critrevonc.2019.02.01031014516
    [Google Scholar]
  38. HeL. KangQ. ChanK.I. ZhangY. ZhongZ. TanW. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer.Front. Immunol.202313109399010.3389/fimmu.2022.109399036776395
    [Google Scholar]
  39. AgrawalA. Romero-PerezD. JacobsenJ.A. VillarrealF.J. CohenS.M. Zinc-binding groups modulate selective inhibition of MMPs.ChemMedChem20083581282010.1002/cmdc.20070029018181119
    [Google Scholar]
  40. CuiN. HuM. KhalilR. A. Biochemical and biological attributes of matrix metalloproteinases.Progress in Molecular Biology and Translational ScienceElsevier201717310.1016/bs.pmbts.2017.02.005
    [Google Scholar]
  41. LuchianI. GoriucA. SanduD. CovasaM. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes.Int. J. Mol. Sci.2022233180610.3390/ijms2303180635163727
    [Google Scholar]
  42. Hadler-OlsenE. FadnesB. SylteI. Uhlin-HansenL. WinbergJ.O. Regulation of matrix metalloproteinase activity in health and disease.FEBS J.20112781284510.1111/j.1742‑4658.2010.07920.x21087458
    [Google Scholar]
  43. BjörklundM. HeikkiläP. KoivunenE. Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion.J. Biol. Chem.200427928295892959710.1074/jbc.M40160120015123665
    [Google Scholar]
  44. DayerC. StamenkovicI. Recruitment of matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface by lysyl hydroxylase 3 (LH3) triggers transforming growth factor-β (TGF-β) activation and fibroblast differentiation.J. Biol. Chem.201529022137631377810.1074/jbc.M114.62227425825495
    [Google Scholar]
  45. de AlmeidaL.G.N. ThodeH. EslambolchiY. ChopraS. YoungD. GillS. DevelL. DufourA. Matrix metalloproteinases: From molecular mechanisms to physiology, pathophysiology, and pharmacology.Pharmacol. Rev.202274371477010.1124/pharmrev.121.00034935738680
    [Google Scholar]
  46. DufourA. SampsonN.S. ZuckerS. CaoJ. Role of the hemopexin domain of matrix metalloproteinases in cell migration.J. Cell. Physiol.2008217364365110.1002/jcp.2153518636552
    [Google Scholar]
  47. NilandS. RiscanevoA.X. EbleJ.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression.Int. J. Mol. Sci.202123114610.3390/ijms2301014635008569
    [Google Scholar]
  48. GongY. HartE. ShchurinA. Hoover-PlowJ. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice.J. Clin. Invest.200811893012302410.1172/JCI3275018677407
    [Google Scholar]
  49. GounkoN.V. MartensE. OpdenakkerG. RybakinV. Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B.Sci. Rep.2016612985210.1038/srep2985227432536
    [Google Scholar]
  50. JuricV. O’SullivanC. StefanuttiE. KovalenkoM. GreensteinA. Barry-HamiltonV. MikaelianI. DegenhardtJ. YueP. SmithV. Mikels-VigdalA. MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors.PLoS One20181311e020725510.1371/journal.pone.020725530500835
    [Google Scholar]
  51. HidalgoM. EckhardtS.G. Development of matrix metalloproteinase inhibitors in cancer therapy.J. Natl. Cancer Inst.200193317819310.1093/jnci/93.3.17811158186
    [Google Scholar]
  52. ZuckerS. CaoJ. ChenW.T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment.Oncogene200019566642665010.1038/sj.onc.120409711426650
    [Google Scholar]
  53. KohnE.C. Invasion and metastasis: Biology and clinical potential.Pharmacol. Ther.199152223524410.1016/0163‑7258(91)90011‑A1818338
    [Google Scholar]
