Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Metallothionein 1J pseudogene (MT1JP) is a long non-coding RNA (lncRNA) that functions as a tumor suppressor in various malignancies. Reduced MT1JP expression is associated with increased tumor proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and treatment resistance in nine cancers, such as gastric cancer, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and breast cancer. Mechanistically, MT1JP acts as a competitive endogenous RNA (ceRNA) to regulate oncogenic microRNAs (miRNAs), including miR-92a-3p, miR-214-3p, and miR-24-3p. This regulation restores tumor suppressor genes, such as FBXW7, RUNX3, and PTEN, thereby disrupting oncogenic pathways, including PI3K/AKT, Wnt/β- catenin, and p53, promoting apoptosis, and inhibiting tumor progression. Clinically, MT1JP expression correlates with tumor grade, differentiation, TNM stage, lymph node metastasis, and patient prognosis, suggesting its potential as a diagnostic and prognostic biomarker. Furthermore, its therapeutic potential in RNA-based treatments has attracted significant attention. Despite these findings, questions remain regarding its role in epigenetic regulation, transcriptional control, and RNA delivery. This review explores the molecular mechanisms underlying MT1JP, highlighting its clinical relevance and potential as a therapeutic target. Future research should focus on elucidating its role in epigenetic regulation, overcoming challenges in therapeutic delivery, and validating its utility as a biomarker for different cancers. MT1JP holds promise for advancing precision oncology by providing innovative approaches for cancer diagnosis and treatment.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501365982250119150404
2025-01-22
2025-09-05
Loading full text...

Full text loading...

References

  1. SchwartzS.M. Epidemiology of cancer.Clin. Chem.202470114014910.1093/clinchem/hvad20238175589
    [Google Scholar]
  2. TorreL.A. SiegelR.L. WardE.M. JemalA. Global cancer incidence and mortality rates and trends—An update.Cancer Epidemiol. Biomarkers Prev.2016251162710.1158/1055‑9965.EPI‑15‑057826667886
    [Google Scholar]
  3. SantucciC. CarioliG. BertuccioP. MalvezziM. PastorinoU. BoffettaP. NegriE. BosettiC. La VecchiaC. Progress in cancer mortality, incidence, and survival: A global overview.Eur. J. Cancer Prev.202029536738110.1097/CEJ.000000000000059432740162
    [Google Scholar]
  4. KaurR. BhardwajA. GuptaS. Cancer treatment therapies: Traditional to modern approaches to combat cancers.Mol. Biol. Rep.202350119663967610.1007/s11033‑023‑08809‑337828275
    [Google Scholar]
  5. DasS. DeyM.K. DevireddyR. GartiaM.R. Biomarkers in cancer detection, diagnosis, and prognosis.Sensors20232413710.3390/s2401003738202898
    [Google Scholar]
  6. PapieżM.A. KrzyściakW. Biological therapies in the treatment of cancer—Update and new directions.Int. J. Mol. Sci.202122211169410.3390/ijms22211169434769123
    [Google Scholar]
  7. PassaroA. Al BakirM. HamiltonE.G. DiehnM. AndréF. Roy-ChowdhuriS. MountziosG. WistubaI.I. SwantonC. PetersS. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment.Cell202418771617163510.1016/j.cell.2024.02.04138552610
    [Google Scholar]
  8. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑933353982
    [Google Scholar]
  9. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.20200904533464299
    [Google Scholar]
  10. BhanA. SoleimaniM. MandalS.S. Long noncoding RNA and cancer: A new paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑263428701486
    [Google Scholar]
  11. YanH. BuP. Non-coding RNA in cancer.Essays Biochem.202165462563910.1042/EBC2020003233860799
    [Google Scholar]
