Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Neuron loss is the main feature of neurodegenerative diseases. The two most prevalent neurodegenerative illnesses are Parkinson's and Alzheimer's diseases. While several medications are currently approved to treat neurodegenerative disorders, most of them only address the symptoms that are related to the disorders. Owing to their severity and complex multifactorial pathophysiology, the approved medications currently in clinical use have not demonstrated sufficient efficacy and have limited therapeutic options. Enhancing medicine quality can be achieved using highly efficient conjugate chemistry methods, necessitating ongoing discovery efforts on hybrid drugs in academia and industry. The present review illustrates hybrid compounds and the design strategies that helped to create them. Developing multi-target directed ligands (MTDLs) is a more advantageous and sensible strategy for treating long-term complex illnesses like neurodegenerative diseases. Compared to classic treatments, hybrid drugs can deliver combination therapies in a single multifunctional agent, making them more potent and specific. Three main objectives are being initiated by using hybridization techniques in drug design: () increasing selectivity, () improving activity, and () reducing toxicity. The development of hybrid medications may offer a valuable method for producing compounds that are less likely to develop resistance and more likely to be effective. Hybrid drugs hold great promise, but a few technical and regulatory obstacles must be overcome before they can be successfully used in clinical settings.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501365588250131073304
2025-02-04
2025-12-10
Loading full text...

Full text loading...

References

  1. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms23031851 35163773
    [Google Scholar]
  2. AbramovA.Y. BachurinS.O. Neurodegenerative disorders—Searching for targets and new ways of diseases treatment.Med. Res. Rev.20214152603260510.1002/med.21794 33645761
    [Google Scholar]
  3. PalmerA.M. The role of the blood brain barrier in neurodegenerative disorders and their treatment.J. Alzheimers Dis.201124464365610.3233/JAD‑2011‑110368 21460432
    [Google Scholar]
  4. ViegasF.P.D. GontijoV.S. de Freitas SilvaM. Curcumin, resveratrol and cannabidiol as natural key prototypes in drug design for neuroprotective agents.Curr. Neuropharmacol.20222071297132810.2174/1570159X19666210712152532 34825873
    [Google Scholar]
  5. QuezadaE. Rodríguez-EnríquezF. LagunaR. Curcumin-coumarin hybrid analogues as multitarget agents in neurodegenerative disorders.Molecules20212615455010.3390/molecules26154550 34361702
    [Google Scholar]
  6. GeorgeN. Jawaid AkhtarM. Al BalushiK.A. Alam KhanS. Rational drug design strategies for the development of promising multi-target directed indole hybrids as Anti-Alzheimer agents.Bioorg. Chem.202212710594110594110.1016/j.bioorg.2022.105941 35714473
    [Google Scholar]
  7. DasN. DhanawatM. DashB. NagarwalR.C. ShrivastavaS.K. Codrug: An efficient approach for drug optimization.Eur. J. Pharm. Sci.201041557158810.1016/j.ejps.2010.09.014 20888411
    [Google Scholar]
  8. DeckerM. Hybrid molecules incorporating natural products: Applications in cancer therapy, neurodegenerative disorders and beyond.Curr. Med. Chem.201118101464147510.2174/092986711795328355 21428895
    [Google Scholar]
  9. CavalliA. BolognesiM.L. MinariniA. Multi-target-directed ligands to combat neurodegenerative diseases.J. Med. Chem.200851334737210.1021/jm7009364 18181565
    [Google Scholar]
  10. MorphyR RankovicZ. Designed multiple ligands.An emerging drug discovery paradigm. ChemInform2006376chin.20060627510.1002/chin.200606275
    [Google Scholar]
  11. AdkiK.M. KulkarniY.A. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol.Life Sci.202025011754411754410.1016/j.lfs.2020.117544 32179072
    [Google Scholar]
