Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Background

Epilepsy is a multifaceted neurological disorder marked by seizures that can present with a wide range of symptoms. Despite the prevalent use of anti-epileptic drugs, drug resistance and adverse effects present considerable obstacles. Despite advancements in anti-epileptic drugs (AEDs), approximately 20-30% of patients remain drug-resistant, highlighting the need for innovative therapeutic strategies.

Aim

This study aimed to explore advancements in epilepsy diagnosis and treatment utilizing modern technology and medicines.

Methods

The literature survey was carried out using Scopus, ScienceDirect, and Google Scholar. Data from the last 10 years were preferred to include in the study.

Results

Emerging technologies, such as artificial intelligence, gene therapy, and wearable gadgets, have transformed epilepsy care. EEG and MRI play essential roles in diagnosis, while AI aids in evaluating big datasets for more accurate seizure identification. Machine learning and artificial intelligence are increasingly integrated into diagnostic processes to enhance seizure detection and classification. Wearable technology improves patient self-monitoring and helps clinical research. Furthermore, gene treatments offer promise by treating the fundamental causes of seizure activity, while stem cell therapies give neuroprotective and regenerative advantages. Dietary interventions, including ketogenic diets, are being examined for their ability to modify neurochemical pathways implicated in epilepsy.

Conclusion

Recent technological and therapeutic developments provide major benefits in epilepsy assessment and treatment, with AI and wearable devices enhancing seizure detection and patient monitoring. Nonetheless, additional study is essential to ensure greater clinical application and efficacy. Future perspectives include the potential of optogenetics and advanced signal processing techniques to revolutionize treatment paradigms, emphasizing the importance of personalized medicine in epilepsy care. Overall, a comprehensive understanding of the multifaceted nature of epilepsy is essential for developing effective interventions and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501364865250525091633
2025-05-27
2025-10-12
Loading full text...

Full text loading...

References

  1. BergAT BerkovicSF BrodieMJ BuchhalterJ CrossJH van Emde BoasW EngelJ FrenchJ GlauserTA MathernGW MoshéSL Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE commission on classification and terminology, 2005-2009.Epilepsia201051467668510.1111/j.1528‑1167.2010.02522.x20196795
    [Google Scholar]
  2. HelmstaedterC. ElgerC.E. Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease?Brain2009132102822283010.1093/brain/awp18219635728
    [Google Scholar]
  3. HermannB. SeidenbergM. BellB. RuteckiP. ShethR. RugglesK. WendtG. O’LearyD. MagnottaV. The neurodevelopmental impact of childhood-onset temporal lobe epilepsy on brain structure and function.Epilepsia20024391062107110.1046/j.1528‑1157.2002.49901.x12199732
    [Google Scholar]
  4. GhoshS. SinhaJ.K. GhoshS. SharmaH. BhaskarR. NarayananK.B. A comprehensive review of emerging trends and innovative therapies in epilepsy management.Brain Sci.2023139130510.3390/brainsci1309130537759906
    [Google Scholar]
  5. A mini review of doose syndrome: Clinical manifestations, diagnosis, and treatment.Moroc J Public Health.202351
    [Google Scholar]
  6. InoueT. IharaY. TomonohY. NakamuraN. NinomiyaS. FujitaT. IdeguchiH. YasumotoS. ZhangB. HiroseS. Early onset and focal spike discharges as indicators of poor prognosis for myoclonic-astatic epilepsy.Brain Dev.201436761361910.1016/j.braindev.2013.08.00924055341
    [Google Scholar]
  7. ValenciaI. Piñol-RipollG. KhuranaD.S. HardisonH.H. KothareS.V. MelvinJ.J. MarksH.G. LegidoA. Efficacy and safety of lamotrigine monotherapy in children and adolescents with epilepsy.Eur. J. Paediatr. Neurol.200913214114510.1016/j.ejpn.2008.03.00218585941
    [Google Scholar]
  8. EschbachK. MossA. JoshiC. AngioneK. SmithG. DempseyA. Juarez-colungaE. DemarestS.T. Diagnosis switching and outcomes in a cohort of patients with potential epilepsy with myoclonic-atonic seizures.Epilepsy Res.20181479510110.1016/j.eplepsyres.2018.09.01130286391