  12. LouW. DingB. FuP. Pseudogene-derived lncRNAs and their miRNA sponging mechanism in human cancer.Front. Cell Dev. Biol.202088510.3389/fcell.2020.0008532185172
    [Google Scholar]
  13. Xiao-JieL. Ai-MeiG. Li-JuanJ. JiangX. Pseudogene in cancer: Real functions and promising signature.J. Med. Genet.2015521172410.1136/jmedgenet‑2014‑10278525391452
    [Google Scholar]
  14. LonsdaleJ. ThomasJ. Li-JuanJ. SalvatoreM. The genotype-tissue expression (GTEx) project.Nat. Genet.201345658058510.1038/ng.265323715323
    [Google Scholar]
  15. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz43031114875
    [Google Scholar]
  16. MachlowskaJ. BajJ. SitarzM. MaciejewskiR. SitarzR. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies.Int. J. Mol. Sci.20202111401210.3390/ijms2111401232512697
    [Google Scholar]
  17. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑532861308
    [Google Scholar]
  18. KarimiP. IslamiF. AnandasabapathyS. FreedmanN.D. KamangarF. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention.Cancer Epidemiol. Biomarkers Prev.201423570071310.1158/1055‑9965.EPI‑13‑105724618998
    [Google Scholar]
  19. ZhangG. LiS. LuJ. GeY. WangQ. MaG. ZhaoQ. WuD. GongW. DuM. ChuH. WangM. ZhangA. ZhangZ. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer.Mol. Cancer20181718710.1186/s12943‑018‑0829‑629720189
    [Google Scholar]
  20. BrabletzS. SchuhwerkH. BrabletzT. StemmlerM.P. Dynamic EMT: A multi-tool for tumor progression.EMBO J.20214018e10864710.15252/embj.202110864734459003
    [Google Scholar]
  21. XuY. ZhangG. ZouC. ZhangH. GongZ. WangW. MaG. JiangP. ZhangW. LncRNA MT1JP suppresses gastric cancer cell proliferation and migration through MT1JP/ MiR-214-3p/RUNX3 axis.Cell. Physiol. Biochem.20184662445245910.1159/00048965129742512
    [Google Scholar]
  22. ZhuC. MaJ. LiY. ZhangY. DaM. Low expression of long noncoding RNA MT1JP is associated with poor overall survival in gastric cancer patients.Medicine20189721e1039410.1097/MD.000000000001039429794726
    [Google Scholar]
  23. KelleyR.K. BridgewaterJ. GoresG.J. ZhuA.X. Systemic therapies for intrahepatic cholangiocarcinoma.J. Hepatol.202072235336310.1016/j.jhep.2019.10.00931954497
    [Google Scholar]
  24. MorisD. PaltaM. KimC. AllenP.J. MorseM.A. LidskyM.E. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians.CA Cancer J. Clin.202373219822210.3322/caac.2175936260350
    [Google Scholar]
  25. ZhaoW. ZhaoJ. GuoX. FengY. ZhangB. TianL. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis.BMC Cancer202121114210.1186/s12885‑021‑07838‑033557774
    [Google Scholar]
  26. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.00133579421
    [Google Scholar]
  27. BrownZ.J. TsilimigrasD.I. RuffS.M. MohseniA. KamelI.R. CloydJ.M. PawlikT.M. Management of Hepatocellular Carcinoma.JAMA Surg.2023158441042010.1001/jamasurg.2022.798936790767
    [Google Scholar]
  28. GanesanP. KulikL.M. Hepatocellular Carcinoma.Clin. Liver Dis.20232718510210.1016/j.cld.2022.08.00436400469
    [Google Scholar]
  29. WuJ.H. XuK. LiuJ.H. DuL.L. LiX.S. SuY.M. LiuJ.C. LncRNA MT1JP inhibits the malignant progression of hepatocellular carcinoma through regulating AKT.Eur. Rev. Med. Pharmacol. Sci.202024126647665632633354
    [Google Scholar]
  30. ZhangS. XuJ. ChenQ. ZhangF. WangH. GuoH. lncRNA MT1JP-overexpression abolishes the silencing of PTEN by miR-32 in hepatocellular carcinoma.Oncol. Lett.202122260410.3892/ol.2021.1286534188706
    [Google Scholar]
  31. ShanQ.L. ChenN.N. MengG.Z. QuF. Overexpression of lncRNA MT1JP mediates apoptosis and migration of hepatocellular carcinoma cells by regulating miR-24-3p.Cancer Manag. Res.2020124715472410.2147/CMAR.S24958232606962
    [Google Scholar]
  32. MoW. DaiY. ChenJ. LiangL. XuS. XuX. Long noncoding RNA (lncRNA) MT1JP suppresses hepatocellular carcinoma (HCC) in vitro .Cancer Manag. Res.2020127949796010.2147/CMAR.S25349632943929