  12. HuangX. MaY. LiY. HanF. LinW. Targeted drug delivery systems for kidney diseases.Front. Bioeng. Biotechnol.2021968324710.3389/fbioe.2021.683247 34124026
    [Google Scholar]
  13. LeónR. GarciaA.G. Marco-ContellesJ. Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer’s disease.Med. Res. Rev.201333113918910.1002/med.20248 21793014
    [Google Scholar]
  14. AlkhzemA.H. WoodmanT.J. BlagbroughI.S. Design and synthesis of hybrid compounds as novel drugs and medicines.RSC Advances20221230194701948410.1039/D2RA03281C 35865575
    [Google Scholar]
  15. HansenR.A. GartlehnerG. KauferD.J. LohrK.N. CareyT. Drug Class Review on Alzheimer’s Drugs.Portland, ORFinal Report in Drug Class Reviews Oregon Health & Science University2006
    [Google Scholar]
  16. TunalıN.E. Neurodegenerative Diseases: Molecular Mechanisms and Current Therapeutic Approaches.London, England: Intech Open202110.5772/intechopen.83153
    [Google Scholar]
  17. LiuW WangY YoudimMBH A novel neuroprotective cholinesterase-monoamine oxidase inhibitor for treatment of dementia and depression in Parkinson’s disease.Ageing Neur Dis20222110.20517/and.2021.09
    [Google Scholar]
  18. ZhengH. YoudimM.B.H. FridkinM. Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy.ACS Chem. Biol.20105660361010.1021/cb900264w 20455574
    [Google Scholar]
  19. BonL. BanaśA. DiasI. New multitarget rivastigmine-indole hybrids as potential drug candidates for Alzheimer’s disease.Pharmaceutics202416228110.3390/pharmaceutics16020281 38399339
    [Google Scholar]
  20. WeinrebO. AmitT. Bar-AmO. YoudimM.B.H. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β‐amyloid in ageing and Alzheimer’s disease.Br. J. Pharmacol.2016173132080209410.1111/bph.13318 26332830
    [Google Scholar]
  21. Guillozet-BongaartsA.L. Garcia-SierraF. ReynoldsM.R. Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease.Neurobiol. Aging20052671015102210.1016/j.neurobiolaging.2004.09.019 15748781
    [Google Scholar]
  22. SveinbjornsdottirS. The clinical symptoms of Parkinson’s disease.J. Neurochem.2016139S1Suppl. 131832410.1111/jnc.13691 27401947
    [Google Scholar]
  23. LeesA.J. HardyJ. ReveszT. Parkinson’s disease.Lancet200937396802055206610.1016/S0140‑6736(09)60492‑X 19524782
    [Google Scholar]
  24. De MirandaB.R. GoldmanS.M. MillerG.W. GreenamyreJ.T. DorseyE.R. Preventing Parkinson’s disease: An environmental agenda.J. Parkinsons Dis.2022121456810.3233/JPD‑212922 34719434
    [Google Scholar]
  25. BartelsA.L. LeendersK.L. Parkinson’s disease: The syndrome, the pathogenesis and pathophysiology.Cortex200945891592110.1016/j.cortex.2008.11.010 19095226
    [Google Scholar]
  26. OlufunmilayoE.O. Gerke-DuncanM.B. HolsingerR.M.D. Oxidative stress and antioxidants in neurodegenerative disorders.Antioxidants202312251710.3390/antiox12020517 36830075
    [Google Scholar]
  27. HastingsT.G. The role of dopamine oxidation in mitochondrial dysfunction: Implications for Parkinson’s disease.J. Bioenerg. Biomembr.200941646947210.1007/s10863‑009‑9257‑z 19967436
    [Google Scholar]
  28. Schulz-SchaefferW.J. The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia.Acta Neuropathol.2010120213114310.1007/s00401‑010‑0711‑0 20563819
    [Google Scholar]
  29. GendronT.F. PetrucelliL. The role of tau in neurodegeneration.Mol. Neurodegener.2009411310.1186/1750‑1326‑4‑13 19284597
    [Google Scholar]
  30. NúñezM.T. UrrutiaP. MenaN. AguirreP. TapiaV. SalazarJ. Iron toxicity in neurodegeneration.Biometals201225476177610.1007/s10534‑012‑9523‑0 22318507
    [Google Scholar]
  31. BrinkmanR.R. MezeiM.M. TheilmannJ. AlmqvistE. HaydenM.R. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size.Am. J. Hum. Genet.199760512021210 9150168
    [Google Scholar]
  32. MyersR.H. Huntington’s disease genetics.NeuroRx20041225526210.1602/neurorx.1.2.255 15717026
    [Google Scholar]
  33. RawlinsM.D. WexlerN.S. WexlerA.R. The Prevalence of Huntington’s Disease.Neuroepidemiology201646214415310.1159/000443738 26824438
