Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Melatonin, a master regulator of circadian rhythms and diverse physiological processes, exhibits complex interactions with various molecules. Sirtuins, a family of histone deacetylases, are key players in aging, stress responses, and metabolism and represent a critical target for melatonin. This review explores the multifaceted functions of melatonin and sirtuins, delving into the molecular mechanisms of their interaction. We further examine the impact of this synergy on various pathologies across different organs. Studies suggest that melatonin modulates SIRT1 and SIRT3 signaling pathways, offering protection in neurodegenerative, cardiovascular, skeletal, and pulmonary diseases, as well as renal and hepatic dysfunction. Additionally, melatonin-sirtuin interactions have been implicated in mitigating cancer development and promoting health in the female and male reproductive systems. Notably, the majority of studies across these systems demonstrate melatonin's ability to regulate SIRT1 and SIRT3 signaling, thereby alleviating associated pathologies. In conclusion, the intricate interplay between melatonin and, particularly, SIRT1 and SIRT3 emerges as a crucial modulator of diverse signaling pathways, with promising therapeutic implications for a wide range of diseases.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501360934250512052503
2025-05-14
2025-11-06
Loading full text...

Full text loading...

References

  1. OishiA. GbahouF. JockersR. Melatonin receptors, brain functions, and therapies.Handb. Clin. Neurol.202117934535610.1016/B978‑0‑12‑819975‑6.00022‑434225974
    [Google Scholar]
  2. ReiterR.J. TanD.X. Fuentes-BrotoL. Melatonin: A multitasking molecule.Prog. Brain Res.201018112715110.1016/S0079‑6123(08)81008‑420478436
    [Google Scholar]
  3. FinocchiaroL.M. ArztE.S. Fernández-CasteloS. CriscuoloM. FinkielmanS. NahmodV. Serotonin and melatonin synthesis in peripheral blood mononuclear cells: Stimulation by interferon-gamma as part of an immunomodulatory pathway.J. Interferon Res.19888670571610.1089/jir.1988.8.7053148005
    [Google Scholar]
  4. QuayW.B. Retinal and pineal hydroxyindole-o-methyl transferase activity in vertebrates.Life Sci.19654998399110.1016/0024‑3205(65)90202‑X5840097
    [Google Scholar]
  5. SlominskiA. PisarchikA. SemakI. SweatmanT. WortsmanJ. SzczesniewskiA. SlugockiG. McNultyJ. KauserS. TobinD.J. JingC. JohanssonO. Serotoninergic and melatoninergic systems are fully expressed in human skin.FASEB J.200216889689810.1096/fj.01‑0952fje12039872
    [Google Scholar]
  6. Bonnefont-RousselotD. CollinF. Melatonin: Action as antioxidant and potential applications in human disease and aging.Toxicology20102781556710.1016/j.tox.2010.04.00820417677
    [Google Scholar]
  7. CarrascalL. Nunez-AbadesP. AyalaA. CanoM. Role of melatonin in the inflammatory process and its therapeutic potential.Curr. Pharm. Des.201824141563158810.2174/138161282466618042611283229701146
    [Google Scholar]
  8. 2019 Alzheimer’s disease facts and figures.Alzheimers Dement.201915332138710.1016/j.jalz.2019.01.010
    [Google Scholar]
  9. MayoJ.C. SainzR.M. González MenéndezP. CepasV. TanD.X. ReiterR.J. Melatonin and sirtuins: A “not-so unexpected” relationship.J. Pineal Res.2017622e1239110.1111/jpi.1239128109165
    [Google Scholar]
  10. BlanderG. GuarenteL. The Sir2 family of protein deacetylases.Annu. Rev. Biochem.200473141743510.1146/annurev.biochem.73.011303.07365115189148
    [Google Scholar]
  11. AndersonR.M. BittermanK.J. WoodJ.G. MedvedikO. SinclairD.A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae.Nature2003423693618118510.1038/nature0157812736687
    [Google Scholar]
  12. ChalkiadakiA. GuarenteL. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction.Cell Metab.201216218018810.1016/j.cmet.2012.07.00322883230
    [Google Scholar]
  13. ChangH.C. GuarenteL. SIRT1 and other sirtuins in metabolism.Trends Endocrinol. Metab.201425313814510.1016/j.tem.2013.12.00124388149
    [Google Scholar]
  14. CohenH.Y. MillerC. BittermanK.J. WallN.R. HekkingB. KesslerB. HowitzK.T. GorospeM. de CaboR. SinclairD.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase.Science2004305568239039210.1126/science.109919615205477
    [Google Scholar]
  15. HanD. HuangW. LiX. GaoL. SuT. LiX. MaS. LiuT. LiC. ChenJ. GaoE. CaoF. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway.J. Pineal Res.201660217819210.1111/jpi.1229926607398
    [Google Scholar]
  16. ZhaoL. AnR. YangY. YangX. LiuH. YueL. LiX. LinY. ReiterR.J. QuY. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: The role of SIRT 1 signaling.J. Pineal Res.201559223023910.1111/jpi.1225426094939
    [Google Scholar]
  17. ZhaoL. LiuH. YueL. ZhangJ. LiX. WangB. LinY. QuY. Melatonin Attenuates Early Brain Injury via the Melatonin Receptor/Sirt1/NF-κB Signaling Pathway Following Subarachnoid Hemorrhage in Mice.Mol. Neurobiol.20175431612162110.1007/s12035‑016‑9776‑726867656
    [Google Scholar]
  18. AzediF. TavakolS. KetabforoushA.H.M.E. KhazaeiG. BakhtazadA. MousavizadehK. JoghataeiM.T. Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies.Life Sci.202230712087010.1016/j.lfs.2022.12087035948118
    [Google Scholar]
  19. Jung-HynesB. ReiterR.J. AhmadN. Sirtuins, melatonin and circadian rhythms: Building a bridge between aging and cancer.J. Pineal Res.201048191910.1111/j.1600‑079X.2009.00729.x20025641
    [Google Scholar]
  20. ReiterR.J. TanD-X. Fuentes-BrotoL. Chapter 8 - Melatonin: A Multitasking Molecule.Progress in Brain Research MartiniL. Amsterdam, NetherlandsElsevier201018112715110.1016/S0079‑6123(08)81008‑4
    [Google Scholar]
  21. DehdashtianE. PourhanifehM.H. HematiK. MehrzadiS. HosseinzadehA. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications.Diabetes Metab. Res. Rev.2020368e333610.1002/dmrr.333632415805