    [Google Scholar]
  33. YuT. YuJ. LuL. ZhangY. ZhouY. ZhouY. HuangF. SunL. GuoZ. HouG. DongZ. WangB. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes Lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis.Cell Oncol.202144482183410.1007/s13402‑021‑00605‑033974236
    [Google Scholar]
  34. TrayesK.P. CokenakesS.E.H. Breast cancer treatment.Am. Fam. Physician2021104217117834383430
    [Google Scholar]
  35. ZhangY. XiaK. LiC. WeiB. ZhangB. Review of breast cancer pathologigcal image processing.BioMed Res. Int.202120211710.1155/2021/199476434595234
    [Google Scholar]
  36. ZhuD. ZhangX. LinY. LiangS. SongZ. DongC. MT1JP inhibits tumorigenesis and enhances cisplatin sensitivity of breast cancer cells through competitively binding to miR-24-3p.Am. J. Transl. Res.201911124525630787983
    [Google Scholar]
  37. OuyangQ. CuiY. YangS. WeiW. ZhangM. ZengJ. QuF. lncRNA MT1JP suppresses biological activities of breast cancer cells in vitro and in vivo by regulating the miRNA-214/RUNX3 axis.OncoTargets Ther.2020135033504610.2147/OTT.S24150332581560
    [Google Scholar]
  38. WuH. LiS. Long non-coding RNA MT1JP exerts anti-cancer effects in breast cancer cells by regulating miR-92-3p.Gen. Physiol. Biophys.2020391596710.4149/gpb_201903932039825
    [Google Scholar]
  39. SoJ.Y. OhmJ. LipkowitzS. YangL. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options.Pharmacol. Ther.202223710825310.1016/j.pharmthera.2022.10825335872332
    [Google Scholar]
  40. SinghD.D. YadavD.K. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy.Biomedicines20219887610.3390/biomedicines908087634440080
    [Google Scholar]
  41. VagiaE. MahalingamD. CristofanilliM. The landscape of targeted therapies in TNBC.Cancers202012491610.3390/cancers1204091632276534
    [Google Scholar]
  42. WangG. DongY. LiuH. JiN. CaoJ. LiuA. TangX. RenY. Long noncoding RNA (lncRNA) metallothionein 1 J, pseudogene (MT1JP) is downregulated in triple-negative breast cancer and upregulates microRNA-138 (miR-138) to downregulate hypoxia-inducible factor-1α (HIF-1α).Bioengineered2022135137181372710.1080/21655979.2022.207790635703312
    [Google Scholar]
  43. ThaiA.A. SolomonB.J. SequistL.V. GainorJ.F. HeistR.S. Lung cancer.Lancet20213981029953555410.1016/S0140‑6736(21)00312‑334273294
    [Google Scholar]
  44. WuJ. LinZ. Non-small cell lung cancer targeted therapy: Drugs and mechanisms of drug resistance.Int. J. Mol. Sci.202223231505610.3390/ijms23231505636499382
    [Google Scholar]
  45. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  46. OliverA.L. Lung cancer.Surg. Clin. North Am.2022102333534410.1016/j.suc.2021.12.00135671760
    [Google Scholar]
  47. MaJ. YanH. ZhangJ. TanY. GuW. Long-chain non-coding RNA (lncRNA) MT1JP suppresses biological activities of lung cancer by regulating miRNA-423-3p/Bim axis.Med. Sci. Monit.2019255114512610.12659/MSM.91438731342947
    [Google Scholar]
  48. BeirdH.C. BielackS.S. FlanaganA.M. GillJ. HeymannD. JanewayK.A. LivingstonJ.A. RobertsR.D. StraussS.J. GorlickR. Osteosarcoma.Nat. Rev. Dis. Primers2022817710.1038/s41572‑022‑00409‑y36481668
    [Google Scholar]
  49. ChenC. XieL. RenT. HuangY. XuJ. GuoW. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs.Cancer Lett.202150011010.1016/j.canlet.2020.12.02433359211
    [Google Scholar]
  50. YangL. LiuG. XiaoS. WangL. LiuX. TanQ. LiZ. Long noncoding MT1JP enhanced the inhibitory effects of miR-646 on FGF2 in osteosarcoma.Cancer Biother. Radiopharm.202035537137610.1089/cbr.2019.332832196384
    [Google Scholar]
  51. WellerM. WenP.Y. ChangS.M. DirvenL. LimM. MonjeM. ReifenbergerG. Glioma.Nat. Rev. Dis. Primers20241013310.1038/s41572‑024‑00516‑y38724526
    [Google Scholar]