  54. LiY. HeJ. WangF. WangX. YangF. ZhaoC. FengC. LiT. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer.World J. Surg. Oncol.202018118110.1186/s12957‑020‑01958‑w32698816
    [Google Scholar]
  55. VandoorenJ. Van den SteenP.E. OpdenakkerG. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade.Crit. Rev. Biochem. Mol. Biol.201348322227210.3109/10409238.2013.77081923547785
    [Google Scholar]
  56. AdairJ.C. CharlieJ. DencoffJ.E. KayeJ.A. QuinnJ.F. CamicioliR.M. Stetler-StevensonW.G. RosenbergG.A. Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease.Stroke2004356e159e16210.1161/01.STR.0000127420.10990.7615105518
    [Google Scholar]
  57. ViallardC. LarrivéeB. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets.Angiogenesis201720440942610.1007/s10456‑017‑9562‑928660302
    [Google Scholar]
  58. a WangJ.J. LeiK.F. HanF. Tumor microenvironment: Recent advances in various cancer treatments.Eur. Rev. Med. Pharmacol. Sci.201822123855386429949179
    [Google Scholar]
  59. b LöffekS. SchillingO. FranzkeC-W. Biological role of matrix metalloproteinases: A critical balance.Eur. Respir. J.201138119120810.1183/09031936.0014651021177845
    [Google Scholar]
  60. Quintero-FabiánS. ArreolaR. Becerril-VillanuevaE. Torres-RomeroJ.C. Arana-ArgáezV. Lara-RiegosJ. Ramírez-CamachoM.A. Alvarez-SánchezM.E. Role of matrix metalloproteinases in angiogenesis and cancer.Front. Oncol.20199137010.3389/fonc.2019.0137031921634
    [Google Scholar]
  61. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/0192623070132033717562483
    [Google Scholar]
  62. ApplebyT.C. GreensteinA.E. HungM. LiclicanA. VelasquezM. VillaseñorA.G. WangR. WongM.H. LiuX. PapaliaG.A. SchultzB.E. SakowiczR. SmithV. KwonH.J. Biochemical characterization and structure determination of a potent, selective antibody inhibitor of human MMP9.J. Biol. Chem.2017292166810682010.1074/jbc.M116.76057928235803
    [Google Scholar]
  63. MarshallD.C. LymanS.K. McCauleyS. KovalenkoM. SpanglerR. LiuC. LeeM. O’SullivanC. Barry-HamiltonV. GhermazienH. Mikels-VigdalA. GarciaC.A. JorgensenB. VelayoA.C. WangR. AdamkewiczJ.I. SmithV. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer.PLoS One2015105e012706310.1371/journal.pone.012706325961845
    [Google Scholar]
  64. NdinguriM. BhowmickM. Tokmina-RoszykD. RobichaudT. FieldsG. Peptide-based selective inhibitors of matrix metalloproteinase-mediated activities.Molecules20121712142301424810.3390/molecules17121423023201642
    [Google Scholar]
  65. HayunH. CobanM. BhagatA.K. OzerE. AlfontaL. CaulfieldT.R. RadiskyE.S. PapoN. Utilizing genetic code expansion to modify N-TIMP2 specificity towards MMP-2, MMP-9, and MMP-14.Sci. Rep.2023131518610.1038/s41598‑023‑32019‑336997589
    [Google Scholar]
  66. MaY. SugiuraR. KoikeA. EbinaH. SioS.O. KunoT. Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast.PLoS One201167e2242110.1371/journal.pone.002242121811607
    [Google Scholar]
  67. NohS. JungJ.J. JungM. KimK.H. LeeH.Y. WangB. ChoJ. KimT.S. JeungH.C. RhaS.Y. Body fluid MMP-2 as a putative biomarker in metastatic breast cancer.Oncol. Lett.20123369970310.3892/ol.2012.54922740979
    [Google Scholar]
  68. LandesV. JavedA. JaoT. QinQ. NayakK. Improved velocity-selective labeling pulses for myocardial ASL.Magn. Reson. Med.20208441909191810.1002/mrm.2825332173909
    [Google Scholar]