    [Google Scholar]
  34. DayaluP. AlbinR.L. Huntington disease: pathogenesis and treatment.Neurol. Clin.201533110111410.1016/j.ncl.2014.09.003 25432725
    [Google Scholar]
  35. KayC. CollinsJ.A. WrightG.E.B. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2018177334635710.1002/ajmg.b.32618 29460498
    [Google Scholar]
  36. KimA. LalondeK. TruesdellA. New avenues for the treatment of Huntington’s disease.Int. J. Mol. Sci.20212216836310.3390/ijms22168363 34445070
    [Google Scholar]
  37. StokerT.B. MasonS.L. GreenlandJ.C. HoldenS.T. SantiniH. BarkerR.A. Huntington’s disease: Diagnosis and management.Pract. Neurol.2022221324110.1136/practneurol‑2021‑003074 34413240
    [Google Scholar]
  38. CroninS. BergerS. DingJ. A genome-wide association study of sporadic ALS in a homogenous Irish population.Hum. Mol. Genet.200717576877410.1093/hmg/ddm361 18057069
    [Google Scholar]
  39. ValdmanisP.N. DaoudH. DionP.A. RouleauG.A. Recent advances in the genetics of amyotrophic lateral sclerosis.Curr. Neurol. Neurosci. Rep.20099319820510.1007/s11910‑009‑0030‑9 19348708
    [Google Scholar]
  40. TalbotK. AnsorgeO. Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease.Hum. Mol. Genet.200615Spec No 2R182R18710.1093/hmg/ddl202 16987882
    [Google Scholar]
  41. CozzolinoM. FerriA. Teresa CarrìM. Amyotrophic lateral sclerosis: From current developments in the laboratory to clinical implications.Antioxid. Redox Signal.200810340544410.1089/ars.2007.1760 18370853
    [Google Scholar]
  42. BaxterS.K. BairdW.O. ThompsonS. The impact on the family carer of motor neurone disease and intervention with noninvasive ventilation.J. Palliat. Med.201316121602160910.1089/jpm.2013.0211 24236958
    [Google Scholar]
  43. MeyerT. Amyotrophe Lateralsklerose (ALS) - Diagnose, Verlauf und neue Behandlungsoptionen.Dtsch. Med. Wochenschr.202114624/251613161810.1055/a‑1562‑7882 34879411
    [Google Scholar]
  44. GoutmanS.A. HardimanO. Al-ChalabiA. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis.Lancet Neurol.202221548049310.1016/S1474‑4422(21)00465‑8 35334233
    [Google Scholar]
  45. MogliaC. CalvoA. BrunettiM. ChiòA. GrassanoM. Broadening the clinical spectrum of FUS mutations: A case with monomelic amyotrophy with a late progression to amyotrophic lateral sclerosis.Neurol. Sci.20214231207120910.1007/s10072‑020‑04751‑5 33001405
    [Google Scholar]
  46. Al-ChalabiA. ChiòA. MerrillC. Clinical staging in amyotrophic lateral sclerosis: Analysis of Edaravone Study 19.J. Neurol. Neurosurg. Psychiatry202192216517110.1136/jnnp‑2020‑323271 33109706
    [Google Scholar]
  47. FancelluG. ChandK. TomásD. Novel tacrine-benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.202035121122610.1080/14756366.2019.1689237 31760822
    [Google Scholar]
  48. ChandK. RajeshwariK. CandeiasE. CardosoS.M. ChavesS. SantosM.A. Tacrine-deferiprone hybrids as multi-target-directed metal chelators against Alzheimer’s disease: A two-in-one drug.Metallomics201810101460147510.1039/c8mt00143j 30183790
    [Google Scholar]
  49. ZhouY. HeY. TengX. Development of novel salicylic acid-donepezil-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.2023381223166110.1080/14756366.2023.2231661 37414563
    [Google Scholar]
  50. AnandP. SinghB. A review on cholinesterase inhibitors for Alzheimer’s disease.Arch. Pharm. Res.201336437539910.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  51. ZhangH. WangY. WangY. LiX. WangS. WangZ. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer’s disease.Eur. J. Med. Chem.202224011460610.1016/j.ejmech.2022.114606 35858523
    [Google Scholar]
  52. KaurR. KumarK. Synthetic and medicinal perspective of quinolines as antiviral agents.Eur. J. Med. Chem.202121511322010.1016/j.ejmech.2021.113220 33609889
    [Google Scholar]
  53. de SiqueiraL.R.P. de Moraes GomesP.A.T. de Lima FerreiraL.P. de Melo RêgoM.J.B. LeiteA.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues.Eur. J. Med. Chem.201917023726010.1016/j.ejmech.2019.03.024 30904782