    [Google Scholar]
  22. CardinaliD.P. LarinF. WurtmanR.J. Action spectra for effects of light on hydroxyindole-o-methyl transferases in rat pineal, retina and harderian gland.Endocrinology197291487788610.1210/endo‑91‑4‑8775051343
    [Google Scholar]
  23. HuetherG. PoeggelerB. ReimerA. GeorgeA. Effect of tryptophan administration on circulating melatonin levels in chicks and rats: Evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract.Life Sci.1992511294595310.1016/0024‑3205(92)90402‑B1518369
    [Google Scholar]
  24. TanD. ManchesterL.C. ReiterR.J. QiW. ZhangM. WeintraubS.T. CabreraJ. SainzR.M. MayoJ.C. Identification of highly elevated levels of melatonin in bone marrow: Its origin and significance.Biochim. Biophys. Acta, Gen. Subj.199914721-220621410.1016/S0304‑4165(99)00125‑710572942
    [Google Scholar]
  25. OblapR. OlszańskaB. Presence and developmental regulation of serotonin N -acetyltransferase transcripts in oocytes and early quail embryos ( Coturnix coturnix japonica ).Mol. Reprod. Dev.200365213214010.1002/mrd.1023612704723
    [Google Scholar]
  26. CoelhoL.A. PeresR. AmaralF.G. ReiterR.J. Cipolla-NetoJ. Daily differential expression of melatonin-related genes and clock genes in rat cumulus–oocyte complex: Changes after pinealectomy.J. Pineal Res.201558449049910.1111/jpi.1223425807895
    [Google Scholar]
  27. NaranjoM.C. GuerreroJ.M. RubioA. LardoneP.J. Carrillo-VicoA. Carrascosa-SalmoralM.P. Jiménez-JorgeS. ArellanoM.V. Leal-NovalS.R. LealM. LissenE. MolineroP. Melatonin biosynthesis in the thymus of humans and rats.Cell. Mol. Life Sci.200764678179010.1007/s00018‑007‑6435‑117334663
    [Google Scholar]
  28. Rosales-CorralS. TanD.X. ReiterR.J. Valdivia-VelázquezM. Martínez-BarbozaG. Pablo Acosta-MartínezJ. OrtizG.G. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid- β peptide in rat brain: A comparative, in vivo study versus vitamin C and E.J. Pineal Res.2003352808410.1034/j.1600‑079X.2003.00057.x12887649
    [Google Scholar]
  29. PourhanifehM.H. HosseinzadehA. DehdashtianE. HematiK. MehrzadiS. Melatonin: New insights on its therapeutic properties in diabetic complications.Diabetol. Metab. Syndr.20201213010.1186/s13098‑020‑00537‑z32280378
    [Google Scholar]
  30. WangJ. XiaoX. ZhangY. ShiD. ChenW. FuL. LiuL. XieF. KangT. HuangW. DengW. Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells.J. Pineal Res.2012531779010.1111/j.1600‑079X.2012.00973.x22335196
    [Google Scholar]
  31. MehrzadiS. PourhanifehM.H. MirzaeiA. MoradianF. HosseinzadehA. An updated review of mechanistic potentials of melatonin against cancer: Pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress.Cancer Cell Int.202121118810.1186/s12935‑021‑01892‑133789681
    [Google Scholar]
  32. EdlichF. BCL-2 proteins and apoptosis: Recent insights and unknowns.Biochem. Biophys. Res. Commun.20185001263410.1016/j.bbrc.2017.06.19028676391
    [Google Scholar]
  33. ReiterR.J. MayoJ.C. TanD.X. SainzR.M. Alatorre-JimenezM. QinL. Melatonin as an antioxidant: Under promises but over delivers.J. Pineal Res.201661325327810.1111/jpi.1236027500468
    [Google Scholar]
  34. TanD.X. ManchesterL.C. TerronM.P. FloresL.J. ReiterR.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species?J. Pineal Res.2007421284210.1111/j.1600‑079X.2006.00407.x17198536
    [Google Scholar]
  35. RessmeyerA.R. MayoJ.C. ZeloskoV. SáinzR.M. TanD.X. PoeggelerB. AntolínI. ZsizsikB.K. ReiterR.J. HardelandR. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): Scavenging of free radicals and prevention of protein destruction.Redox Rep.20038420521310.1179/13510000322500270914599344
    [Google Scholar]
  36. MayoJ.C. TanD.X. SainzR.M. Lopez-BurilloS. ReiterR.J. Oxidative damage to catalase induced by peroxyl radicals: Functional protection by melatonin and other antioxidants.Free Radic. Res.200337554355310.1080/107157603100008320612797476
    [Google Scholar]
  37. TanD. ReiterR. ManchesterL. YanM. El-SawiM. SainzR. MayoJ. KohenR. AllegraM. HardelanR. Chemical and physical properties and potential mechanisms: Melatonin as a broad spectrum antioxidant and free radical scavenger.Curr. Top. Med. Chem.20022218119710.2174/156802602339444311899100
    [Google Scholar]
  38. MayoJ.C. SainzR.M. AntolínI. HerreraF. MartinV. RodriguezC. Melatonin regulation of antioxidant enzyme gene expression.Cell. Mol. Life Sci.200259101706171310.1007/PL0001249812475181
    [Google Scholar]
  39. GalanoA. TanD.X. ReiterR.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK.J. Pineal Res.201354324525710.1111/jpi.1201022998574
    [Google Scholar]
  40. MayoJ.C. SainzR.M. TanD.X. HardelandR. LeonJ. RodriguezC. ReiterR.J. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages.J. Neuroimmunol.20051651-213914910.1016/j.jneuroim.2005.05.00215975667
    [Google Scholar]
  41. GalanoA. MedinaM.E. TanD.X. ReiterR.J. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: A physicochemical analysis.J. Pineal Res.201558110711610.1111/jpi.1219625424557
    [Google Scholar]
  42. QuintanaC. CabreraJ. PerdomoJ. EstévezF. LoroJ.F. ReiterR.J. QuintanaJ. Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells.J. Pineal Res.201661338139510.1111/jpi.1235627465521
    [Google Scholar]
  43. ReiterR.J. TanD.X. GalanoA. Melatonin: Exceeding expectations.Physiology (Bethesda)201429532533310.1152/physiol.00011.201425180262
    [Google Scholar]
  44. KorkmazA. Sanchez-BarceloE.J. TanD.X. ReiterR.J. Role of melatonin in the epigenetic regulation of breast cancer.Breast Cancer Res. Treat.20091151132710.1007/s10549‑008‑0103‑518592373
    [Google Scholar]
  45. VenkateshS. WorkmanJ.L. Histone exchange, chromatin structure and the regulation of transcription.Nat. Rev. Mol. Cell Biol.201516317818910.1038/nrm394125650798
