Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Background

Myopia is one of the most common eye diseases worldwide, with an increasing incidence observed in recent years. Globally, effective treatments for myopia have been extensively explored. In recent years, research on drugs for the treatment of myopia has become a popular topic in ophthalmology, with some breakthroughs having been achieved. Compared with surgical treatment, drug treatment is easier for people to accept. Although the efficacy of some drugs in delaying the development of myopia has been confirmed, the mechanism and site of action of some drugs are still not completely clear.

Objective

In this study, we review the recent related research on drug therapy for myopia at home and abroad, describe the mechanism of various drugs in treating myopia, evaluate their clinical application value, and identify existing problems.

Results

These drugs include atropine, a series of anticholinergic drugs, dopamine agonists, 7- methylxanthine, and intraocular pressure-lowering drugs.

Conclusion

Results highlight the efficacy of atropine in myopia treatment with minimal side effects. Anticholinergic medications, such as atropine, have demonstrated efficacy in managing the progression of myopia with a reduced incidence of adverse effects. The emphasis is placed on achieving better long-term effectiveness and minimizing the rebound effect after treatment is stopped. Furthermore, participating in outdoor activities and reducing eye strain are proven strategies for preventing myopia.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501359801250102055530
2025-01-20
2025-09-12
Loading full text...

Full text loading...