    [Google Scholar]
  9. ItohY. OguniH. HiranoY. OsawaM. Study of epileptic drop attacks in symptomatic epilepsy of early childhood – Differences from those in myoclonic-astatic epilepsy.Brain Dev.2015371495810.1016/j.braindev.2014.03.01324731746
    [Google Scholar]
  10. StengerE. SchaefferM. CancesC. MotteJ. AuvinS. VilleD. MaureyH. NabboutR. de Saint-MartinA. Efficacy of a ketogenic diet in resistant myoclono-astatic epilepsy: A French multicenter retrospective study.Epilepsy Res.2017131646910.1016/j.eplepsyres.2017.02.00528273610
    [Google Scholar]
  11. KaminskaA. OguniH. Lennox–Gastaut syndrome and epilepsy with myoclonic–astatic seizures.Handb. Clin. Neurol.201311164165210.1016/B978‑0‑444‑52891‑9.00067‑123622212
    [Google Scholar]
  12. LaxerK.D. TrinkaE. HirschL.J. CendesF. LangfittJ. DelantyN. ResnickT. BenbadisS.R. The consequences of refractory epilepsy and its treatment.Epilepsy Behav.201437597010.1016/j.yebeh.2014.05.03124980390
    [Google Scholar]
  13. StafstromC.E. CarmantL. Seizures and epilepsy: An overview for neuroscientists.Cold Spring Harb. Perspect. Med.201556a02242610.1101/cshperspect.a02242626033084
    [Google Scholar]
  14. IllumL. Transport of drugs from the nasal cavity to the central nervous system.Eur. J. Pharm. Sci.200011111810.1016/S0928‑0987(00)00087‑710913748
    [Google Scholar]
  15. DichterM.A. Emerging insights into mechanisms of epilepsy: Implications for new antiepileptic drug development.Epilepsia199435s4Suppl. 4S51S5710.1111/j.1528‑1157.1994.tb05956.x8174519
    [Google Scholar]
  16. McNamaraJ.O. Cellular and molecular basis of epilepsy.J. Neurosci.19941463413342510.1523/JNEUROSCI.14‑06‑03413.19948207463
    [Google Scholar]
  17. BorbélyS. DobóE. CzégéD. MolnárE. BakosM. SzűcsB. VinczeA. VilágiI. MihályA. Modification of ionotropic glutamate receptor–mediated processes in the rat hippocampus following repeated, brief seizures.Neuroscience2009159135836810.1016/j.neuroscience.2008.12.02719154779
    [Google Scholar]
  18. XuY. NguyenD. MohamedA. CarcelC. LiQ. KutlubaevM.A. AndersonC.S. HackettM.L. Frequency of a false positive diagnosis of epilepsy: A systematic review of observational studies.Seizure20164116717410.1016/j.seizure.2016.08.00527592470
    [Google Scholar]
  19. SmithD. DefallaB.A. ChadwickD.W. The misdiagnosis of epilepsy and the management of refractory epilepsy in a specialist clinic.QJM1999921152310.1093/qjmed/92.1.1510209668
    [Google Scholar]
  20. BandopadhyayR. SinghT. GhoneimM.M. AlshehriS. AngelopoulouE. PaudelY.N. PiperiC. AhmadJ. AlhakamyN.A. AlfalehM.A. MishraA. Recent developments in diagnosis of epilepsy: Scope of MicroRNA and technological advancements.Biology20211011109710.3390/biology1011109734827090
    [Google Scholar]
  21. SchmidtD. Is antiepileptogenesis a realistic goal in clinical trials? Concerns and new horizons.Epileptic Disord.201214210511310.1684/epd.2012.051222977896
    [Google Scholar]
  22. BrodieM.J. BarryS.J.E. BamagousG.A. NorrieJ.D. KwanP. Patterns of treatment response in newly diagnosed epilepsy.Neurology201278201548155410.1212/WNL.0b013e3182563b1922573629
    [Google Scholar]
  23. VetrikaniR. BobbyT.C. Diagnosis of epilepsy—A systematic review.2017 Third International Conference on Biosignals, Images and Instrumentation (ICBSII)Chennai, India, 16-18 March 2017, pp. 1-5
    [Google Scholar]
  24. AbhangPA GawaliBW MehrotraSC Introduction to EEG-and speech-based emotion recognitionAcademic Press Cambridge, Massachusetts2016
    [Google Scholar]
  25. VilarL. VilarC.F. LyraR. FreitasM.C. Pitfalls in the diagnostic evaluation of hyperprolactinemia.Neuroendocrinology2019109171910.1159/00049969430889571
    [Google Scholar]
  26. KulaseharanS. AminpourA. EbrahimiM. WidjajaE. Identifying lesions in paediatric epilepsy using morphometric and textural analysis of magnetic resonance images.Neuroimage Clin.20192110166310.1016/j.nicl.2019.10166330642755
    [Google Scholar]
  27. Ahmad MirW. Contribution of application of deep learning approaches on biomedical data in the diagnosis of neurological disorders: A review on recent findings.Advances in Computational Intelligence, Security and Internet of Things. ICCISIoT 2019Springer, Singapore, vol. 1192, pp. 87-97.