    [Google Scholar]
  46. MarmorsteinR. Structure of histone deacetylases: Insights into substrate recognition and catalysis.Structure20019121127113310.1016/S0969‑2126(01)00690‑611738039
    [Google Scholar]
  47. KazantsevA.G. ThompsonL.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders.Nat. Rev. Drug Discov.200871085486810.1038/nrd268118827828
    [Google Scholar]
  48. LooS. RineJ. Silencers and domains of generalized repression.Science199426451661768177110.1126/science.82092578209257
    [Google Scholar]
  49. ChalkiadakiA. GuarenteL. The multifaceted functions of sirtuins in cancer.Nat. Rev. Cancer2015151060862410.1038/nrc398526383140
    [Google Scholar]
  50. NogueirasR. HabeggerK.M. ChaudharyN. FinanB. BanksA.S. DietrichM.O. HorvathT.L. SinclairD.A. PflugerP.T. TschöpM.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism.Physiol. Rev.20129231479151410.1152/physrev.00022.201122811431
    [Google Scholar]
  51. LombardD.B. AltF.W. ChengH.L. BunkenborgJ. StreeperR.S. MostoslavskyR. KimJ. YancopoulosG. ValenzuelaD. MurphyA. YangY. ChenY. HirscheyM.D. BronsonR.T. HaigisM. GuarenteL.P. FareseR.V.Jr WeissmanS. VerdinE. SchwerB. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation.Mol. Cell. Biol.200727248807881410.1128/MCB.01636‑0717923681
    [Google Scholar]
  52. KitamuraY.I. KitamuraT. KruseJ.P. RaumJ.C. SteinR. GuW. AcciliD. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction.Cell Metab.20052315316310.1016/j.cmet.2005.08.00416154098
    [Google Scholar]
  53. CantóC. Gerhart-HinesZ. FeigeJ.N. LagougeM. NoriegaL. MilneJ.C. ElliottP.J. PuigserverP. AuwerxJ. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature200945872411056106010.1038/nature0781319262508
    [Google Scholar]
  54. FordJ. JiangM. MilnerJ. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival.Cancer Res.20056522104571046310.1158/0008‑5472.CAN‑05‑192316288037
    [Google Scholar]
  55. RodgersJ.T. LerinC. HaasW. GygiS.P. SpiegelmanB.M. PuigserverP. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1.Nature2005434702911311810.1038/nature0335415744310
    [Google Scholar]
  56. CatonP.W. NayuniN.K. KieswichJ. KhanN.Q. YaqoobM.M. CorderR. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5.J. Endocrinol.201020519710610.1677/JOE‑09‑034520093281
    [Google Scholar]
  57. WangB. HasanM.K. AlvaradoE. YuanH. WuH. ChenW.Y. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response.Oncogene201130890792110.1038/onc.2010.46820956937
    [Google Scholar]
  58. WangY.C. PetersonS.E. LoringJ.F. Protein post-translational modifications and regulation of pluripotency in human stem cells.Cell Res.201424214316010.1038/cr.2013.15124217768
    [Google Scholar]
  59. GuoP. PiH. XuS. ZhangL. LiY. LiM. CaoZ. TianL. XieJ. LiR. HeM. LuY. LiuC. DuanW. YuZ. ZhouZ. Melatonin Improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro .Toxicol. Sci.2014142118219510.1093/toxsci/kfu16425159133
    [Google Scholar]
  60. YangH. YangT. BaurJ.A. PerezE. MatsuiT. CarmonaJ.J. LammingD.W. Souza-PintoN.C. BohrV.A. RosenzweigA. de CaboR. SauveA.A. SinclairD.A. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival.Cell200713061095110710.1016/j.cell.2007.07.03517889652
    [Google Scholar]
  61. FinleyL.W.S. CarracedoA. LeeJ. SouzaA. EgiaA. ZhangJ. Teruya-FeldsteinJ. MoreiraP.I. CardosoS.M. ClishC.B. PandolfiP.P. HaigisM.C. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization.Cancer Cell201119341642810.1016/j.ccr.2011.02.01421397863
    [Google Scholar]
  62. JeongS.M. XiaoC. FinleyL.W.S. LahusenT. SouzaA.L. PierceK. LiY.H. WangX. LaurentG. GermanN.J. XuX. LiC. WangR.H. LeeJ. CsibiA. CerioneR. BlenisJ. ClishC.B. KimmelmanA. DengC.X. HaigisM.C. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism.Cancer Cell201323445046310.1016/j.ccr.2013.02.02423562301
    [Google Scholar]
  63. SebastiánC. ZwaansB.M.M. SilbermanD.M. GymrekM. GorenA. ZhongL. RamO. TrueloveJ. GuimaraesA.R. ToiberD. CosentinoC. GreensonJ.K. MacDonaldA.I. McGlynnL. MaxwellF. EdwardsJ. GiacosaS. GuccioneE. WeisslederR. BernsteinB.E. RegevA. ShielsP.G. LombardD.B. MostoslavskyR. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism.Cell201215161185119910.1016/j.cell.2012.10.04723217706
    [Google Scholar]
  64. LimJ.H. LeeY.M. ChunY.S. ChenJ. KimJ.E. ParkJ.W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha.Mol. Cell201038686487810.1016/j.molcel.2010.05.02320620956
    [Google Scholar]
  65. BellE.L. EmerlingB.M. RicoultS.J.H. GuarenteL. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production.Oncogene201130262986299610.1038/onc.2011.3721358671
    [Google Scholar]
  66. MukdaS. PanmaneeJ. BoontemP. GovitrapongP. Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus.Neurosci. Lett.2016621394610.1016/j.neulet.2016.04.01327068758
    [Google Scholar]
  67. CarloniS. FavraisG. SalibaE. AlbertiniM.C. ChalonS. LonginiM. GressensP. BuonocoreG. BalduiniW. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and mi R -34a/silent information regulator 1 pathway.J. Pineal Res.201661337038010.1111/jpi.1235427441728
    [Google Scholar]
  68. LeeJ.H. MoonJ.H. NazimU.M.D. LeeY.J. SeolJ.W. EoS.K. LeeJ.H. ParkS.Y. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway.Oncotarget2016711120751208810.18632/oncotarget.767926918354
    [Google Scholar]
  69. CarloniS. AlbertiniM.C. GalluzziL. BuonocoreG. ProiettiF. BalduiniW. Melatonin reduces endoplasmic reticulum stress and preserves sirtuin 1 expression in neuronal cells of newborn rats after hypoxia–ischemia.J. Pineal Res.201457219219910.1111/jpi.1215624980917
    [Google Scholar]
  70. BozaykutP. SahinA. KarademirB. OzerN.K. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis.Mech. Ageing Dev.2016157172910.1016/j.mad.2016.07.00127393639
    [Google Scholar]