  69. LiO. YiW. YangP. GuoC. PengC. Relationship between serum MMP-9 level and prognosis after radical resection for Hilar cholangiocarcinoma patients.Acta Cir. Bras.2019344e20190040910.1590/s0102‑86502019004000000931038586
    [Google Scholar]
  70. DobraG. Gyukity-SebestyénE. BukvaM. HarmatiM. NagyV. SzabóZ. PankotaiT. KleknerÁ. BuzásK. MMP-9 as prognostic marker for brain tumours: A comparative study on serum-derived small extracellular vesicles.Cancers202315371210.3390/cancers1503071236765669
    [Google Scholar]
  71. CastellanoG. MalaponteG. MazzarinoM.C. FiginiM. MarcheseF. GangemiP. TravaliS. StivalaF. CanevariS. LibraM. Activation of the osteopontin/matrix metalloproteinase-9 pathway correlates with prostate cancer progression.Clin. Cancer Res.200814227470748010.1158/1078‑0432.CCR‑08‑087019010864
    [Google Scholar]
  72. KwonM.J. Matrix metalloproteinases as therapeutic targets in breast cancer.Front. Oncol.202312110869510.3389/fonc.2022.110869536741729
    [Google Scholar]
  73. JiangH. LiH. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis.BMC Cancer202121114910.1186/s12885‑021‑07860‑233568081
    [Google Scholar]
  74. IizasaT. FujisawaT. SuzukiM. MotohashiS. YasufukuK. YasukawaT. BabaM. ShibaM. Elevated levels of circulating plasma matrix metalloproteinase 9 in non-small cell lung cancer patients.Clin. Cancer Res.1999511491539918213
    [Google Scholar]
  75. BenithaG. RamaniP. JayaramanS. RA. RamalingamK. KrishnanM. Evaluation of serum levels of matrix metalloproteinase-9 (MMP-9) in oral squamous cell carcinoma and its clinicopathological correlation.Cureus2023152e3495410.7759/cureus.3495436938194
    [Google Scholar]
  76. GialeliC. TheocharisA.D. KaramanosN.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting.FEBS J.20112781162710.1111/j.1742‑4658.2010.07919.x21087457
    [Google Scholar]
  77. BarillariG. The impact of matrix metalloproteinase-9 on the sequential steps of the metastatic process.Int. J. Mol. Sci.20202112452610.3390/ijms2112452632630531
    [Google Scholar]
  78. LeiflerK.S. SvenssonS. AbrahamssonA. BendrikC. RobertsonJ. GauldieJ. OlssonA.K. DabrosinC. Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer.J. Immunol.201319084420443010.4049/jimmunol.120261023509357
    [Google Scholar]
  79. KnightB.E. KozlowskiN. HavelinJ. KingT. CrockerS.J. YoungE.E. BaumbauerK.M. TIMP-1 attenuates the development of inflammatory pain through MMP-dependent and receptor-mediated cell signaling mechanisms.Front. Mol. Neurosci.20191222010.3389/fnmol.2019.0022031616247
    [Google Scholar]
  80. FieldsG.B. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma.Cells20198998410.3390/cells809098431461880
    [Google Scholar]
  81. YanoH. NishimiyaD. KawaguchiY. TamuraM. HashimotoR. Discovery of potent and specific inhibitors targeting the active site of MMP-9 from the engineered SPINK2 library.PLoS One20201512e024465610.1371/journal.pone.024465633373399
    [Google Scholar]
  82. JainA. AtaleN. KohliS. BhattacharyaS. SharmaM. RaniV. An assessment of norepinephrine mediated hypertrophy to apoptosis transition in cardiac cells: A signal for cell death.Chem. Biol. Interact.2015225546210.1016/j.cbi.2014.11.01725437044
    [Google Scholar]
  83. JindalD. RaniV. in silico studies of phytoconstituents from Piper longum and Ocimum sanctum as ACE2 and TMRSS2 inhibitors: Strategies to combat covid-19.Appl. Biochem. Biotechnol.202319542618263510.1007/s12010‑022‑03827‑635157239