    [Google Scholar]
  54. ZaibS. MunirR. YounasM.T. Hybrid quinoline-thiosemicarbazone therapeutics as a new treatment opportunity for Alzheimer’s disease‒synthesis, in vitro cholinesterase inhibitory potential and computational modeling analysis.Molecules20212621657310.3390/molecules26216573 34770983
    [Google Scholar]
  55. Høilund-CarlsenP.F. RevheimM.E. CostaT. Passive Alzheimer’s immunotherapy: A promising or uncertain option?Ageing Res. Rev.20239010199610.1016/j.arr.2023.101996 37414156
    [Google Scholar]
  56. VazM. SilvestreS. Alzheimer’s disease: Recent treatment strategies.Eur. J. Pharmacol.202088717355410.1016/j.ejphar.2020.173554 32941929
    [Google Scholar]
  57. FinbergJ.P.M. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release.Pharmacol. Ther.2014143213315210.1016/j.pharmthera.2014.02.010 24607445
    [Google Scholar]
  58. HuangS.T. LuoJ.C. ZhongG.H. In vitro and in vivo biological evaluation of newly tacrine-selegiline hybrids as multi-target inhibitors of cholinesterases and monoamine oxidases for Alzheimer’s disease.Drug Des. Devel. Ther.20241813315910.2147/DDDT.S432170 38283137
    [Google Scholar]
  59. SilvaT. ReisJ. TeixeiraJ. BorgesF. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes.Ageing Res. Rev.20141511614510.1016/j.arr.2014.03.008 24726823
    [Google Scholar]
  60. ZhaoY. YeF. XuJ. Design, synthesis and evaluation of novel bivalent β -carboline derivatives as multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.201826133812382410.1016/j.bmc.2018.06.018 29960728
    [Google Scholar]
  61. DuH. JiangX. MaM. XuH. LiuS. MaF. Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation.Bioorg. Med. Chem. Lett.2020302412765910.1016/j.bmcl.2020.127659 33137375
    [Google Scholar]
  62. BelloO.S. GonzalezJ. CapaniF. BarretoG.E. In silico docking reveals possible Riluzole binding sites on Nav1.6 sodium channel: Implications for amyotrophic lateral sclerosis therapy.J. Theor. Biol.2012315536310.1016/j.jtbi.2012.09.004 22995823
    [Google Scholar]
  63. ÖzdinlerP.H. SilvermanR.B. Treatment of amyotrophic lateral sclerosis: Lessons learned from many failures.ACS Med. Chem. Lett.20145111179118110.1021/ml500404b 25408825
    [Google Scholar]
  64. SweeneyJ.B. RattrayM. PughV. PowellL.A. Riluzole-triazole hybrids as novel chemical probes for neuroprotection in amyotrophic lateral sclerosis.ACS Med. Chem. Lett.20189655255610.1021/acsmedchemlett.8b00103 29937981
    [Google Scholar]
  65. SameemB. SaeediM. MahdaviM. ShafieeA. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease.Eur. J. Med. Chem.201712833234510.1016/j.ejmech.2016.10.060 27876467
    [Google Scholar]
  66. HiremathadA. KeriR.S. EstevesA.R. CardosoS.M. ChavesS. SantosM.A. Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease.Eur. J. Med. Chem.201814825526710.1016/j.ejmech.2018.02.023 29466775
    [Google Scholar]
  67. HepnarovaV. KorabecnyJ. MatouskovaL. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease.Eur. J. Med. Chem.201815029230610.1016/j.ejmech.2018.02.083 29533874
    [Google Scholar]
  68. XieS.S. WangX. JiangN. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease.Eur. J. Med. Chem.20159515316510.1016/j.ejmech.2015.03.040 25812965
    [Google Scholar]
  69. HabibpourR. Tacrine-Flavonoid Quercetin hybride as a MTDL ligand against Alzheimer’s disease with metal Chelating and AChE, BChE, AChE-induced Aβ aggregation inhibition properties: A computational study.Chem Res20197356157910.22036/pcr.2019.183077.1624
    [Google Scholar]
  70. KiernanM.C. VucicS. CheahB.C. Amyotrophic lateral sclerosis.Lancet2011377976994295510.1016/S0140‑6736(10)61156‑7 21296405
    [Google Scholar]
  71. AlbertiniC. SalernoA. AtzeniS. Riluzole-rasagiline hybrids: Toward the development of multi-target-directed ligands for amyotrophic lateral Sclerosis.ACS Chem. Neurosci.202213152252226010.1021/acschemneuro.2c00261 35868251