  52. BarthelL. HadamitzkyM. DammannP. SchedlowskiM. SureU. ThakurB.K. HetzeS. Glioma: Molecular signature and crossroads with tumor microenvironment.Cancer Metastasis Rev.2022411537510.1007/s10555‑021‑09997‑934687436
    [Google Scholar]
  53. ChenJ. LouJ. YangS. LouJ. LiaoW. ZhouR. QiuC. DingG. MT1JP inhibits glioma progression via negative regulation of miR-24.Oncol. Lett.201910.3892/ol.2019.1108531890049
    [Google Scholar]
  54. ByrojuV.V. NadukkandyA.S. CordaniM. KumarL.D. Retinoblastoma: Present scenario and future challenges.Cell Commun. Signal.202321122610.1186/s12964‑023‑01223‑z37667345
    [Google Scholar]
  55. Cruz-GálvezC.C. Ordaz-FavilaJ.C. Villar-CalvoV.M. Cancino- MarentesM.E. Bosch-CantoV. Retinoblastoma: Review and new insights.Front. Oncol.20221296378010.3389/fonc.2022.96378036408154
    [Google Scholar]
  56. BiL.L. HanF. ZhangX.M. LiY.Y. LncRNA MT1JP acts as a tumor inhibitor via reciprocally regulating Wnt/β-Catenin pathway in retinoblastoma.Eur. Rev. Med. Pharmacol. Sci.201822134204421430024609
    [Google Scholar]
  57. LiuL. YueH. LiuQ. YuanJ. LiJ. WeiG. ChenX. LuY. GuoM. LuoJ. ChenR. LncRNA MT1JP functions as a tumor suppressor by interacting with TIAR to modulate the p53 pathway.Oncotarget2016713157871580010.18632/oncotarget.748726909858
    [Google Scholar]
  58. MorselliM. DieciG. Epigenetic regulation of human non-coding RNA gene transcription.Biochem. Soc. Trans.202250272373610.1042/BST2021086035285478
    [Google Scholar]
  59. MuchC. LasdaE.L. PereiraI.T. ValleryT.K. RamirezD. LewandowskiJ.P. DowellR.D. SmalleganM.J. RinnJ.L. The temporal dynamics of lncRNA Firre-mediated epigenetic and transcriptional regulation.Nat. Commun.2024151682110.1038/s41467‑024‑50402‑039122712
    [Google Scholar]
  60. ZhouY. SunW. QinZ. GuoS. KangY. ZengS. YuL. LncRNA regulation: New frontiers in epigenetic solutions to drug chemoresistance.Biochem. Pharmacol.202118911422810.1016/j.bcp.2020.11422832976832
    [Google Scholar]
  61. HermanA.B. TsitsipatisD. GorospeM. Integrated lncRNA function upon genomic and epigenomic regulation.Mol. Cell202282122252226610.1016/j.molcel.2022.05.02735714586
    [Google Scholar]
  62. FerrerJ. DimitrovaN. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance.Nat. Rev. Mol. Cell Biol.202425539641510.1038/s41580‑023‑00694‑938242953
    [Google Scholar]
  63. TanY.T. LinJ.F. LiT. LiJ.J. XuR.H. JuH.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer.Cancer Commun.202141210912010.1002/cac2.1210833119215
    [Google Scholar]
  64. CoanM. HaefligerS. OunzainS. JohnsonR. Targeting and engineering long non-coding RNAs for cancer therapy.Nat. Rev. Genet.202425857859510.1038/s41576‑024‑00693‑238424237
    [Google Scholar]
  65. TodenS. ZumwaltT.J. GoelA. Non-coding RNAs and potential therapeutic targeting in cancer.Biochim. Biophys. Acta Rev. Cancer20211875118849110.1016/j.bbcan.2020.18849133316377
    [Google Scholar]
  66. AnX. LiuY. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies.Biomed. Pharmacother.202215411359410.1016/j.biopha.2022.11359436057218
    [Google Scholar]
  67. GoyalB. YadavS.R.M. AwastheeN. GuptaS. KunnumakkaraA.B. GuptaS.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer.Biochim. Biophys. Acta Rev. Cancer20211875218850210.1016/j.bbcan.2021.18850233428963
    [Google Scholar]
  68. WinkleM. El-DalyS.M. FabbriM. CalinG.A. Noncoding RNA therapeutics — Challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z34145432
    [Google Scholar]
  69. MahatoR.K. BhattacharyaS. KhullarN. SidhuI.S. ReddyP.H. BhattiG.K. BhattiJ.S. Targeting long non- coding RNAs in cancer therapy using CRISPR-Cas9 technology: A novel paradigm for precision oncology.J. Biotechnol.20243799811910.1016/j.jbiotec.2023.12.00338065367
    [Google Scholar]