    [Google Scholar]
  28. AarabiA. Fazel-RezaiR. AghakhaniY. EEG seizure prediction: Measures and challenges.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.200920091864186719963526
    [Google Scholar]
  29. ChandakaS. ChatterjeeA. MunshiS. Support vector machines employing cross-correlation for emotional speech recognition.Measurement200942461161810.1016/j.measurement.2008.10.005
    [Google Scholar]
  30. TatumWOIV Handbook of EEG interpretation.Springer Publishing Company202110.1891/9780826147097
    [Google Scholar]
  31. AmiriM. AghaeiniaH. AmindavarH.R. Automatic epileptic seizure detection in EEG signals using sparse common spatial pattern and adaptive short-time Fourier transform-based synchrosqueezing transform.Biomed. Signal Process. Control20237910402210.1016/j.bspc.2022.104022
    [Google Scholar]
  32. MalekzadehA. ZareA. YaghoobiM. KobraviH.R. AlizadehsaniR. Epileptic seizures detection in EEG signals using fusion handcrafted and deep learning features.Sensors20212122771010.3390/s2122771034833780
    [Google Scholar]
  33. TzimourtaK.D. TzallasA.T. GiannakeasN. AstrakasL.G. TsalikakisD.G. AngelidisP. TsipourasM.G. A robust methodology for classification of epileptic seizures in EEG signals.Health Technol.20199213514210.1007/s12553‑018‑0265‑z
    [Google Scholar]
  34. UllahI. HussainM. QaziE-H. AboalsamhH. An automated system for epilepsy detection using EEG brain signals based on deep learning approach.Expert Syst. Appl.2018107617110.1016/j.eswa.2018.04.021
    [Google Scholar]
  35. KołodziejM. MajkowskiA. RyszA. Implementation of machine learning and deep learning techniques for the detection of epileptic seizures using intracranial electroencephalography.Appl. Sci.20231315874710.3390/app13158747
    [Google Scholar]
  36. KaurT. GandhiT.K. Automated diagnosis of epileptic seizures using EEG image representations and deep learning.Neuroscience Informatics20233310013910.1016/j.neuri.2023.100139
    [Google Scholar]
  37. AlalayahK.M. SenanE.M. AtlamH.F. AhmedI.A. ShatnawiH.S.A. Effective early detection of epileptic seizures through EEG signals using classification algorithms based on t-distributed stochastic neighbor embedding and K-means.Diagnostics20231311195710.3390/diagnostics1311195737296809
    [Google Scholar]
  38. HamandiK. RoutleyB.C. KoelewijnL. SinghK.D. Non-invasive brain mapping in epilepsy: Applications from magnetoencephalography.J. Neurosci. Methods201626028329110.1016/j.jneumeth.2015.11.01226642968
    [Google Scholar]
  39. Olde DubbelinkK.T.E. HillebrandA. StoffersD. DeijenJ.B. TwiskJ.W.R. StamC.J. BerendseH.W. Disrupted brain network topology in Parkinson’s disease: A longitudinal magnetoencephalography study.Brain2014137119720710.1093/brain/awt31624271324
    [Google Scholar]
  40. FredA.L. KumarS.N. Kumar HaridhasA. GhoshS. Purushothaman BhuvanaH. SimW.K.J. VimalanV. GivoF.A.S. JousmäkiV. PadmanabhanP. GulyásB. A brief introduction to magnetoencephalography (MEG) and its clinical applications.Brain Sci.202212678810.3390/brainsci1206078835741673
    [Google Scholar]
  41. SujithaV. SivagamiP. VijayaM.S. Predicting epileptic seizure from MRI using fast single shot proximal support vector machine.2011 3rd International Conference on Electronics Computer TechnologyKanyakumari, India, 08-10 April 2011, pp. 94-98
    [Google Scholar]
  42. MbubaC.K. NewtonC.R. Packages of care for epilepsy in low- and middle-income countries.PLoS Med.2009610e100016210.1371/journal.pmed.100016219823570
    [Google Scholar]
  43. FriedmanE. Epilepsy imaging in adults: Getting it right.AJR Am. J. Roentgenol.201420351093110310.2214/AJR.13.1203525341150
    [Google Scholar]