    [Google Scholar]
  72. KushwahaP. FatimaS. UpadhyayA. Synthesis, biological evaluation and molecular dynamic simulations of novel Benzofuran-tetrazole derivatives as potential agents against Alzheimer’s disease.Bioorg. Med. Chem. Lett.2019291667210.1016/j.bmcl.2018.11.005 30455151
    [Google Scholar]
  73. SashidharaK.V. ModukuriR.K. JadiyaP. Benzofuran-chalcone hybrids as potential multifunctional agents against Alzheimer’s disease: Synthesis and in vivo studies with transgenic Caenorhabditis elegans.ChemMedChem20149122671268410.1002/chin.201518126
    [Google Scholar]
  74. HameedA. ZehraS.T. AbbasS. One-pot synthesis of tetrazole-1,2,5,6-tetrahydronicotinonitriles and cholinesterase inhibition: Probing the plausible reaction mechanism via computational studies.Bioorg. Chem.201665384710.1016/j.bioorg.2016.01.004 26851737
    [Google Scholar]
  75. LeeF.J.S. LiuF. PristupaZ.B. NiznikH.B. Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis.FASEB J.200115691692610.1096/fj.00‑0334com 11292651
    [Google Scholar]
  76. LewittP.A. Levodopa for the treatment of Parkinson’s disease.N. Engl. J. Med.2008359232468247610.1056/NEJMct0800326 19052127
    [Google Scholar]
  77. AbbottA. Levodopa: The story so far.Nature20104667310S6S710.1038/466S6a 20739934
    [Google Scholar]
  78. PiazziL. RampaA. BisiA. 3-(4-[[Benzyl(methyl)amino]] methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation: A dual function lead for Alzheimer’s disease therapy.J. Med. Chem.200346122279228210.1021/jm0340602 12773032
    [Google Scholar]
  79. AbdelhafezO.M. AminK.M. AliH.I. MaherT.J. BatranR.Z. Dopamine release and molecular modeling study of some coumarin derivatives.Neurochem. Int.201159690691210.1016/j.neuint.2011.08.004 21871512
    [Google Scholar]
  80. Marco-ContellesJ. LeónR. RíosC. GarcíaA.G. LópezM.G. VillarroyaM. New multipotent tetracyclic tacrines with neuroprotective activity.Bioorg. Med. Chem.200614248176818510.1016/j.bmc.2006.09.025 17005406
    [Google Scholar]
  81. SashidharaK.V. ModukuriR.K. JadiyaP. Discovery of 3-Arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against Parkinson’s disease.ACS Med. Chem. Lett.20145101099110310.1021/ml500222g 25313319
    [Google Scholar]
  82. CallisT.B. GarrettT.R. MontgomeryA.P. DanonJ.J. KassiouM. Recent scaffold hopping applications in central nervous system drug discovery.J. Med. Chem.20226520134831350410.1021/acs.jmedchem.2c00969 36206553
    [Google Scholar]
  83. NuthakkiV.K. ChoudharyS. ReddyC.N. Design, synthesis, and pharmacological evaluation of Embelin-Aryl/alkyl Amine hybrids as orally bioavailable blood-brain barrier permeable multitargeted agents with therapeutic potential in Alzheimer’s disease: Discovery of SB-1448.ACS Chem. Neurosci.20231461193121910.1021/acschemneuro.3c00030 36812360
    [Google Scholar]
  84. ChenY. MaY. MaW. Pharmacokinetics and bioavailability of cinnamic acid after oral administration of Ramulus Cinnamomi in rats.Eur. J. Drug Metab. Pharmacokinet.2009341515610.1007/BF03191384 19462929
    [Google Scholar]
  85. CrismonM.L. Tacrine: First drug approved for Alzheimer’s disease.Ann. Pharmacother.199428674475110.1177/106002809402800612 7919566
    [Google Scholar]
  86. NepovimovaE. UliassiE. KorabecnyJ. Multitarget drug design strategy: Quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects.J. Med. Chem.201457208576858910.1021/jm5010804 25259726
    [Google Scholar]
  87. AvendañoC. de la CuestaE. GestoC. A comparative study of synthetic approaches to 1-Methyl-2,5,8(1H)-quinolinetrione and 4-Methyl-2,5,8(1H)-quinolinetrione.Synthesis19911991972773010.1055/s‑1991‑26557
    [Google Scholar]
  88. UliassiE. BergaminiC. RizzardiN. Quinolinetrione-tacrine hybrids as multi-target-directed ligands against Alzheimer’s disease.Bioorg. Med. Chem.20239111741911741910.1016/j.bmc.2023.117419 37487339
    [Google Scholar]
  89. SotoC. Unfolding the role of protein misfolding in neurodegenerative diseases.Nat. Rev. Neurosci.200341496010.1038/nrn1007 12511861