  71. ZhouL. ChenX. LiuT. GongY. ChenS. PanG. CuiW. LuoZ.P. PeiM. YangH. HeF. Melatonin reverses H 2 O 2 -induced premature senescence in mesenchymal stem cells via the SIRT 1-dependent pathway.J. Pineal Res.201559219020510.1111/jpi.1225025975679
    [Google Scholar]
  72. BaiX.Z. HeT. GaoJ.X. LiuY. LiuJ.Q. HanS.C. LiY. ShiJ.H. HanJ.T. TaoK. XieS.T. WangH.T. HuD.H. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1.Sci. Rep.2016613219910.1038/srep3219927599451
    [Google Scholar]
  73. ShahS.A. KhanM. JoM.H. JoM.G. AminF.U. KimM.O. Melatonin stimulates the SIRT 1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain.CNS Neurosci. Ther.2017231334410.1111/cns.1258827421686
    [Google Scholar]
  74. YuL. LiangH. DongX. ZhaoG. JinZ. ZhaiM. YangY. ChenW. LiuJ. YiW. YangJ. YiD. DuanW. YuS. Reduced silent information regulator 1 signaling exacerbates myocardial ischemia–reperfusion injury in type 2 diabetic rats and the protective effect of melatonin.J. Pineal Res.201559337639010.1111/jpi.1226926327197
    [Google Scholar]
  75. YuL. SunY. ChengL. JinZ. YangY. ZhaiM. PeiH. WangX. ZhangH. MengQ. ZhangY. YuS. DuanW. Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: Role of SIRT 1.J. Pineal Res.201457222823810.1111/jpi.1216125052362
    [Google Scholar]
  76. DwaichK.H. Al-AmranF.G.Y. AL-SheibaniB.I.M. Al-AubaidyH.A. Melatonin effects on myocardial ischemia–reperfusion injury: Impact on the outcome in patients undergoing coronary artery bypass grafting surgery.Int. J. Cardiol.201622197798610.1016/j.ijcard.2016.07.10827441478
    [Google Scholar]
  77. WeiN. PuY. YangZ. PanY. LiuL. RETRACTED: Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: Role of Yap-OPA1 signaling pathway and mitochondrial fusion.Biomed. Pharmacother.201911020321210.1016/j.biopha.2018.11.06030476721
    [Google Scholar]
  78. YangX. GengK.Y. ZhangY.S. ZhangJ.F. YangK. ShaoJ.X. XiaW.L. Sirt3 deficiency impairs neurovascular recovery in ischemic stroke.CNS Neurosci. Ther.201824977578310.1111/cns.1285329777578
    [Google Scholar]
  79. VermaR. RitzelR.M. CrapserJ. FriedlerB.D. McCulloughL.D. Evaluation of the neuroprotective effect of Sirt3 in experimental stroke.Transl. Stroke Res.2019101576610.1007/s12975‑017‑0603‑x29302794
    [Google Scholar]
  80. XiongY. WangM. ZhaoJ. WangL. LiX. ZhangZ. JiaL. HanY. SIRT3 is correlated with the malignancy of non-small cell lung cancer.Int. J. Oncol.201750390391010.3892/ijo.2017.386828197634
    [Google Scholar]
  81. ShiodaN. HanF. FukunagaK. Role of Akt and ERK signaling in the neurogenesis following brain ischemia.Int. Rev. Neurobiol.20098537538710.1016/S0074‑7742(09)85026‑519607982
    [Google Scholar]
  82. ShiojimaI. WalshK. Role of Akt signaling in vascular homeostasis and angiogenesis.Circ. Res.200290121243125010.1161/01.RES.0000022200.71892.9F12089061
    [Google Scholar]
  83. HouX. ZengH. HeX. ChenJ.X. Sirt3 is essential for apelin-induced angiogenesis in post-myocardial infarction of diabetes.J. Cell. Mol. Med.2015191536110.1111/jcmm.1245325311234
    [Google Scholar]
  84. YangX. GengK. ZhangJ. ZhangY. ShaoJ. XiaW. Sirt3 mediates the inhibitory effect of adjudin on astrocyte activation and glial scar formation following ischemic stroke.Front. Pharmacol.2017894310.3389/fphar.2017.0094329311941
    [Google Scholar]
  85. NovgorodovS.A. RileyC.L. KefflerJ.A. YuJ. KindyM.S. MacklinW.B. LombardD.B. GudzT.I. SIRT3 deacetylates ceramide synthases: Implications for mitochondrial dysfunction and brain injury.J. Biol. Chem.201629141957197310.1074/jbc.M115.66822826620563
    [Google Scholar]
  86. LiuL. ChenH. JinJ. TangZ. YinP. ZhongD. LiG. Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation.Life Sci.201923911703610.1016/j.lfs.2019.11703631697951
    [Google Scholar]
  87. CarloniS. PerroneS. BuonocoreG. LonginiM. ProiettiF. BalduiniW. Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats.J. Pineal Res.200844215716410.1111/j.1600‑079X.2007.00503.x18289167
    [Google Scholar]
  88. JikiZ. LecourS. NduhirabandiF. Cardiovascular benefits of dietary melatonin: A myth or a reality?Front. Physiol.2018952810.3389/fphys.2018.0052829867569
    [Google Scholar]
  89. TobeihaM. JafariA. FadaeiS. MirazimiS.M.A. DashtiF. AmiriA. KhanH. AsemiZ. ReiterR.J. HamblinM.R. MirzaeiH. Evidence for the benefits of melatonin in cardiovascular disease.Front. Cardiovasc. Med.2022988831910.3389/fcvm.2022.88831935795371
    [Google Scholar]
  90. ReiterR.J. TanD.X. ParedesS.D. Fuentes-BrotoL. Beneficial effects of melatonin in cardiovascular disease.Ann. Med.201042427628510.3109/0785389090348574820455793
    [Google Scholar]
  91. BinduS. PillaiV.B. GuptaM.P. Role of sirtuins in regulating pathophysiology of the heart.Trends Endocrinol. Metab.201627856357310.1016/j.tem.2016.04.01527210897
    [Google Scholar]
  92. VikramA. LewarchikC.M. YoonJ.Y. NaqviA. KumarS. MorganG.M. JacobsJ.S. LiQ. KimY.R. KassanM. LiuJ. GabaniM. KumarA. MehdiH. ZhuX. GuanX. KutschkeW. ZhangX. BoudreauR.L. DaiS. MatasicD.S. JungS.B. MarguliesK.B. KumarV. BachschmidM.M. LondonB. IraniK. Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel.Nat. Med.201723336136710.1038/nm.428428191886
    [Google Scholar]
  93. ColakY. OzturkO. SenatesE. TuncerI. YorulmazE. AdaliG. DoganayL. EncF.Y. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease.Med. Sci. Monit.2011175HY5HY910.12659/MSM.88174921525818
    [Google Scholar]
  94. LavuS. BossO. ElliottP.J. LambertP.D. Sirtuins — novel therapeutic targets to treat age-associated diseases.Nat. Rev. Drug Discov.200871084185310.1038/nrd266518827827
    [Google Scholar]
  95. SheibaniM. AziziY. ShayanM. NezamoleslamiS. EslamiF. FarjooM.H. DehpourA.R. Doxorubicin-induced cardiotoxicity: An overview on pre-clinical therapeutic approaches.Cardiovasc. Toxicol.202222429231010.1007/s12012‑022‑09721‑135061218
    [Google Scholar]