  44. CascinoG.D. JackC.R.Jr HirschornK.A. SharbroughF.W. Identification of the epileptic focus: Magnetic resonance imaging.Epilepsy Res. Suppl.19925951001418466
    [Google Scholar]
  45. FisherR.S. CrossJ.H. FrenchJ.A. HigurashiN. HirschE. JansenF.E. LagaeL. MoshéS.L. PeltolaJ. Roulet PerezE. Schefferi.e. ZuberiS.M. Operational classification of seizure types by the international league against epilepsy: Position paper of the ILAE commission for classification and terminology.Epilepsia201758452253010.1111/epi.1367028276060
    [Google Scholar]
  46. YuanJ. RanX. LiuK. YaoC. YaoY. WuH. LiuQ. Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review.J. Neurosci. Methods202236810944110.1016/j.jneumeth.2021.10944134942271
    [Google Scholar]
  47. SendersJ.T. StaplesP.C. KarhadeA.V. ZakiM.M. GormleyW.B. BroekmanM.L.D. SmithT.R. ArnaoutO. Machine learning and neurosurgical outcome prediction: A systematic review.World Neurosurg.2018109476486.e110.1016/j.wneu.2017.09.14928986230
    [Google Scholar]
  48. SilvaM.P. DamascenoJ.R. SeixasF.L. de SouzaA.S. SaadeD.C. Automated segmentation and volumetric analysis of brain components on MR imaging.Proceedings of the 2008 ACM symposium on Applied computingFortaleza, Ceara, Brazil, 2008, pp. 1422-1423.10.1145/1363686.1364015
    [Google Scholar]
  49. CendesF. McDonaldC.R. Artificial intelligence applications in the imaging of epilepsy and its comorbidities: Present and future.Epilepsy Curr.2022222919610.1177/1535759721106860035444507
    [Google Scholar]
  50. LiY. LiW. XiongJ. XiaJ. XieY. Comparison of supervised and unsupervised deep learning methods for medical image synthesis between computed tomography and magnetic resonance images.BioMed Res. Int.202020201519370710.1155/2020/519370733204701
    [Google Scholar]
  51. BarrasC.D. AsadiH. BaldewegT. ManciniL. YousryT.A. BisdasS. Functional magnetic resonance imaging in clinical practice: State of the art and science.Aust. Fam. Physician2016451179880327806448
    [Google Scholar]
  52. StippichC. Presurgical functional MRI and diffusion tensor imaging.Clinical Functional MRISpringerCham202212010.1007/978‑3‑030‑83343‑5_1
    [Google Scholar]
  53. TürediS. HasanbasogluA. GunduzA. YandiM. Clinical decision instruments for CT scan in minor head trauma.J. Emerg. Med.200834325325910.1016/j.jemermed.2007.05.05518180129
    [Google Scholar]
  54. SumnyanW. BeyongT. LiguL. Retrospective analysis of the role of computed tomography in the evaluation of children with seizure.Int J Contemp Med Surg Radiol.201834D6D910.21276/ijcmsr.2018.3.4.2
    [Google Scholar]
  55. ShirinL. BegumT. KabirM.S. Mohammed NoorN.F. SamsudinH.Z. BasriR. AbdullahJ.Y. IslamA. Facial dimension on three-dimensional computed tomography in patients with epilepsy: A preliminary study.Bangladesh Journal of Medical Science20232219710410.3329/bjms.v22i1.61859
    [Google Scholar]
  56. PitkänenA. LöscherW. VezzaniA. BeckerA.J. SimonatoM. LukasiukK. GröhnO. BankstahlJ.P. FriedmanA. AronicaE. GorterJ.A. RavizzaT. SisodiyaS.M. KokaiaM. BeckH. Advances in the development of biomarkers for epilepsy.Lancet Neurol.201615884385610.1016/S1474‑4422(16)00112‑527302363
    [Google Scholar]
  57. ErikssonH. BanoteR.K. LarssonD. BlennowK. ZetterbergH. ZelanoJ. Brain injury markers in new-onset seizures in adults: A pilot study.Seizure202192626710.1016/j.seizure.2021.08.01234455195
    [Google Scholar]
  58. BanoteR.K. LarssonD. BergerE. KumlienE. ZelanoJ. Quantitative proteomic analysis to identify differentially expressed proteins in patients with epilepsy.Epilepsy Res.202117410667410.1016/j.eplepsyres.2021.10667434029912
    [Google Scholar]
  59. SimaniL. SadeghiM. RyanF. DehghaniM. NiknazarS. Elevated blood-based brain biomarker levels in patients with epileptic seizures: a systematic review and meta-analysis.ACS Chem. Neurosci.202011244048405910.1021/acschemneuro.0c0049233147022