    [Google Scholar]
  90. KaliaL.V. LangA.E. Parkinson’s disease.Lancet2015386999689691210.1016/S0140‑6736(14)61393‑3 25904081
    [Google Scholar]
  91. OrhanI. GulcanH. Coumarins: Auspicious cholinesterase and monoamine oxidase inhibitors.Curr. Top. Med. Chem.201515171673168210.2174/1568026615666150427113103 25915613
    [Google Scholar]
  92. Rodríguez-EnríquezF. Costas-LagoM.C. BesadaP. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson’s disease therapy.Bioorg. Chem.202010410420310420310.1016/j.bioorg.2020.104203 32932120
    [Google Scholar]
  93. KamalM.A. KleinP. LuoW. Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine.Neurochem. Res.200833574575310.1007/s11064‑007‑9490‑y 17985237
    [Google Scholar]
  94. RicciarelliR. FedeleE. The amyloid cascade hypothesis in Alzheimer’s disease: It’s time to change our mind.Curr. Neuropharmacol.201715692693510.2174/1570159X15666170116143743 28093977
    [Google Scholar]
  95. GujjarR. MarwahaA. El MazouniF. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice.J. Med. Chem.20095271864187210.1021/jm801343r 19296651
    [Google Scholar]
  96. KumarJ. MeenaP. SinghA. Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies.Eur. J. Med. Chem.201611926027710.1016/j.ejmech.2016.04.053 27227482
    [Google Scholar]
  97. UmarT. GusainS. RazaM.K. Naphthalene-triazolopyrimi-] dine hybrid compounds as potential multifunctional anti-Alzheimer’s agents.Bioorg. Med. Chem.201927143156316610.1016/j.bmc.2019.06.004 31176571
    [Google Scholar]
  98. GanL. CooksonM.R. PetrucelliL. La SpadaA.R. Converging pathways in neurodegeneration, from genetics to mechanisms.Nat. Neurosci.201821101300130910.1038/s41593‑018‑0237‑7 30258237
    [Google Scholar]
  99. AlamP. SiddiqiK. ChturvediS.K. KhanR.H. Protein aggregation: From background to inhibition strategies.Int. J. Biol. Macromol.201710320821910.1016/j.ijbiomac.2017.05.048 28522393
    [Google Scholar]
  100. FãoL. MotaS.I. RegoA.C. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases.Ageing Res. Rev.20195410094210094210.1016/j.arr.2019.100942 31415806
    [Google Scholar]
  101. De Freitas SilvaM. PruccoliL. MorroniF. The Keap1/Nrf2-ARE pathway as a pharmacological target for chalcones.Molecules2018237180310.3390/molecules23071803 30037040
    [Google Scholar]
  102. Di MartinoR.M.C. PruccoliL. BisiA. Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β Inhibitor/Nrf2 inducer for the treatment of Parkinson’s disease.ACS Chem. Neurosci.202011172728274010.1021/acschemneuro.0c00363 32663009
    [Google Scholar]
  103. CrockfordC. NewtonJ. LonerganK. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS.Neurology20189115e1370e138010.1212/WNL.0000000000006317 30209236
    [Google Scholar]
  104. CarrìM.T. GrignaschiG. BendottiC. Targets in ALS: Designing multidrug therapies.Trends Pharmacol. Sci.200627526727310.1016/j.tips.2006.03.009 16690390
    [Google Scholar]
  105. StankiewiczT.R. PenaC. BouchardR.J. LinsemanD.A. Dysregulation of Rac or Rho elicits death of motor neurons and activation of these GTPases is altered in the G93A mutant hSOD1 mouse model of amyotrophic lateral sclerosis.Neurobiol. Dis.202013610474310474310.1016/j.nbd.2020.104743 31931138
    [Google Scholar]
  106. VomundS. SchäferA. ParnhamM. BrüneB. Von KnethenA. Nrf2, the master regulator of anti-oxidative responses.Int. J. Mol. Sci.20171812277210.3390/ijms18122772 29261130
    [Google Scholar]
  107. Martín-CámaraO. ArribasM. WellsG. Multitarget hybrid fasudil derivatives as a new approach to the potential treatment of amyotrophic lateral sclerosis.J. Med. Chem.20226531867188210.1021/acs.jmedchem.1c01255 34985276
    [Google Scholar]
  108. SavelieffM.G. DeTomaA.S. DerrickJ.S. LimM.H. The ongoing search for small molecules to study metal-associated amyloid-β species in Alzheimer’s disease.Acc. Chem. Res.20144782475248210.1021/ar500152x 25080056
    [Google Scholar]