  96. AsherG. GatfieldD. StratmannM. ReinkeH. DibnerC. KreppelF. MostoslavskyR. AltF.W. SchiblerU. SIRT1 regulates circadian clock gene expression through PER2 deacetylation.Cell2008134231732810.1016/j.cell.2008.06.05018662546
    [Google Scholar]
  97. NakahataY. KaluzovaM. GrimaldiB. SaharS. HirayamaJ. ChenD. GuarenteL.P. Sassone-CorsiP. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control.Cell2008134232934010.1016/j.cell.2008.07.00218662547
    [Google Scholar]
  98. AgilA. Navarro-AlarcónM. RuizR. AbuhamadahS. El-MirM.Y. VázquezG.F. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats.J. Pineal Res.201150220721210.1111/j.1600‑079X.2010.00830.x21087312
    [Google Scholar]
  99. Egan BenovaT. ViczenczovaC. Szeiffova BacovaB. KnezlV. DosenkoV. RauchovaH. ZemanM. ReiterR.J. TribulovaN. Obesity-associated alterations in cardiac connexin-43 and PKC signaling are attenuated by melatonin and omega-3 fatty acids in female rats.Mol. Cell. Biochem.20194541-219120210.1007/s11010‑018‑3463‑030446908
    [Google Scholar]
  100. FaveroG. StacchiottiA. CastrezzatiS. BonominiF. AlbaneseM. RezzaniR. RodellaL.F. Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice.Nutr. Res.2015351089190010.1016/j.nutres.2015.07.00126250620
    [Google Scholar]
  101. FaveroG. FrancoC. StacchiottiA. RodellaL.F. RezzaniR. RETRACTED: Sirtuin1 role in the melatonin protective effects against obesity-related heart injury.Front. Physiol.20201110310.3389/fphys.2020.0010332218740
    [Google Scholar]
  102. ZhangC.L. FengH. LiL. WangJ.Y. WuD. HaoY.T. WangZ. ZhangY. WuL.L. Globular CTRP3 promotes mitochondrial biogenesis in cardiomyocytes through AMPK/PGC-1α pathway.Biochim. Biophys. Acta, Gen. Subj.2017186111 Pt A3085309410.1016/j.bbagen.2016.10.02227793739
    [Google Scholar]
  103. LinJ. HandschinC. SpiegelmanB.M. Metabolic control through the PGC-1 family of transcription coactivators.Cell Metab.20051636137010.1016/j.cmet.2005.05.00416054085
    [Google Scholar]
  104. YuL. GongB. DuanW. FanC. ZhangJ. LiZ. XueX. XuY. MengD. LiB. ZhangM. Bin Zhang JinZ. YuS. YangY. WangH. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: Role of AMPK-PGC-1α-SIRT3 signaling.Sci. Rep.2017714133710.1038/srep4133728120943
    [Google Scholar]
  105. DhallaN. ElmoselhiA.B. HataT. MakinoN. Status of myocardial antioxidants in ischemia–reperfusion injury.Cardiovasc. Res.200047344645610.1016/S0008‑6363(00)00078‑X10963718
    [Google Scholar]
  106. SlezakJ. TribulovaN. PristacovaJ. UhrikB. ThomasT. KhaperN. KaulN. SingalP.K. Hydrogen peroxide changes in ischemic and reperfused heart. Cytochemistry and biochemical and X-ray microanalysis.Am. J. Pathol.199514737727817677188
    [Google Scholar]
  107. LesnefskyE.J. ChenQ. TandlerB. HoppelC.L. Mitochondrial dysfunction and myocardial ischemia-reperfusion: Implications for novel therapies.Annu. Rev. Pharmacol. Toxicol.201757153556510.1146/annurev‑pharmtox‑010715‑10333527860548
    [Google Scholar]
  108. PiccaA. LezzaA.M.S. Regulation of mitochondrial biogenesis through TFAM–mitochondrial DNA interactions.Mitochondrion201525677510.1016/j.mito.2015.10.00126437364
    [Google Scholar]
  109. YangY. DuanW. LiY. JinZ. YanJ. YuS. YiD. Novel role of silent information regulator 1 in myocardial ischemia.Circulation2013128202232224010.1161/CIRCULATIONAHA.113.00248024218438
    [Google Scholar]
  110. HsuC.P. ZhaiP. YamamotoT. MaejimaY. MatsushimaS. HariharanN. ShaoD. TakagiH. OkaS. SadoshimaJ. Silent information regulator 1 protects the heart from ischemia/reperfusion.Circulation2010122212170218210.1161/CIRCULATIONAHA.110.95803321060073
    [Google Scholar]
  111. MerxM.W. WeberC. Sepsis and the Heart.Circulation2007116779380210.1161/CIRCULATIONAHA.106.67835917698745
    [Google Scholar]
  112. MaejimaY. IsobeM. SadoshimaJ. Regulation of autophagy by Beclin 1 in the heart.J. Mol. Cell. Cardiol.201695192510.1016/j.yjmcc.2015.10.03226546165
    [Google Scholar]
  113. SunY. YaoX. ZhangQ.J. ZhuM. LiuZ.P. CiB. XieY. CarlsonD. RothermelB.A. SunY. LevineB. HillJ.A. WolfS.E. MineiJ.P. ZangQ.S. Beclin-1-dependent autophagy protects the heart during sepsis.Circulation2018138202247226210.1161/CIRCULATIONAHA.117.03282129853517
    [Google Scholar]
  114. ChenX. PanZ. FangZ. LinW. WuS. YangF. LiY. FuH. GaoH. LiS. Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1.J. Neuroinflammation201815131010.1186/s12974‑018‑1345‑830409173
    [Google Scholar]
  115. PiQ.Z. WangX.W. JianZ.L. ChenD. ZhangC. WuQ.C. Melatonin alleviates cardiac dysfunction via increasing sirt1-mediated beclin-1 deacetylation and autophagy during sepsis.Inflammation20214431184119310.1007/s10753‑021‑01413‑233452667
    [Google Scholar]
  116. ZhangW. HeB. WuY. QiaoJ. PengZ. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice.Life Sci.201921781510.1016/j.lfs.2018.11.05530500551
    [Google Scholar]
  117. Arabacı TamerS. AltınolukT. EmranM. KorkmazS. YükselR.G. BaykalZ. DurZ.S. LeventH.N. UralM.A. YükselM. ÇevikÖ. ErcanF. YıldırımA. YeğenB.Ç. Melatonin alleviates ovariectomy-induced cardiovascular inflammation in sedentary or exercised rats by upregulating SIRT1.Inflammation20224562202222210.1007/s10753‑022‑01685‑235665875
    [Google Scholar]
  118. Dominguez-RodriguezA. Abreu-GonzalezP. ReiterR.J. Melatonin and cardiovascular disease: Myth or reality?Rev. Esp. Cardiol. (Engl. Ed.)201265321521810.1016/j.rec.2011.10.01122245066
    [Google Scholar]
  119. OzkalayciF. KocabasU. AltunB.U. Pandi-PerumalS. AltunA. Relationship between melatonin and cardiovascular disease.Cureus2021131e1293533654615
    [Google Scholar]
  120. LuoQ. CaiY. ZhaoQ. JiangY. TianL. LiuY. LiuW.J. Renal protective effects of melatonin in animal models of diabetes mellitus-related kidney damage: A systematic review and meta-analysis.J. Diabetes Res.2022202211210.1155/2022/377041735746917