    [Google Scholar]
  84. JainA. RaniV. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity.Life Sci.20182059710610.1016/j.lfs.2018.05.02129752960
    [Google Scholar]
  85. SarhadiV.K. ArmengolG. Molecular biomarkers in cancer.Biomolecules2022128102110.3390/biom1208102135892331
    [Google Scholar]
  86. CostantiniS. BudillonA. New prognostic and predictive markers in cancer progression.Int. J. Mol. Sci.20202122866710.3390/ijms2122866733212936
    [Google Scholar]
  87. CaliffR.M. Biomarker definitions and their applications.Exp. Biol. Med.2018243321322110.1177/153537021775008829405771
    [Google Scholar]
  88. MehnerC. HocklaA. MillerE. RanS. RadiskyD.C. RadiskyE.S. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer.Oncotarget2014592736274910.18632/oncotarget.193224811362
    [Google Scholar]
  89. YuX. HuangJ. WuS. HuangY. ShanY. LuC. Copy number variations of MMP-9 are prognostic biomarkers for hepatocellular carcinoma.Transl. Cancer Res.20209269870610.21037/tcr.2019.11.5235117415
    [Google Scholar]
  90. JinH. LiuT. SunD. Target-induced hot spot construction for sensitive and selective surface-enhanced Raman scattering detection of matrix metalloproteinase MMP-9.Mikrochim. Acta2024191210510.1007/s00604‑024‑06183‑w38240894
    [Google Scholar]
  91. Otero-EstévezO. ChiaraL.D. Rodríguez-GirondoM. Rodríguez-BerrocalF.J. CubiellaJ. CastroI. HernándezV. Martínez-ZorzanoV.S. Serum matrix metalloproteinase-9 in colorectal cancer family-risk population screening.Sci. Rep.2015511303010.1038/srep1303026264519
    [Google Scholar]
  92. KimmanM.L. VoogdA.C. DirksenC.D. FalgerP. HupperetsP. KeymeulenK. HeblyM. DehingC. LambinP. BoersmaL.J. Improving the quality and efficiency of follow-up after curative treatment for breast cancer – rationale and study design of the MaCare trial.BMC Cancer200771110.1186/1471‑2407‑7‑117199887
    [Google Scholar]
  93. PengL. ZhangX. ZhangM.L. JiangT. ZhangP.J. Diagnostic value of matrix metalloproteinases 2, 7 and 9 in urine for early detection of colorectal cancer.World J. Gastrointest. Surg.202315593193910.4240/wjgs.v15.i5.93137342853
    [Google Scholar]
  94. ZhangS. Editorial: Current development on wearable biosensors towards biomedical applications.Front. Bioeng. Biotechnol.202311126433710.3389/fbioe.2023.126433737614631
    [Google Scholar]
  95. SmithA.A. LiR. TseZ.T.H. Reshaping healthcare with wearable biosensors.Sci. Rep.2023131499810.1038/s41598‑022‑26951‑z36973262
    [Google Scholar]
  96. BohunickyB. MousaS.A. Biosensors: The new wave in cancer diagnosis.Nanotechnol. Sci. Appl.2010411010.2147/NSA.S1346524198482
    [Google Scholar]
  97. IqbalM.J. JavedZ. Herrera-BravoJ. SadiaH. AnumF. RazaS. TahirA. ShahwaniM.N. Sharifi-RadJ. CalinaD. ChoW.C. Biosensing chips for cancer diagnosis and treatment: A new wave towards clinical innovation.Cancer Cell Int.202222135410.1186/s12935‑022‑02777‑736376956
    [Google Scholar]
  98. AlekhmimiN. RaddadiZ. AlabdulwahedA. EissaS. Cialla-MayD. PoppJ. Al-KattanK. ZourobM. Paper-based biosensor for the detection of sepsis using MMP-9 biomarker in FIP mice model.Biosensors202313880410.3390/bios1308080437622890
    [Google Scholar]