    [Google Scholar]
  60. BanoteR.K. AkelS. ZelanoJ. Blood biomarkers in epilepsy.Acta Neurol. Scand.2022146436236810.1111/ane.1361635411571
    [Google Scholar]
  61. AzizN. DetelsR. QuintJ.J. LiQ. GjertsonD. ButchA.W. Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions.Cytokine201684172410.1016/j.cyto.2016.05.01027208752
    [Google Scholar]
  62. Johannessen LandmarkC. JohannessenS.I. PatsalosP.N. Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects.Expert Opin. Drug Metab. Toxicol.202016322723810.1080/17425255.2020.172495632054370
    [Google Scholar]
  63. HopeO.A. HarrisK.M.J. Management of epilepsy during pregnancy and lactation.BMJ2023382e07463010.1136/bmj‑2022‑07463037684052
    [Google Scholar]
  64. VerrottiA. LattanziS. BrigoF. ZaccaraG. Pharmacodynamic interactions of antiepileptic drugs: From bench to clinical practice.Epilepsy Behav.2020104Pt A10693910.1016/j.yebeh.2020.10693932058303
    [Google Scholar]
  65. Billioti de GageS. BégaudB. BazinF. VerdouxH. DartiguesJ.F. PérèsK. KurthT. ParienteA. Benzodiazepine use and risk of dementia: prospective population based study.BMJ2012345sep27 4e623110.1136/bmj.e623123045258
    [Google Scholar]
  66. FleisherA.S. TruranD. MaiJ.T. LangbaumJ.B.S. AisenP.S. CummingsJ.L. JackC.R.Jr WeinerM.W. ThomasR.G. SchneiderL.S. TariotP.N. Alzheimer’s Disease Cooperative Study Chronic divalproex sodium use and brain atrophy in Alzheimer disease.Neurology201177131263127110.1212/WNL.0b013e318230a16c21917762
    [Google Scholar]
  67. TsolakiM. KourtisA. DivanoglouD. BostanzopoulouM. KazisA. Monotherapy with Lamotrigine in patients with Alzheimer’s disease and seizures.Am. J. Alzheimer Dis.2000152747910.1177/153331750001500209
    [Google Scholar]
  68. KozlovskayaL. Abou-KaoudM. StepenskyD. Quantitative analysis of drug delivery to the brain via nasal route.J. Control. Release201418913314010.1016/j.jconrel.2014.06.05324997277
    [Google Scholar]
  69. PrenticeR.N. RizwanS.B. Translational considerations in the development of intranasal treatments for epilepsy.Pharmaceutics202315123310.3390/pharmaceutics1501023336678862
    [Google Scholar]
  70. IllumL. Nasal delivery. The use of animal models to predict performance in man.J. Drug Target.19963642744210.3109/106118696090159638863136
    [Google Scholar]
  71. KullmannD.M. SchorgeS. WalkerM.C. WykesR.C. Gene therapy in epilepsy—is it time for clinical trials?Nat. Rev. Neurol.201410530030410.1038/nrneurol.2014.4324638133
    [Google Scholar]
  72. MesraouaB. DeleuD. KullmannD.M. ShettyA.K. BoonP. PeruccaE. MikatiM.A. Asadi-PooyaA.A. Novel therapies for epilepsy in the pipeline.Epilepsy Behav.20199728229010.1016/j.yebeh.2019.04.04231284159
    [Google Scholar]
  73. ChoudhuryS.R. HudryE. MaguireC.A. Sena-EstevesM. BreakefieldX.O. GrandiP. Viral vectors for therapy of neurologic diseases.Neuropharmacology2017120638010.1016/j.neuropharm.2016.02.01326905292
    [Google Scholar]
  74. IngusciS. VerlengiaG. SoukupovaM. ZucchiniS. SimonatoM. Gene therapy tools for brain diseases.Front. Pharmacol.20191072410.3389/fphar.2019.0072431312139
    [Google Scholar]
  75. HudryE. VandenbergheL.H. Therapeutic AAV gene transfer to the nervous system: a clinical reality.Neuron2019101583986210.1016/j.neuron.2019.02.01730844402
    [Google Scholar]
  76. LiC. SamulskiR.J. Engineering adeno-associated virus vectors for gene therapy.Nat. Rev. Genet.202021425527210.1038/s41576‑019‑0205‑432042148
    [Google Scholar]
  77. HoyS.M. Delandistrogene moxeparvovec: frst approval drugs.Drugs202383141323132910.1007/s40265‑023‑01929‑x37566211
    [Google Scholar]