References

  1. HoldenB.A. FrickeT.R. WilsonD.A. JongM. NaidooK.S. SankaridurgP. WongT.Y. NaduvilathT.J. ResnikoffS. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050.Ophthalmology201612351036104210.1016/j.ophtha.2016.01.00626875007
    [Google Scholar]
  2. BarathiV.A. WeonS.R. BeuermanR.W. Expression of muscarinic receptors in human and mouse sclera and their role in the regulation of scleral fibroblasts proliferation.Mol. Vis.2009151277129319578554
    [Google Scholar]
  3. QuJ. ZhouX. XieR. ZhangL. HuD. LiH. LuF. The presence of m1 to m5 receptors in human sclera: Evidence of the sclera as a potential site of action for muscarinic receptor antagonists.Curr. Eye Res.2006317-858759710.1080/0271368060077060916877267
    [Google Scholar]
  4. ArumugamB. McBrienN.A. Muscarinic antagonist control of myopia: Evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew.Invest. Ophthalmol. Vis. Sci.20125395827583710.1167/iovs.12‑994322836762
    [Google Scholar]
  5. TucekS. MusílkováJ. NedomaJ. ProskaJ. ShelkovnikovS. VorlícekJ. Positive cooperativity in the binding of alcuronium and N-methylscopolamine to muscarinic acetylcholine receptors.Mol. Pharmacol.19903856746802233700
    [Google Scholar]
  6. LinH.J. WanL. ChenW.C. LinJ.M. LinC.J. TsaiF.J. Muscarinic acetylcholine receptor 3 is dominant in myopia progression.Invest. Ophthalmol. Vis. Sci.201253106519652510.1167/iovs.11‑903122899762
    [Google Scholar]
  7. ZhouX. PardueM.T. IuvoneP.M. QuJ. Dopamine signaling and myopia development: What are the key challenges.Prog. Retin. Eye Res.201761607110.1016/j.preteyeres.2017.06.00328602573
    [Google Scholar]
  8. MegawP. MorganI. BoelenM. Vitreal dihydroxyphenylacetic acid (DOPAC) as an index of retinal dopamine release.J. Neurochem.20017661636164410.1046/j.1471‑4159.2001.00145.x11259481
    [Google Scholar]
  9. WitkovskyP. Dopamine and retinal function.Doc. Ophthalmol.20041081173910.1023/B:DOOP.0000019487.88486.0a15104164
    [Google Scholar]
  10. McCarthyC.S. MegawP. DevadasM. MorganI.G. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia.Exp. Eye Res.200784110010710.1016/j.exer.2006.09.01817094962
    [Google Scholar]
  11. NicklaD.L. TotonellyK. DhillonB. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks.Exp. Eye Res.201091571572010.1016/j.exer.2010.08.02120801115
    [Google Scholar]
  12. WardA.H. SiegwartJ.T.Jr FrostM.R. NortonT.T. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews.Vis. Neurosci.201734E00310.1017/S095252381600019528304244
    [Google Scholar]
  13. HuangF. WangQ. YanT. TangJ. HouX. ShuZ. WanF. YangY. QuJ. ZhouX. The role of the dopamine D2 receptor in form-deprivation myopia in mice: Studies with full and partial D2 receptor agonists and knockouts.Invest. Ophthalmol. Vis. Sci.20206164710.1167/iovs.61.6.4732572456
    [Google Scholar]
  14. ZhangS. YangJ. ReinachP.S. WangF. ZhangL. FanM. YingH. PanM. QuJ. ZhouX. Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs.Invest. Ophthalmol. Vis. Sci.201859114441444810.1167/iovs.17‑2157430193315
    [Google Scholar]
  15. TrierK. OlsenE.B. KobayashiT. Ribel-MadsenS.M. Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide, or L-ornithine.Br. J. Ophthalmol.199983121370137510.1136/bjo.83.12.137010574816
    [Google Scholar]
  16. CuiD. TrierK. ZengJ. WuK. YuM. GeJ. Adenosine receptor protein changes in guinea pigs with form deprivation myopia.Acta Ophthalmol.201088775976510.1111/j.1755‑3768.2009.01559.x19604158
    [Google Scholar]
  17. SchulteG. FredholmB.B. Signalling from adenosine receptors to mitogen-activated protein kinases.Cell. Signal.200315981382710.1016/S0898‑6568(03)00058‑512834807
    [Google Scholar]
  18. FredholmB.B. BättigK. HolménJ. NehligA. ZvartauE.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use.Pharmacol. Rev.19995118313310049999
    [Google Scholar]
  19. CunhaR.A. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors.Neurochem. Int.200138210712510.1016/S0197‑0186(00)00034‑611137880
    [Google Scholar]
  20. NieH.H. HuoL.J. YangX. GaoZ.Y. ZengJ.W. TrierK. CuiD.M. Effects of 7-methylxanthine on form-deprivation myopia in pigmented rabbits.Int. J. Ophthalmol.20125213313722762036