  99. MartinsB.R. BarbosaY.O. AndradeC.M.R. PereiraL.Q. SimãoG.F. de OliveiraC.J. CorreiaD. OliveiraR.T.S.Jr da SilvaM.V. SilvaA.C.A. DantasN.O. RodriguesV.Jr MuñozR.A.A. Alves-BalvediR.P. Development of an electrochemical immunosensor for specific detection of visceral leishmaniasis using gold-modified screen-printed carbon electrodes.Biosensors20201088110.3390/bios1008008132717832
    [Google Scholar]
  100. Valero-CalvoD. Toyos-RodriguezC. García-AlonsoF.J. de la Escosura-MuñizA. Electrochemical monitoring of enzymatic cleavage in nanochannels with nanoparticle-based enhancement: Determination of MMP-9 biomarker.Mikrochim. Acta2023190725710.1007/s00604‑023‑05835‑737303001
    [Google Scholar]
  101. MengS. WangL. JiX. YuJ. MaX. ZhangJ. ZhaoW. JiH. LiM. FengH. Facile gold-nanoparticle boosted graphene sensor fabrication enhanced biochemical signal detection.Nanomaterials2022128132710.3390/nano1208132735458034
    [Google Scholar]
  102. BaruahA. NewarR. DasS. KalitaN. NathM. GhoshP. ChinnamS. SarmaH. NarayanM. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors.Discov. Nano202419110310.1186/s11671‑024‑04032‑638884869
    [Google Scholar]
  103. NguyenH.T.N. DuhonB.H. KuoH.C. FisherM. BrickeyO.M. ZhangL. OteroJ.J. PrevedelloD.M. AdunkaO.F. RenY. Matrix metalloproteinase 9: An emerging biomarker for classification of adherent vestibular schwannoma.Neurooncol. Adv.202461vdae05810.1093/noajnl/vdae05838887507
    [Google Scholar]
  104. YousefE.M. TahirM.R. St-PierreY. GabouryL.A. MMP-9 expression varies according to molecular subtypes of breast cancer.BMC Cancer201414160910.1186/1471‑2407‑14‑60925151367
    [Google Scholar]
  105. AdhipanditoC.F. LudjiD.P.K.S. ApriliantoE. JenieR.I. Al-NajjarB. HarionoM. Matrix metalloproteinase9 as the protein target in anti-breast cancer drug discovery: An approach by targeting hemopexin domain.Future J. Pharm. Sci.201951110.1186/s43094‑019‑0001‑1
    [Google Scholar]
  106. MudatsirL.I. LabedaI. UwuratuwJ.A. HendartoJ. Warsinggih LusikooyR.E. Mappincara SampetodingS. KusumaM.I. SyarifuddinE. ArsyadA. FarukM. Relationship between metalloproteinase-9 (MMP-9) expression and clinicopathology in colorectal cancer: A cross-sectional study.Ann. Med. Surg.20238594277428210.1097/MS9.000000000000089237663709
    [Google Scholar]
  107. WangY. WeiY. HuangJ. LiX. YouD. WangL. MaX. Prognostic value of matrix metalloproteinase-2 protein and matrix metalloproteinase-9 protein in colorectal cancer: A meta-analysis.BMC Cancer2024241106510.1186/s12885‑024‑12775‑939210344
    [Google Scholar]
  108. BhallaN. JollyP. FormisanoN. EstrelaP. Introduction to biosensors.Essays Biochem.20166011810.1042/EBC2015000127365030
    [Google Scholar]
  109. FischerT. RiedlR. Inhibitory antibodies designed for matrix metalloproteinase modulation.Molecules20192412226510.3390/molecules2412226531216704
    [Google Scholar]
  110. KateyB. VoiculescuI. PenkovaA. N. UntaroiuA. A review of biosensors and their applications.ASME Open J Eng2023Jan202020110.1115/1.4063500
    [Google Scholar]
  111. NareshV. LeeN. A review on biosensors and recent development of nanostructured materials-enabled biosensors.Sensors2021214110910.3390/s2104110933562639
    [Google Scholar]
  112. FudalaR. RanjanA.P. MukerjeeA. VishwanathaJ.K. GryczynskiZ. BorejdoJ. SarkarP. GryczynskiI. Fluorescence detection of MMP-9. I. MMP-9 selectively cleaves Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys peptide.Curr. Pharm. Biotechnol.201112583483810.2174/13892011179547096721446907