  78. WangD. TaiP.W.L. GaoG. Adeno-associated virus vector as a platform for gene therapy delivery.Nat. Rev. Drug Discov.201918535837810.1038/s41573‑019‑0012‑930710128
    [Google Scholar]
  79. ChenW. YaoS. WanJ. TianY. HuangL. WangS. AkterF. WuY. YaoY. ZhangX. BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment.J. Control. Release202133312913810.1016/j.jconrel.2021.03.02933775685
    [Google Scholar]
  80. DevermanB.E. RavinaB.M. BankiewiczK.S. PaulS.M. SahD.W.Y. Gene therapy for neurological disorders: progress and prospects.Nat. Rev. Drug Discov.201817964165910.1038/nrd.2018.11030093643
    [Google Scholar]
  81. TornabeneP. TrapaniI. Can adeno-associated viral vectors deliver efectively large genes?Hum. Gene Ther.2020311-2475610.1089/hum.2019.22031916856
    [Google Scholar]
  82. KossoffE.H. Zupec-KaniaB.A. AuvinS. Ballaban-GilK.R. Christina BergqvistA.G. BlackfordR. BuchhalterJ.R. CaraballoR.H. CrossJ.H. DahlinM.G. DonnerE.J. GuzelO. JehleR.S. KlepperJ. KangH.C. LambrechtsD.A. LiuY.M.C. NathanJ.K. NordliD.R.Jr PfeiferH.H. RhoJ.M. Scheffer i.e. SharmaS. StafstromC.E. ThieleE.A. TurnerZ. VaccarezzaM.M. van der LouwE.J.T.M. VeggiottiP. WhelessJ.W. WirrellE.C. Charlie Foundation Matthew’s Friends Practice Committee of the Child Neurology Society Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group.Epilepsia Open20183217519210.1002/epi4.1222529881797
    [Google Scholar]
  83. HlebokazovF. DakukinaT. PotapnevM. KosmachevaS. MorozL. MisiukN. GolubevaT. SlobinaE. KraskoO. ShakhbazauA. HlavinskiI. GoncharovaN. Clinical benefits of single vs repeated courses of mesenchymal stem cell therapy in epilepsy patients.Clin. Neurol. Neurosurg.202120710673610.1016/j.clineuro.2021.10673634119901
    [Google Scholar]
  84. MilczarekO. JarochaD. Starowicz-FilipA. KwiatkowskiS. BadyraB. MajkaM. Multiple autologous bone marrow-derived CD271+ mesenchymal stem cell transplantation overcomes drug-resistant epilepsy in children.Stem Cells Transl. Med.201871203310.1002/sctm.17‑004129224250
    [Google Scholar]
  85. SzczepanikE. MierzewskaH. Antczak-MarachD. Figiel-DabrowskaA. TerczynskaI. TryfonJ. KrzesniakN. NoszczykB.H. SawickaE. Domanska-JanikK. SarnowskaA. Intrathecal Infusion of Autologous Adipose-Derived Regenerative Cells in Autoimmune Refractory Epilepsy: Evaluation of Safety and Efficacy.Stem Cells Int.20202020111610.1155/2020/710424332190059
    [Google Scholar]
  86. ChristodoulidesS.S. Neal e.g. FitzsimmonsG. ChaffeH.M. JeanesY.M. AitkenheadH. CrossJ.H. The effect of the classical and medium chain triglyceride ketogenic diet on vitamin and mineral levels.J. Hum. Nutr. Diet.2012251162610.1111/j.1365‑277X.2011.01172.x21615805
    [Google Scholar]
  87. OpertoF.F. SmirniD. ScuoppoC. PadovanoC. VivenzioV. QuatrosiG. CarotenutoM. PrecenzanoF. PastorinoG.M.G. Neuropsychological profile, emotional/behavioral problems, and parental stress in children with neurodevelopmental disorders.Brain Sci.202111558410.3390/brainsci1105058433946388
    [Google Scholar]
  88. TongX. DengY. LiuL. TangX. YuT. GanJ. CaiQ. LuoR. XiaoN. Clinical implementation of ketogenic diet in children with drug-resistant epilepsy: Advantages, disadvantages, and difficulties.Seizure202299758110.1016/j.seizure.2022.04.01535609496
    [Google Scholar]
  89. MeeusenH. RomagnoloA. HolsinkS.A.C. van den BroekT.J.M. van HelvoortA. GorterJ.A. van VlietE.A. VerkuylJ.M. SilvaJ.P. AronicaE. A novel hepatocyte ketone production assay to help the selection of nutrients for the ketogenic diet treatment of epilepsy.Sci. Rep.20241411194010.1038/s41598‑024‑62723‑738789658
    [Google Scholar]
  90. AnS. KangC. LeeH.W. Artificial intelligence and computational approaches for epilepsy.J. Epilepsy Res.202010181710.14581/jer.2000332983950
    [Google Scholar]