    [Google Scholar]
  21. KaurS. SukhijaJ. KhannaR. TakkarA. SinghM. Diplopia after excessive smart phone usage.Neuroophthalmology201943532332610.1080/01658107.2018.151898831741678
    [Google Scholar]
  22. DrexlerW. FindlO. SchmettererL. HitzenbergerC.K. FercherA.F. Eye elongation during accommodation in humans: Differences between emmetropes and myopes.Invest. Ophthalmol. Vis. Sci.19983911214021479761293
    [Google Scholar]
  23. NicklaD.L. Ocular diurnal rhythms and eye growth regulation: Where we are 50 years after Lauber.Exp. Eye Res.2013114253410.1016/j.exer.2012.12.01323298452
    [Google Scholar]
  24. El-NimriN.W. WildsoetC.F. Effects of topical latanoprost on intraocular pressure and myopia progression in young guinea pigs.Invest. Ophthalmol. Vis. Sci.20185962644265110.1167/iovs.17‑2289029847673
    [Google Scholar]
  25. McBrienN.A. StellW.K. CarrB. How does atropine exert its anti-myopia effects?Ophthalmic Physiol. Opt.201333337337810.1111/opo.1205223662969
    [Google Scholar]
  26. HuS. OuyangS. LiuH. ZhangD. DengZ. The effect of Wnt/β- catenin pathway on the scleral remolding in the mouse during form deprivation.Int. Ophthalmol.20214193099310710.1007/s10792‑021‑01875‑133983548
    [Google Scholar]
  27. LiX.Q. KangP. ZhouY. Ameliorative effect and mechanism of action of atropine on rats in a morphologic deprivation model of myopia.Hebei Med.202329017681
    [Google Scholar]
  28. HsiaoY.T. ChangW.A. KuoM.T. LoJ. LinH.C. YenM.C. JianS.F. ChenY.J. KuoP.L. Systematic analysis of transcriptomic profile of the effects of low dose atropine treatment on scleral fibroblasts using next-generation sequencing and bioinformatics.Int. J. Med. Sci.201916121652166710.7150/ijms.3857131839753
    [Google Scholar]
  29. ZhengZ.T. ZhangL.Y. FengY. Effect of low concentration of atropine eye drops on retinal and choroidal thickness and microcirculation in myopic children and adolescents.Recent Adv Ophthalmol20234311887892
    [Google Scholar]
  30. ChuaW.H. BalakrishnanV. ChanY.H. TongL. LingY. QuahB.L. TanD. Atropine for the treatment of childhood myopia.Ophthalmology2006113122285229110.1016/j.ophtha.2006.05.06216996612
    [Google Scholar]
  31. FanD.S.P. LamD.S.C. ChanC.K.M. FanA.H. CheungE.Y.Y. RaoS.K. Topical atropine in retarding myopic progression and axial length growth in children with moderate to severe myopia: A pilot study.Jpn. J. Ophthalmol.2007511273310.1007/s10384‑006‑0380‑717295137
    [Google Scholar]
  32. ZhuQ. TangY. GuoL. TigheS. ZhouY. ZhangX. ZhangJ. ZhuY. HuM. Efficacy and safety of 1% atropine on retardation of moderate myopia progression in chinese school children.Int. J. Med. Sci.202017217618110.7150/ijms.3936532038101
    [Google Scholar]
  33. PollingJ.R. TanE. DriessenS. LoudonS.E. WongH.L. van der SchansA. TidemanJ.W.L. KlaverC.C.W. A 3-year follow-up study of atropine treatment for progressive myopia in Europeans.Eye (Lond.)202034112020202810.1038/s41433‑020‑1122‑732958872
    [Google Scholar]
  34. ChiaA. ChuaW.H. CheungY.B. WongW.L. LinghamA. FongA. TanD. Atropine for the treatment of childhood myopia: Safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2).Ophthalmology2012119234735410.1016/j.ophtha.2011.07.03121963266
    [Google Scholar]
  35. ChiaA. ChuaW.H. WenL. FongA. GoonY.Y. TanD. Atropine for the treatment of childhood myopia: Changes after stopping atropine 0.01%, 0.1% and 0.5%.Am. J. Ophthalmol.20141572451457.e110.1016/j.ajo.2013.09.02024315293
    [Google Scholar]
  36. MorganI.G. HeM. An important step forward in myopia prevention: Low-dose atropine.Ophthalmology2016123223223310.1016/j.ophtha.2015.10.01226802703
    [Google Scholar]
  37. GongQ. JanowskiM. LuoM. WeiH. ChenB. YangG. LiuL. Efficacy and adverse effects of atropine in childhood myopia: A meta-analysis.JAMA Ophthalmol.2017135662463010.1001/jamaophthalmol.2017.109128494063
    [Google Scholar]
  38. LeoS.W. Scientific Bureau of World Society of Paediatric Ophthalmology and Strabismus (WSPOS) Current approaches to myopia control.Curr. Opin. Ophthalmol.201728326727510.1097/ICU.000000000000036728212157