  109. SavelieffM.G. NamG. KangJ. LeeH.J. LeeM. LimM.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade.Chem. Rev.201911921221132210.1021/acs.chemrev.8b00138 30095897
    [Google Scholar]
  110. BlaikieL. KayG. Kong Thoo LinP. Current and emerging therapeutic targets of alzheimer’s disease for the design of multi-target directed ligands.MedChemComm201910122052207210.1039/C9MD00337A 32206241
    [Google Scholar]
  111. HuangY. ChoH.J. BandaraN. Metal-chelating benzothiazole multifunctional compounds for the modulation and 64Cu PET imaging of Aβ aggregation.Chem. Sci.202011307789779910.1039/D0SC02641G 34094152
    [Google Scholar]
  112. MaezawaI. HongH.S. LiuR. Congo red and thioflavin‐T analogs detect Aβ oligomers.J. Neurochem.2008104245746810.1111/j.1471‑4159.2007.04972.x 17953662
    [Google Scholar]
  113. RanaM. ChoH.J. AryaH. Azo-Stilbene and pyridine-amine hybrid multifunctional molecules to target metal-mediated neurotoxicity and Amyloid-β aggregation in Alzheimer’s disease.Inorg. Chem.20226127102941030910.1021/acs.inorgchem.2c00502 35768324
    [Google Scholar]
  114. ZemekF. DrtinovaL. NepovimovaE. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine.Expert Opin. Drug Saf.201413675977410.1517/14740338.2014.914168 24845946
    [Google Scholar]
  115. KoolaM.M. NikiforukA. PillaiA. ParsaikA.K. Galantamine-memantine combination superior to donepezil-memantine combination in Alzheimer’s disease: Critical dissection with an emphasis on kynurenic acid and mismatch negativity.J. Geriatr. Care Res.2018525767 30984874
    [Google Scholar]
  116. ApaydınS. TörökM. Sulfonamide derivatives as multi-target agents for complex diseases.Bioorg. Med. Chem. Lett.201929162042205010.1016/j.bmcl.2019.06.041 31272793
    [Google Scholar]
  117. MakhaevaG.F. KovalevaN.V. BoltnevaN.P. New hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as dual inhibitors of Acetyl- and Butyrylcholinesterase and potential multifunctional agents for Alzheimer’s disease treatment.Molecules20202517391510.3390/molecules25173915 32867324
    [Google Scholar]
  118. QuedaF. CalòS. GwizdalaK. Novel donepezil-arylsulfonamide hybrids as multitarget-directed ligands for potential treatment of Alzheimer’s disease.Molecules2021266165810.3390/molecules26061658 33809771
    [Google Scholar]
  119. HariharasubramanianA. RavichandranY.D. Synthesis and studies of electrochemical properties of lophine derivatives.RSC Advances2014497547405474610.1039/C4RA08601E
    [Google Scholar]
  120. SongG.L. ZhuH.J. ChenL. LiuS. LuoZ.H. Novel disubstituted phenylene‐linked Bis‐imidazole derivatives: Facile synthesis and optical properties.Helv. Chim. Acta201093122397240510.1002/hlca.201000014
    [Google Scholar]
  121. CâmaraV. SoaresA.J. BiscussiB. Expedient microwave-assisted synthesis of Bis(n)-lophine analogues as selective Butyrylcholinesterase inhibitors: Cytotoxicity evaluation and molecular modelling.J. Braz. Chem. Soc.2021321173118510.21577/0103‑5053.20210018
    [Google Scholar]
  122. MughalE.U. JavidA. SadiqA. Synthesis, structure-activity relationship and molecular docking studies of 3-O-flavonol glycosides as cholinesterase inhibitors.Bioorg. Med. Chem.201826123696370610.1016/j.bmc.2018.05.050 29886083
    [Google Scholar]
  123. LopesJ.P.B. SilvaL. CeschiM.A. Synthesis of new lophine-carbohydrate hybrids as cholinesterase inhibitors: Cytotoxicity evaluation and molecular modeling.MedChemComm201910122089210110.1039/C9MD00358D 32904099
    [Google Scholar]
  124. IsmailiL. RefouveletB. BenchekrounM. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease.Prog. Neurobiol.201715143410.1016/j.pneurobio.2015.12.003 26797191
    [Google Scholar]
  125. Lagadic-GossmannD. RisselM. Le BotM.A. GuillouzoA. Toxic effects of tacrine on primary hepatocytes and liver epithelial cells in culture.Cell Biol. Toxicol.199814536137310.1023/A:1007589808761 9808364
    [Google Scholar]
  126. PiR. MaoX. ChaoX. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo.PLoS One201272e3192110.1371/journal.pone.0031921 22384101