  70. Ahmadi-BalootakiS. DoostiA. JafariniaM. GoodarziH.R. Targeting the MALAT1 gene with the CRISPR/Cas9 technique in prostate cancer.Genes Environ.20224412210.1186/s41021‑022‑00252‑336163080
    [Google Scholar]
  71. ChoS.W. XuJ. SunR. MumbachM.R. CarterA.C. ChenY.G. YostK.E. KimJ. HeJ. NevinsS.A. ChinS.F. CaldasC. LiuS.J. HorlbeckM.A. LimD.A. WeissmanJ.S. CurtisC. ChangH.Y. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element.Cell201817361398141210.1016/j.cell.2018.03.06829731168
    [Google Scholar]
  72. DongY. SiegwartD.J. AndersonD.G. Strategies, design, and chemistry in siRNA delivery systems.Adv. Drug Deliv. Rev.201914413314710.1016/j.addr.2019.05.00431102606
    [Google Scholar]
  73. HuB. ZhongL. WengY. PengL. HuangY. ZhaoY. LiangX.J. Therapeutic siRNA: State of the art.Signal Transduct. Target. Ther.20205110110.1038/s41392‑020‑0207‑x32561705
    [Google Scholar]
  74. NojimaT. ProudfootN.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics.Nat. Rev. Mol. Cell Biol.202223638940610.1038/s41580‑021‑00447‑635079163
    [Google Scholar]
  75. CaoM. ZhaoJ. HuG. Genome-wide methods for investigating long noncoding RNAs.Biomed. Pharmacother.201911139540110.1016/j.biopha.2018.12.07830594777
    [Google Scholar]
  76. XuZ. ChenY. MaL. ChenY. LiuJ. GuoY. YuT. ZhangL. ZhuL. ShuY. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment.Mol. Ther.202230103133315410.1016/j.ymthe.2022.01.04635405312
    [Google Scholar]
  77. BoothB.J. NourreddineS. KatrekarD. SavvaY. BoseD. LongT.J. HussD.J. MaliP. RNA editing: Expanding the potential of RNA therapeutics.Mol. Ther.20233161533154910.1016/j.ymthe.2023.01.00536620962
    [Google Scholar]
  78. ByunJ. WuY. ParkJ. KimJ.S. LiQ. ChoiJ. ShinN. LanM. CaiY. LeeJ. OhY.K. RNA nanomedicine: Delivery strategies and applications.AAPS J.20232569510.1208/s12248‑023‑00860‑z37784005
    [Google Scholar]
  79. de VoogtW.S. TanenbaumM.E. VaderP. Illuminating RNA trafficking and functional delivery by extracellular vesicles.Adv. Drug Deliv. Rev.202117425026410.1016/j.addr.2021.04.01733894328
    [Google Scholar]
  80. YooY.J. LeeC.H. ParkS.H. LimY.T. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy.J. Control. Release202234356458310.1016/j.jconrel.2022.01.04735124126
    [Google Scholar]
  81. KaraG. CalinG.A. OzpolatB. RNAi-based therapeutics and tumor targeted delivery in cancer.Adv. Drug Deliv. Rev.202218211411310.1016/j.addr.2022.11411335063535
    [Google Scholar]
  82. JungH.N. LeeS.Y. LeeS. YounH. ImH.J. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging.Theranostics202212177509753110.7150/thno.7725936438494
    [Google Scholar]
  83. EygerisY. GuptaM. KimJ. SahayG. Chemistry of lipid nanoparticles for RNA delivery.Acc. Chem. Res.202255121210.1021/acs.accounts.1c0054434850635
    [Google Scholar]
  84. DowdyS.F. SettenR.L. CuiX.S. JadhavS.G. Delivery of RNA therapeutics: The great endosomal escape!Nucleic Acid Ther.202232536136810.1089/nat.2022.000435612432
    [Google Scholar]
  85. PaunovskaK. LoughreyD. DahlmanJ.E. Drug delivery systems for RNA therapeutics.Nat. Rev. Genet.202223526528010.1038/s41576‑021‑00439‑434983972
    [Google Scholar]
  86. ZhongR. TalebianS. MendesB.B. WallaceG. LangerR. CondeJ. ShiJ. Hydrogels for RNA delivery.Nat. Mater.202322781883110.1038/s41563‑023‑01472‑w36941391
    [Google Scholar]
  87. LiK. WangZ. lncRNA NEAT1: Key player in neurodegenerative diseases.Ageing Res. Rev.20238610187810.1016/j.arr.2023.10187836738893
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501365982250119150404
Loading
/content/journals/cdt/10.2174/0113894501365982250119150404
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; LncRNA; MT1JP; prognosis; targeted therapy, pseudogenes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test