    [Google Scholar]
  121. RahmanA. HasanA.U. KoboriH. Melatonin in chronic kidney disease: A promising chronotherapy targeting the intrarenal renin–angiotensin system.Hypertens. Res.201942692092310.1038/s41440‑019‑0223‑930760889
    [Google Scholar]
  122. HrenakJ. PaulisL. RepovaK. AziriovaS. NagtegaalE. ReiterR. SimkoF. Melatonin and renal protection: Novel perspectives from animal experiments and human studies (review).Curr. Pharm. Des.201421793694910.2174/138161282066614092909292925269563
    [Google Scholar]
  123. RusscherM. KochB. NagtegaalE. van der PuttenK. ter WeeP. GaillardC. The role of melatonin treatment in chronic kidney disease.Front. Biosci.20121772644265610.2741/407522652802
    [Google Scholar]
  124. TheofilisP. VordoniA. KalaitzidisR.G. The role of melatonin in chronic kidney disease and its associated risk factors: A new tool in our arsenal?Am. J. Nephrol.202253756557410.1159/00052544135767942
    [Google Scholar]
  125. OwczarekA. GieczewskaK.B. PolanskaM. PaterczykB. GruzaA. WiniarskaK. Melatonin lowers HIF-1α content in human proximal tubular cells (HK-2) due to preventing its deacetylation by sirtuin 1.Front. Physiol.20211157291110.3389/fphys.2020.57291133519498
    [Google Scholar]
  126. NishiyamaK. HiraiK. The melatonin agonist ramelteon induces duration-dependent clock gene expression through cAMP signaling in pancreatic INS-1 β-cells.PLoS One201497e10207310.1371/journal.pone.010207325013953
    [Google Scholar]
  127. ZhangC. SuoM. LiuL. QiY. ZhangC. XieL. ZhengX. MaC. LiJ. YangJ. BuP. Melatonin alleviates contrast-induced acute kidney injury by activation of sirt3.Oxid. Med. Cell. Longev.202120211666888710.1155/2021/666888734122726
    [Google Scholar]
  128. XiaoY.D. HuangY.Y. WangH.X. WuY. LengY. LiuM. SunQ. XiaZ.Y. Thioredoxin-interacting protein mediates NLRP3 inflammasome activation involved in the susceptibility to ischemic acute kidney injury in diabetes.Oxid. Med. Cell. Longev.201620161238606810.1155/2016/238606827867451
    [Google Scholar]
  129. ZhangB. ZhaiM. LiB. LiuZ. LiK. JiangL. ZhangM. YiW. YangJ. YiD. LiangH. JinZ. DuanW. YuS. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway.Oxid. Med. Cell. Longev.201820181315980110.1155/2018/315980129675132
    [Google Scholar]
  130. ShenX. HuB. XuG. ChenF. MaR. ZhangN. LiuJ. MaX. ZhuJ. WuY. ShenR. Activation of Nrf2/HO-1 pathway by glycogen synthase kinase-3β inhibition attenuates renal ischemia/reperfusion injury in diabetic rats.Kidney Blood Press. Res.201742236937810.1159/00047794728624830
    [Google Scholar]
  131. ShiS. LeiS. TangC. WangK. XiaZ. Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway.Biosci. Rep.2019391BSR2018161410.1042/BSR2018161430578379
    [Google Scholar]
  132. PalmieriT. LavrentievaA. GreenhalghD.G. Acute kidney injury in critically ill burn patients. Risk factors, progression and impact on mortality.Burns201036220521110.1016/j.burns.2009.08.01219836141
    [Google Scholar]
  133. SteinvallI. BakZ. SjobergF. Acute kidney injury is common, parallels organ dysfunction or failure, and carries appreciable mortality in patients with major burns: A prospective exploratory cohort study.Crit. Care2008125R12410.1186/cc703218847465
    [Google Scholar]
  134. YeungF. HobergJ.E. RamseyC.S. KellerM.D. JonesD.R. FryeR.A. MayoM.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase.EMBO J.200423122369238010.1038/sj.emboj.760024415152190
    [Google Scholar]
  135. CanninoG. FerruggiaE. LuparelloC. RinaldiA.M. Cadmium and mitochondria.Mitochondrion20099637738410.1016/j.mito.2009.08.00919706341
    [Google Scholar]
  136. ChouX. DingF. ZhangX. DingX. GaoH. WuQ. Sirtuin-1 ameliorates cadmium-induced endoplasmic reticulum stress and pyroptosis through XBP-1s deacetylation in human renal tubular epithelial cells.Arch. Toxicol.201993496598610.1007/s00204‑019‑02415‑830796460
    [Google Scholar]
  137. GeJ. ZhangC. SunY.C. ZhangQ. LvM.W. GuoK. LiJ.L. Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation.Sci. Total Environ.20196891160117110.1016/j.scitotenv.2019.06.40531466156
    [Google Scholar]
  138. DongW. YanL. TanY. ChenS. ZhangK. GongZ. LiuW. ZouH. SongR. ZhuJ. LiuG. LiuZ. Melatonin improves mitochondrial function by preventing mitochondrial fission in cadmium-induced rat proximal tubular cell injury via SIRT1–PGC-1α pathway activation.Ecotoxicol. Environ. Saf.202224211387910.1016/j.ecoenv.2022.11387935841654
    [Google Scholar]
  139. HongY.A. KimJ.E. JoM. KoG.J. The role of sirtuins in kidney diseases.Int. J. Mol. Sci.20202118668610.3390/ijms2118668632932720
    [Google Scholar]
  140. BianC. RenH. Sirtuin family and diabetic kidney disease.Front. Endocrinol. (Lausanne)20221390106610.3389/fendo.2022.90106635774140
    [Google Scholar]
  141. Acuña CastroviejoD. LópezL.C. EscamesG. LópezA. GarcíaJ.A. ReiterR.J. Melatonin-mitochondria interplay in health and disease.Curr. Top. Med. Chem.201111222124010.2174/15680261179486351721244359
    [Google Scholar]
  142. DragicevicN. CopesN. O’Neal-MoffittG. JinJ. BuzzeoR. MamcarzM. TanJ. CaoC. OlceseJ.M. ArendashG.W. BradshawP.C. Melatonin treatment restores mitochondrial function in Alzheimer’s mice: A mitochondrial protective role of melatonin membrane receptor signaling.J. Pineal Res.2011511758610.1111/j.1600‑079X.2011.00864.x21355879
    [Google Scholar]
  143. El-SokkaryG.H. NafadyA.A. ShabashE.H. Melatonin administration ameliorates cadmium-induced oxidative stress and morphological changes in the liver of rat.Ecotoxicol. Environ. Saf.201073345646310.1016/j.ecoenv.2009.09.01419913298
    [Google Scholar]
  144. LagougeM. ArgmannC. Gerhart-HinesZ. MezianeH. LerinC. DaussinF. MessadeqN. MilneJ. LambertP. ElliottP. GenyB. LaaksoM. PuigserverP. AuwerxJ. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.Cell200612761109112210.1016/j.cell.2006.11.01317112576