    [Google Scholar]
  127. SunX. ZhangP. PiR. Determination of tacrine‐6‐ferulic acid in rat plasma by LC‐MS/MS and its application to pharmacokinetics study.Biomed. Chromatogr.201428101352135910.1002/bmc.3173 24706520
    [Google Scholar]
  128. BenchekrounM. BartoliniM. EgeaJ. Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: A synthetic renewal in tacrine-ferulic acid hybrids.ChemMedChem201510352353910.1002/cmdc.201402409 25537267
    [Google Scholar]
  129. FangL. AppenrothD. DeckerM. NO-donating tacrine hybrid compounds improve scopolamine-induced cognition impairment and show less hepatotoxicity.J. Med. Chem.200851247666766910.1021/jm801131a 19053746
    [Google Scholar]
  130. 2024 Alzheimer’s disease facts and figures.Alzheimers Dement.20242053708382110.1002/alz.13809 38689398
    [Google Scholar]
  131. SinghY.P. ShankarG. JahanS. Further SAR studies on natural template based neuroprotective molecules for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20214611638510.1016/j.bmc.2021.116385 34481338
    [Google Scholar]
  132. BaiY. LiuD. ZhangH. N-salicyloyl tryptamine derivatives as potential therapeutic agents for Alzheimer’s disease with neuroprotective effects.Bioorg. Chem.202111510525510525510.1016/j.bioorg.2021.105255 34435574
    [Google Scholar]
  133. ShankarG. KumarP. RaiS. Discovery of novel hybrid tryptamine-rivastigmine molecules as potent AChE and BChE inhibitors exhibiting multifunctional properties for the management of Alzheimer’s disease.Eur. J. Med. Chem.202528311706611706610.1016/j.ejmech.2024.117066 39667052
    [Google Scholar]
  134. AbdolmalekiA. GhasemiJ.B. Dual-acting of hybrid compounds - A new dawn in the discovery of multi-target drugs: Lead generation approaches.Curr. Top. Med. Chem.20171791096111410.2174/1568026616666160927151144 27697056
    [Google Scholar]
  135. IsmailiL. RomeroA. CarreirasM. Multitarget-directed antioxidants as therapeutic agents: Putting the focus on the oxidative stress.In: Design of Hybrid Molecules for Drug Development.Elsevier2017546
    [Google Scholar]
  136. LipinskiC.A. Drug-like properties and the causes of poor solubility and poor permeability.J. Pharmacol. Toxicol. Methods200044123524910.1016/S1056‑8719(00)00107‑6 11274893
    [Google Scholar]
  137. GediyaL.K. NjarV.C.O. Promise and challenges in drug discovery and development of hybrid anticancer drugs.Expert Opin. Drug Discov.20094111099111110.1517/17460440903341705 23480431
    [Google Scholar]
  138. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  139. LorenziP.L. LandowskiC.P. SongX. Amino acid ester prodrugs of 2-bromo-5,6-dichloro-1-(β-D-ribofuranosyl)benzimida-] zole enhance metabolic stability in vitro and in vivo.J. Pharmacol. Exp. Ther.2005314288389010.1124/jpet.104.082412 15901797
    [Google Scholar]
  140. RankovicZ. MorphyR. Lead Generation Approaches in Drug Discovery.John Wiley & Sons201010.1002/9780470584170
    [Google Scholar]
  141. AnighoroA. BajorathJ. RastelliG. Polypharmacology: Challenges and opportunities in drug discovery.J. Med. Chem.201457197874788710.1021/jm5006463 24946140
    [Google Scholar]
  142. RamsayR.R. Popovic-NikolicM.R. NikolicK. UliassiE. BolognesiM.L. A perspective on multi‐target drug discovery and design for complex diseases.Clin. Transl. Med.201871e310.1186/s40169‑017‑0181‑2 29340951
    [Google Scholar]
  143. HusainA. BalushiK.A. AkhtarM.J. KhanS.A. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer’s disease.J. Mol. Struct.2021124113061813061810.1016/j.molstruc.2021.130618
    [Google Scholar]
  144. SchneiderL.S. GeffenY. RabinowitzJ. Low-dose ladostigil for mild cognitive impairment.Neurology20199315e1474e148410.1212/WNL.0000000000008239 31492718
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501365588250131073304
Loading
/content/journals/cdt/10.2174/0113894501365588250131073304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test