    [Google Scholar]
  113. LeeJaeWoong YunJun Yeon LeeWon Cheol ChoiSeongwook LimJaeHeung JeongHyeri ShinDong-Sik ParkYoung June A reference electrode-free electrochemical biosensor for detecting MMP-9 using a concentric electrode device.Sens Actuators B Chem201724073574110.1016/j.snb.2016.09.026
    [Google Scholar]
  114. ZhouJ. Electrochemical biosensors for the detection of matrix metalloproteinases.Int J Electrochem Sci2022171022103410.20964/2022.10.17
    [Google Scholar]
  115. StawarskiM. Rutkowska-WlodarczykI. ZeugA. BijataM. MadejH. KaczmarekL. WlodarczykJ. Genetically encoded FRET-based biosensor for imaging MMP-9 activity.Biomaterials20143551402141010.1016/j.biomaterials.2013.11.03324290700
    [Google Scholar]
  116. BielaA. WatkinsonM. MeierU.C. BakerD. GiovannoniG. BecerC.R. KrauseS. Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy.Biosens. Bioelectron.20156866066710.1016/j.bios.2015.01.06025660510
    [Google Scholar]
  117. VermaA.K. NoumaniA. YadavA.K. SolankiP.R. FRET based biosensor: Principle applications recent advances and challenges.Diagnostics2023138137510.3390/diagnostics1308137537189476
    [Google Scholar]
  118. HuangJ. WeiF. CuiY. HouL. LinT. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection.RSC Advances20221248313693137910.1039/D2RA04989A36349017
    [Google Scholar]
  119. Ruiz-VegaG. García-RobainaA. Ben IsmailM. PasamarH. García-BerrocosoT. MontanerJ. ZourobM. OthmaneA. del CampoF.J. BaldrichE. Detection of plasma MMP-9 within minutes. Unveiling some of the clues to develop fast and simple electrochemical magneto-immunosensors.Biosens. Bioelectron.2018115455210.1016/j.bios.2018.05.02029800830
    [Google Scholar]
  120. JarićS. SchobesbergerS. ErtlP. KneževićN.Ž. BobrinetskiyI. Electrochemical detection of MMP-2 using graphene-based aptasensor.Proceedings.20249715710.3390/proceedings2024097057
    [Google Scholar]
  121. ScaranoS. DausseE. CrispoF. ToulméJ.J. MinunniM. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors.Anal. Chim. Acta20158971910.1016/j.aca.2015.07.00926514999
    [Google Scholar]
  122. KimJ. YuA.M. KubelickK.P. EmelianovS.Y. Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9.Photoacoustics20222510030710.1016/j.pacs.2021.10030734703762
    [Google Scholar]
  123. MohseniS. MoghadamT.T. DabirmaneshB. JabbariS. KhajehK. Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip.Biosens. Bioelectron.20168151051610.1016/j.bios.2016.03.03827016912
    [Google Scholar]
  124. GrusonD. CobbaertC. DablaP.K. StankovicS. HomsakE. KotaniK. Samir AssaadR. NicholsJ.H. GougetB. Validation and verification framework and data integration of biosensors and in vitro diagnostic devices: A position statement of the IFCC committee on mobile health and bioengineering in laboratory medicine (C-MBHLM) and the IFCC scientific division.Clin. Chem. Lab. Med.202462101904191710.1515/cclm‑2023‑145538379410
    [Google Scholar]
  125. LiuG. Grand challenges in biosensors and biomolecular electronics.Front. Bioeng. Biotechnol.2021970761510.3389/fbioe.2021.70761534422782
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501371763250628092643
Loading
/content/journals/cdt/10.2174/0113894501371763250628092643
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test