    [Google Scholar]
  39. ChiaA. LuQ.S. TanD. Five-year clinical trial on atropine for the treatment of myopia 2: Myopia control with atropine 0.01% eyedrops.Ophthalmology2016123239139910.1016/j.ophtha.2015.07.00426271839
    [Google Scholar]
  40. CooperJ. TkatchenkoA.V. A review of current concepts of the etiology and treatment of myopia.Eye Contact Lens201844423124710.1097/ICL.000000000000049929901472
    [Google Scholar]
  41. ChierigoA. DesideriLF. TraversoC.E. VaggeA. The role of atropine in preventing myopia progression: An update.Pharmaceutics202214590010.3390/pharmaceutics1405090035631486
    [Google Scholar]
  42. LiF.F. KamK.W. ZhangY. TangS.M. YoungA.L. ChenL.J. ThamC.C. PangC.P. YamJ.C. Differential effects on ocular biometrics by 0.05%, 0.025%, and 0.01% atropine: Low-concentration atropine for myopia progression study.Ophthalmology2020127121603161110.1016/j.ophtha.2020.06.00432525048
    [Google Scholar]
  43. WangM CuiC SuiY YuS A MaJ X FuA C Effect of 0.02% and 0.01% atropine on astigmatism: A two-year clinical trial.BMC Ophthalmol.202222116110.1186/s12886‑022‑02385‑z35392841
    [Google Scholar]
  44. ChiaA. ChuaW-H. TanD. Effect of topical atropine on astigmatism.Br. J. Ophthalmol.200993679980210.1136/bjo.2008.14742119211603
    [Google Scholar]
  45. LeechE.M. CottriallC.L. McBrienN.A. Pirenzepine prevents form deprivation myopia in a dose dependent manner.Ophthalmic Physiol. Opt.199515535135610.1046/j.1475‑1313.1995.9500074n.x8524553
    [Google Scholar]
  46. YinG.C. GentleA. McBrienN.A. Muscarinic antagonist control of myopia: A molecular search for the M1 receptor in chick.Mol. Vis.20041078779315525903
    [Google Scholar]
  47. CottriallC.L. TruongH.T. McBrienN.A. Inhibition of myopia development in chicks using himbacine: A role for M4 receptors?Neuroreport200112112453245610.1097/00001756‑200108080‑0003311496128
    [Google Scholar]
  48. BartlettJ.D. NiemannK. HoudeB. AllredT. EdmondsonM.J. CrockettR.S. A tolerability study of pirenzepine ophthalmic gel in myopic children.J. Ocul. Pharmacol. Ther.200319327127910.1089/10807680332190839212828845
    [Google Scholar]
  49. TanD. LamD. ChuaW. ShupingD. CrockettR. Asian Pirenzepine Study Group One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia.Ophthalmology20051121849110.1016/j.ophtha.2004.06.03815629825
    [Google Scholar]
  50. SiatkowskiR.M. CotterS. MillerJ.M. ScherC.A. CrockettR.S. NovackG.D. US Pirenzepine Study Group Safety and efficacy of 2% pirenzepine ophthalmic gel in children with myopia: A 1-year, multicenter, double-masked, placebo-controlled parallel study.Arch. Ophthalmol.2004122111667167410.1001/archopht.122.11.166715534128
    [Google Scholar]
  51. SiatkowskiR.M. CotterS.A. CrockettR.S. MillerJ.M. NovackG.D. ZadnikK. U.S. Pirenzepine Study Group Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia.J. AAPOS200812433233910.1016/j.jaapos.2007.10.01418359651
    [Google Scholar]
  52. DaiS.Z. ZengJ.W. WangL.Y. Effect of pirenzepine on form deprivation myopia in chicks and its possible mechanism.Zhonghua Yan Ke Za Zhi2006421424716638280
    [Google Scholar]
  53. QianL. ZhaoH. LiX. YinJ. TangW. ChenP. WangQ. ZhangJ. Pirenzepine inhibits myopia in guinea pig model by regulating the balance of MMP-2 and TIMP-2 expression and increased tyrosine hydroxylase Levels.Cell Biochem. Biophys.20157131373137810.1007/s12013‑014‑0359‑925388839
    [Google Scholar]
  54. HanW.T. RongA. XuW. Combination with different anticholinergic eyedrops for the treatment of children myopia.Zhonghua Yi Xue Za Zhi201999241859186331269580
    [Google Scholar]
  55. ZhaoJ. LiuZ.S. ZengL. Efficacy of racemic scopolamine eye drops in controlling the progression of myopia degree in 112 cases.China Pharmaceut201726244749
    [Google Scholar]
  56. ShihY.F. ChenC.H. ChouA.C. HoT.C. LinL.L.K. HungP.T. Effects of different concentrations of atropine on controlling myopia in myopic children.J. Ocul. Pharmacol. Ther.1999151859010.1089/jop.1999.15.8510048351
    [Google Scholar]