    [Google Scholar]
  145. RodgersJ.T. LerinC. Gerhart-HinesZ. PuigserverP. Metabolic adaptations through the PGC-1α and SIRT1 pathways.FEBS Lett.20085821465310.1016/j.febslet.2007.11.03418036349
    [Google Scholar]
  146. WangR. LiJ.J. DiaoS. KwakY.D. LiuL. ZhiL. BüelerH. BhatN.R. WilliamsR.W. ParkE.A. LiaoF.F. Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons.Cell Metab.201317568569410.1016/j.cmet.2013.03.01623663737
    [Google Scholar]
  147. ZhuH. WangZ. ZhuX. WuX. LiE. XuY. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1α Expression in experimental stroke.Neuropharmacology2010591-2707610.1016/j.neuropharm.2010.03.01720381504
    [Google Scholar]
  148. RenJ. JinM. YouZ. LuoM. HanY. LiG. LiuH. Melatonin prevents chronic intermittent hypoxia-induced injury by inducing sirtuin 1-mediated autophagy in steatotic liver of mice.Sleep Breath.201923382583610.1007/s11325‑018‑1741‑430411173
    [Google Scholar]
  149. GerhardssonL. EnglystV. LundströmN.G. SandbergS. NordbergG. Cadmium, copper and zinc in tissues of deceased copper smelter workers.J. Trace Elem. Med. Biol.200216426126610.1016/S0946‑672X(02)80055‑412530590
    [Google Scholar]
  150. ChwełatiukE. WłostowskiT. KrasowskaA. BondaE. The effect of orally administered melatonin on tissue accumulation and toxicity of cadmium in mice.J. Trace Elem. Med. Biol.200619425926510.1016/j.jtemb.2005.10.00616443174
    [Google Scholar]
  151. WobserH. DornC. WeissT.S. AmannT. BollheimerC. BüttnerR. SchölmerichJ. HellerbrandC. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells.Cell Res.2009198996100510.1038/cr.2009.7319546889
    [Google Scholar]
  152. AhishaliE. DemirK. AhishaliB. AkyuzF. PinarbasiB. PoturogluS. IbrisimD. GulluogluM. OzdilS. BesisikF. KaymakogluS. BoztasG. CakalogluY. MunganZ. CanberkY. OktenA. Electron microscopic findings in non-alcoholic fatty liver disease: Is there a difference between hepatosteatosis and steatohepatitis?J. Gastroenterol. Hepatol.201025361962610.1111/j.1440‑1746.2009.06142.x20370732
    [Google Scholar]
  153. SekiS. KitadaT. YamadaT. SakaguchiH. NakataniK. WakasaK. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases.J. Hepatol.2002371566210.1016/S0168‑8278(02)00073‑912076862
    [Google Scholar]
  154. PuriN. SodhiK. HaarstadM. KimD.H. BohincS. FoglioE. FaveroG. AbrahamN.G. Heme induced oxidative stress attenuates sirtuin1 and enhances adipogenesis in mesenchymal stem cells and mouse pre-adipocytes.J. Cell. Biochem.201211361926193510.1002/jcb.2406122234917
    [Google Scholar]
  155. YamazakiY. UsuiI. KanataniY. MatsuyaY. TsuneyamaK. FujisakaS. BukhariA. SuzukiH. SendaS. ImanishiS. HirataK. IshikiM. HayashiR. UrakazeM. NemotoH. KobayashiM. TobeK. Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice.Am. J. Physiol. Endocrinol. Metab.20092975E1179E118610.1152/ajpendo.90997.200819724016
    [Google Scholar]
  156. PonugotiB. KimD.H. XiaoZ. SmithZ. MiaoJ. ZangM. WuS.Y. ChiangC.M. VeenstraT.D. KemperJ.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism.J. Biol. Chem.201028544339593397010.1074/jbc.M110.12297820817729
    [Google Scholar]
  157. BonominiF. FaveroG. RodellaL.F. MoghadasianM.H. RezzaniR. Melatonin Modulation of Sirtuin-1 Attenuates Liver Injury in a Hypercholesterolemic Mouse Model.BioMed Res. Int.201820181910.1155/2018/796845229516009
    [Google Scholar]
  158. LiR. XinT. LiD. WangC. ZhuH. ZhouH. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy.Redox Biol.20181822924310.1016/j.redox.2018.07.01130056271
    [Google Scholar]
  159. CardinaliD.P. LadizeskyM.G. BoggioV. CutreraR.A. MautalenC. Melatonin effects on bone: Experimental facts and clinical perspectives.J. Pineal Res.2003342818710.1034/j.1600‑079X.2003.00028.x12562498
    [Google Scholar]
  160. MunmunF. Witt-EnderbyP.A. Melatonin effects on bone: Implications for use as a therapy for managing bone loss.J. Pineal Res.2021711e1274910.1111/jpi.1274934085304
    [Google Scholar]
  161. MalakotiF. ZareF. ZarezadehR. Raei SadighA. SadeghpourA. MajidiniaM. YousefiB. AlemiF. The role of melatonin in bone regeneration: A review of involved signaling pathways.Biochimie2022202567010.1016/j.biochi.2022.08.00836007758
    [Google Scholar]
  162. Kobayashi-SunJ. SuzukiN. HattoriA. YamaguchiM. KobayashiI. Melatonin suppresses both osteoblast and osteoclast differentiation through repression of epidermal Erk signaling in the zebrafish scale.Biochem. Biophys. Res. Commun.2020530464465010.1016/j.bbrc.2020.07.07532768192
    [Google Scholar]
  163. ZhangJ. XuQ. SunW. ZhouX. FuD. MaoL. New insights into the role of NLRP3 inflammasome in pathogenesis and treatment of chronic obstructive pulmonary disease.J. Inflamm. Res.2021144155416810.2147/JIR.S32432334471373
    [Google Scholar]
  164. ZhengS. ZhouC. YangH. LiJ. FengZ. LiaoL. LiY. Melatonin accelerates osteoporotic bone defect repair by promoting osteogenesis–angiogenesis coupling.Front. Endocrinol. (Lausanne)20221382666010.3389/fendo.2022.82666035273570
    [Google Scholar]
  165. YangC. KangF. HuangX. ZhangW. WangS. HanM. ZhangZ. LiJ. Melatonin attenuates bone cancer pain via the SIRT1/HMGB1 pathway.Neuropharmacology202222010925410.1016/j.neuropharm.2022.10925436122662
    [Google Scholar]
  166. ZhouW. LiuY. ShenJ. YuB. BaiJ. LinJ. GuoX. SunH. ChenZ. YangH. XuY. GengD. Melatonin increases bone mass around the prostheses of OVX rats by ameliorating mitochondrial oxidative stress via the SIRT3/SOD2 signaling pathway.Oxid. Med. Cell. Longev.2019201911610.1155/2019/401961931110599
    [Google Scholar]
  167. TresguerresI.F. ClementeC. BlancoL. KhraisatA. TamimiF. TresguerresJ.A.F. Effects of local melatonin application on implant osseointegration.Clin. Implant Dent. Relat. Res.201214339539910.1111/j.1708‑8208.2010.00271.x20455901