  91. FisherR.S. Therapeutic devices for epilepsy.Ann. Neurol.201271215716810.1002/ana.2262122367987
    [Google Scholar]
  92. MutananaN. TsvereM. ChiwesheM.K. General side effects and challenges associated with anti-epilepsy medication: A review of related literature.Afr. J. Prim. Health Care Fam. Med.2020121e1e510.4102/phcfm.v12i1.216232634006
    [Google Scholar]
  93. BystromL.L. LevyA.S. BrownE.C. FajardoM. WangS. Thalamic responsive neurostimulation for the treatment of refractory epilepsy: an individual patient data meta-analysis.J. Neurosurg. Pediatr.202332336637510.3171/2023.5.PEDS2255937347644
    [Google Scholar]
  94. OngJ.S. WongS.N. ArulsamyA. WattersonJ.L. ShaikhM.F. Medical technology: a systematic review on medical devices utilized for epilepsy prediction and management.Curr. Neuropharmacol.202220595096410.2174/1570159X1966621110815300134749622
    [Google Scholar]
  95. BaumgartnerC. KorenJ.P. Seizure detection using scalp- EEG.Epilepsia201859S1Suppl. 1142210.1111/epi.1405229873826
    [Google Scholar]
  96. WeisdorfS. Duun-HenriksenJ. KjeldsenM.J. PoulsenF.R. GangstadS.W. KjærT.W. Ultra-long-term subcutaneous home monitoring of epilepsy—490 days of EEG from nine patients.Epilepsia201960112204221410.1111/epi.1636031608435
    [Google Scholar]
  97. AbelT.J. Varela OsorioR. Amorim-LeiteR. MathieuF. KahaneP. MinottiL. HoffmannD. ChabardesS. Frameless robot-assisted stereoelectroencephalography in children: technical aspects and comparison with Talairach frame technique.J. Neurosurg. Pediatr.2018221374610.3171/2018.1.PEDS1743529676681
    [Google Scholar]
  98. DiLorenzoD.J. LeydeK.W. KaplanD. Neural state monitoring in the treatment of epilepsy: Seizure prediction—conceptualization to first-in-man study.Brain Sci.20199715610.3390/brainsci907015631266223
    [Google Scholar]
  99. CookM.J. O’BrienT.J. BerkovicS.F. MurphyM. MorokoffA. FabinyiG. D’SouzaW. YerraR. ArcherJ. LitewkaL. HoskingS. LightfootP. RuedebuschV. SheffieldW.D. SnyderD. LeydeK. HimesD. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study.Lancet Neurol.201312656357110.1016/S1474‑4422(13)70075‑923642342
    [Google Scholar]
  100. OnoratiF. RegaliaG. CaborniC. MiglioriniM. BenderD. PohM.Z. FrazierC. Kovitch ThroppE. MynattE.D. BidwellJ. MaiR. LaFranceW.C.Jr BlumA.S. FriedmanD. LoddenkemperT. Mohammadpour-TouserkaniF. ReinsbergerC. TognettiS. PicardR.W. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors.Epilepsia201758111870187910.1111/epi.1389928980315
    [Google Scholar]
  101. FürbassF. KampuschS. KaniusasE. KorenJ. PirkerS. HopfengärtnerR. StefanH. KlugeT. BaumgartnerC. Automatic multimodal detection for long-term seizure documentation in epilepsy.Clin. Neurophysiol.201712881466147210.1016/j.clinph.2017.05.01328622529
    [Google Scholar]
  102. DonnerE. DevinskyO. FriedmanD. Wearable digital health technology for epilepsy.N. Engl. J. Med.2024390873674510.1056/NEJMra230191338381676
    [Google Scholar]
  103. BeniczkyS. PolsterT. KjaerT.W. HjalgrimH. Detection of generalized tonic–clonic seizures by a wireless wrist accelerometer: A prospective, multicenter study.Epilepsia2013544e58e6110.1111/epi.1212023398578
    [Google Scholar]
  104. HalfordJ.J. SperlingM.R. NairD.R. DlugosD.J. TatumW.O. HarveyJ. FrenchJ.A. PollardJ.R. FaughtE. NoeK.H. HenryT.R. JetterG.M. LieO.V. MorganL.C. GirouardM.R. CardenasD.P. WhitmireL.E. CavazosJ.E. Detection of generalized tonic–clonic seizures using surface electromyographic monitoring.Epilepsia201758111861186910.1111/epi.1389728980702
    [Google Scholar]
  105. ArendsJ. ThijsR.D. GutterT. UngureanuC. CluitmansP. Van DijkJ. van AndelJ. TanF. de WeerdA. VledderB. HofstraW. LazeronR. van ThielG. RoesK.C.B. LeijtenF. the Dutch Tele-Epilepsy Consortium Multimodal nocturnal seizure detection in a residential care setting.Neurology20189121e2010e201910.1212/WNL.000000000000654530355702