  57. LiJ.J. Observations on the effect of tropicamide ophthalmic solution in the treatment of myopia in children.J North Pharm202118044041
    [Google Scholar]
  58. Huppé-GourguesF. CoudéG. LachapelleP. CasanovaC. Effects of the intravitreal administration of dopaminergic ligands on the b-wave amplitude of the rabbit electroretinogram.Vision Res.200545213714510.1016/j.visres.2004.08.00115581915
    [Google Scholar]
  59. SchmidK.L. WildsoetC.F. Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks.Optom. Vis. Sci.200481213714710.1097/00006324‑200402000‑0001215127933
    [Google Scholar]
  60. KaroutaC. AshbyR.S. Correlation between light levels and the development of deprivation myopia.Invest. Ophthalmol. Vis. Sci.201556129930910.1167/iovs.14‑1549925491298
    [Google Scholar]
  61. RoseK.A. MorganI.G. IpJ. KifleyA. HuynhS. SmithW. MitchellP. Outdoor activity reduces the prevalence of myopia in children.Ophthalmology200811581279128510.1016/j.ophtha.2007.12.01918294691
    [Google Scholar]
  62. AshbyR.S. SchaeffelF. The effect of bright light on lens compensation in chicks.Invest. Ophthalmol. Vis. Sci.201051105247525310.1167/iovs.09‑468920445123
    [Google Scholar]
  63. ThomsonK. MorganI. KellyT. KaroutaC. AshbyR. Coadministration with carbidopa enhances the antimyopic effects of levodopa in chickens.Invest. Ophthalmol. Vis. Sci.20216242510.1167/iovs.62.4.2533877264
    [Google Scholar]
  64. ThomsonK. KaroutaC. AshbyR. Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks.Exp. Eye Res.202020010823310.1016/j.exer.2020.10823332919992
    [Google Scholar]
  65. RepkaM.X. KrakerR.T. BeckR.W. AtkinsonC.S. BacalD.A. BremerD.L. DavisP.L. GearingerM.D. GlaserS.R. HooverD.L. LabyD.M. MorrisonD.G. RogersD.L. SalaN.A. SuhD.W. WheelerM.B. Pediatric Eye Disease Investigator Group Pilot study of levodopa dose as treatment for residual amblyopia in children aged 8 years to younger than 18 years.Arch. Ophthalmol.201012891215121710.1001/archophthalmol.2010.17820837811
    [Google Scholar]
  66. CuiD. TrierK. ZengJ. WuK. YuM. HuJ. ChenX. GeJ. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs.Acta Ophthalmol.201189432833410.1111/j.1755‑3768.2009.01688.x19860777
    [Google Scholar]
  67. HungL.F. ArumugamB. OstrinL. PatelN. TrierK. JongM. IiiE.L.S. The adenosine receptor antagonist, 7-Methylxanthine, alters emmetropizing responses in infant macaques.Invest. Ophthalmol. Vis. Sci.201859147248610.1167/iovs.17‑2233729368006
    [Google Scholar]
  68. TrierK. Munk Ribel-MadsenS. CuiD. Brøgger ChristensenS. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: A 36-month pilot study.J. Ocul. Biol. Dis. Infor.200812-4859310.1007/s12177‑008‑9013‑320072638
    [Google Scholar]
  69. SinghH. SinghH. SahajpalN.S. PaulS. KaurI. JainS.K. Sub-chronic and chronic toxicity evaluation of 7-methylxanthine: A new molecule for the treatment of myopia.Drug Chem. Toxicol.20224531383139410.1080/01480545.2020.183390433076712
    [Google Scholar]
  70. LiuY. WangY. LvH. JiangX. ZhangM. LiX. α-adrenergic agonist brimonidine control of experimentally induced myopia in guinea pigs: A pilot study.Mol. Vis.20172378579829204068
    [Google Scholar]
  71. SchmidK.L. AbbottM. HumphriesM. PyneK. WildsoetC.F. Timolol lowers intraocular pressure but does not inhibit the development of experimental myopia in chick.Exp. Eye Res.200070565966610.1006/exer.2000.083410870524
    [Google Scholar]
  72. DongL. LiY.F. WuH.T. Di KouH. LanY.J. WangY.X. JonasJ.B. WeiW.B. Lens-induced myopization and intraocular pressure in young guinea pigs.BMC Ophthalmol.202020134310.1186/s12886‑020‑01610‑x32842961
    [Google Scholar]
  73. MaedaN. New diagnostic methods for imaging the anterior segment of the eye to enable treatment modalities selection.Nippon Ganka Gakkai Zasshi2011115329732221476312
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501359801250102055530
Loading
/content/journals/cdt/10.2174/0113894501359801250102055530
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): atropine, ophthalmology, eye strain; drug therapy; intervention measure; Myopia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test