    [Google Scholar]
  106. JaparidzeG. LoeckxD. BuckinxT. Armand LarsenS. ProostR. JansenK. MacMullinP. PaivaN. KasradzeS. RotenbergA. LagaeL. BeniczkyS. Automated detection of absence seizures using a wearable electroencephalographic device: a phase 3 validation study and feasibility of automated behavioral testing.Epilepsia202364S4Suppl. 4S40S4610.1111/epi.1720035176173
    [Google Scholar]
  107. BeniczkyS. ConradsenI. HenningO. FabriciusM. WolfP. Automated real-time detection of tonic-clonic seizures using a wearable EMG device.Neurology2018905e428e43410.1212/WNL.000000000000489329305441
    [Google Scholar]
  108. Prasanthi NoriL. ManikiranS.S. An outlook on regulatory aspects of 3D printing in pharmaceutical and medical sectors.Current Trends in Pharmacy and Pharmaceutical Chemistry2022439810810.18231/j.ctppc.2022.017
    [Google Scholar]
  109. AnadiotiE. KaneB. SoulasE. Current and emerging applications of 3D printing in restorative dentistry.Curr. Oral Health Rep.20185213313910.1007/s40496‑018‑0181‑3
    [Google Scholar]
  110. DimentL.E. ThompsonM.S. BergmannJ.H.M. Clinical efficacy and effectiveness of 3D printing: a systematic review.BMJ Open2017712e01689110.1136/bmjopen‑2017‑01689129273650
    [Google Scholar]
  111. HoD.H. HongP. HanJ.T. KimS.Y. KwonS.J. ChoJ.H. 3D-printed sugar scaffold for high-precision and highly sensitive active and passive wearable sensors.Adv. Sci.202071190252110.1002/advs.20190252131921572
    [Google Scholar]
  112. OtaH. ChaoM. GaoY. WuE. TaiL.C. ChenK. MatsuokaY. IwaiK. FahadH.M. GaoW. NyeinH.Y.Y. LinL. JaveyA. 3d printed “earable” smart devices for real-time detection of core body temperature.ACS Sens.20172799099710.1021/acssensors.7b0024728721726
    [Google Scholar]
  113. MenteşM.M. ÖzbalS. ErtaşG. Experiences on 3D printing of an EEG headset.2021 Medical Technologies Congress (TIPTEKNO)Antalya, Turkey, 04-06 November 2021, pp. 1-410.1109/TIPTEKNO53239.2021.9632974
    [Google Scholar]
  114. HoltmannM. Sonuga-BarkeE. CorteseS. BrandeisD. Neurofeedback for ADHD.Child Adolesc. Psychiatr. Clin. N. Am.201423478980610.1016/j.chc.2014.05.00625220087
    [Google Scholar]
  115. WyckoffS BirbaumerN Neurofeedback and brain–computer interfaces.The Handbook of Behavioral Medicine John Wiley & Sons201410.1002/9781118453940.ch15
    [Google Scholar]
  116. LorietteC. ZianeC. Ben HamedS. Neurofeedback for cognitive enhancement and intervention and brain plasticity.Rev. Neurol.202117791133114410.1016/j.neurol.2021.08.00434674879
    [Google Scholar]
  117. VatranoM. Nemirovsky i.e. ToninP. RiganelloF. Assessing consciousness through neurofeedback and neuromodulation: Possibilities and challenges.Life2023138167510.3390/life1308167537629532
    [Google Scholar]
  118. deBettencourtM.T. CohenJ.D. LeeR.F. NormanK.A. Turk-BrowneN.B. Closed-loop training of attention with real-time brain imaging.Nat. Neurosci.201518347047510.1038/nn.394025664913
    [Google Scholar]
  119. StermanM.B. EgnerT. Foundation and practice of neurofeedback for the treatment of epilepsy.Appl. Psychophysiol. Biofeedback2006311213510.1007/s10484‑006‑9002‑x16614940
    [Google Scholar]
  120. CiccarelliG. FedericoG. MeleG. Di CeccaA. MigliaccioM. IlardiC.R. AlfanoV. SalvatoreM. CavaliereC. Simultaneous real-time EEG-fMRI neurofeedback: A systematic review.Front. Hum. Neurosci.202317112301410.3389/fnhum.2023.112301437063098
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501364865250525091633
Loading
/content/journals/cdt/10.2174/0113894501364865250525091633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test