    [Google Scholar]
  168. CutandoA. Gómez-MorenoG. AranaC. MuñozF. Lopez-PeñaM. StephensonJ. ReiterR.J. Melatonin stimulates osteointegration of dental implants.J. Pineal Res.200845217417910.1111/j.1600‑079X.2008.00573.x18298460
    [Google Scholar]
  169. TanD-X. Melatonin: A potent, endogenous hydroxyl radical scavenger.Endocr. J.199315760
    [Google Scholar]
  170. LiuH.D. RenM.X. LiY. ZhangR.T. MaN.F. LiT.L. JiangW.K. ZhouZ. YaoX.W. LiuZ.Y. YangM. Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells and promotes osteogenesis by activating SIRT1.Free Radic. Res.2022561637610.1080/10715762.2022.203758035109721
    [Google Scholar]
  171. AmbrosiT.H. ScialdoneA. GrajaA. GohlkeS. JankA.M. BocianC. WoelkL. FanH. LoganD.W. SchürmannA. SaraivaL.R. SchulzT.J. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration.Cell Stem Cell2017206771784.e610.1016/j.stem.2017.02.00928330582
    [Google Scholar]
  172. LiuL.F. ShenW.J. UenoM. PatelS. KraemerF.B. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes.BMC Genomics201112121210.1186/1471‑2164‑12‑21221545734
    [Google Scholar]
  173. HuangX. ChenW. GuC. LiuH. HouM. QinW. ZhuX. ChenX. LiuT. YangH. HeF. Melatonin suppresses bone marrow adiposity in ovariectomized rats by rescuing the imbalance between osteogenesis and adipogenesis through SIRT1 activation.J. Orthop. Translat.202338849710.1016/j.jot.2022.10.00236381247
    [Google Scholar]
  174. TsengP.C. HouS.M. ChenR.J. PengH.W. HsiehC.F. KuoM.L. YenM.L. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis.J. Bone Miner. Res.201126102552256310.1002/jbmr.46021713995
    [Google Scholar]
  175. BagherifardA. HosseinzadehA. KooshaF. SheibaniM. Karimi-BehnaghA. ReiterR.J. MehrzadiS. Melatonin and bone-related diseases: An updated mechanistic overview of current evidence and future prospects.Osteoporos. Int.202334101677170110.1007/s00198‑023‑06836‑137393580
    [Google Scholar]
  176. YangC. KangF. HuangX. WuW. HouG. ZhengK. HanM. KanB. ZhangZ. LiJ. Spinal sirtuin 2 attenuates bone cancer pain by deacetylating FoxO3a.Biochim. Biophys. Acta Mol. Basis Dis.20241870416712910.1016/j.bbadis.2024.16712938513990
    [Google Scholar]
  177. HabtemariamS. DagliaM. SuredaA. SelamogluZ. Fuat GulhanM. Mohammad NabaviS. Melatonin and respiratory diseases: A review.Curr. Top. Med. Chem.201617446748810.2174/156802661666616082412033827558675
    [Google Scholar]
  178. ZhangL. LiF. SuX. LiY. WangY. FangR. GuoY. JinT. ShanH. ZhaoX. YangR. ShanH. LiangH. Melatonin prevents lung injury by regulating apelin 13 to improve mitochondrial dysfunction.Exp. Mol. Med.201951711210.1038/s12276‑019‑0273‑831273199
    [Google Scholar]
  179. HosseinzadehA. PourhanifehM.H. AmiriS. SheibaniM. IrilouzadianR. ReiterR.J. MehrzadiS. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis.Pharmacol. Rep.2024761255010.1007/s43440‑023‑00554‑537995089
    [Google Scholar]
  180. HardelandR. TanD.X. Protection by melatonin in respiratory diseases: Valuable information for the treatment of COVID-19.Melatonin Research20203326427510.32794/mr11250061
    [Google Scholar]
  181. HeB. ZhangW. QiaoJ. PengZ. ChaiX. Melatonin protects against COPD by attenuating apoptosis and endoplasmic reticulum stress via upregulating SIRT1 expression in rats.Can. J. Physiol. Pharmacol.201997538639110.1139/cjpp‑2018‑052930673309
    [Google Scholar]
  182. de Matos CavalcanteA.G. de BruinP.F.C. de BruinV.M.S. NunesD.M. PereiraE.D.B. CavalcanteM.M. AndradeG.M. Melatonin reduces lung oxidative stress in patients with chronic obstructive pulmonary disease: A randomized, double-blind, placebo-controlled study.J. Pineal Res.201253323824410.1111/j.1600‑079X.2012.00992.x22507631
    [Google Scholar]
  183. PengZ. ZhangW. QiaoJ. HeB. Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD.Int. Immunopharmacol.201862232810.1016/j.intimp.2018.06.03329990691
    [Google Scholar]
  184. RajendrasozhanS. YangS.R. KinnulaV.L. RahmanI. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease.Am. J. Respir. Crit. Care Med.2008177886187010.1164/rccm.200708‑1269OC18174544
    [Google Scholar]
  185. YanagisawaS. PapaioannouA.I. PapaporfyriouA. BakerJ.R. VuppusettyC. LoukidesS. BarnesP.J. ItoK. Decreased Serum Sirtuin-1 in COPD.Chest2017152234335210.1016/j.chest.2017.05.00428506610
    [Google Scholar]
  186. ShinN.R. KoJ.W. KimJ.C. ParkG. KimS.H. KimM.S. KimJ.S. ShinI.S. Role of melatonin as an SIRT1 enhancer in chronic obstructive pulmonary disease induced by cigarette smoke.J. Cell. Mol. Med.20202411151115610.1111/jcmm.1481631762195
    [Google Scholar]
  187. MinT. BodasM. MazurS. VijN. Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema.J. Mol. Med. (Berl.)201189657759310.1007/s00109‑011‑0732‑821318260
    [Google Scholar]
  188. KelsenS.G. DuanX. JiR. PerezO. LiuC. MeraliS. Cigarette smoke induces an unfolded protein response in the human lung: A proteomic approach.Am. J. Respir. Cell Mol. Biol.200838554155010.1165/rcmb.2007‑0221OC18079489
    [Google Scholar]
  189. GuoR. LiuW. LiuB. ZhangB. LiW. XuY. SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism.Int. J. Cardiol.2015191364510.1016/j.ijcard.2015.04.24525965594
    [Google Scholar]
  190. HanB. LiS. LvY. YangD. LiJ. YangQ. WuP. LvZ. ZhangZ. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway.Food Funct.20191095555556510.1039/C9FO01152H31429458
    [Google Scholar]
  191. MatthayM.A. McAuleyD.F. WareL.B. Clinical trials in acute respiratory distress syndrome: Challenges and opportunities.Lancet Respir. Med.20175652453410.1016/S2213‑2600(17)30188‑128664851
    [Google Scholar]
  192. HummlerE. PlanèsC. Importance of ENaC-mediated sodium transport in alveolar fluid clearance using genetically-engineered mice.Cell. Physiol. Biochem.201025106307010.1159/00027205120054145
    [Google Scholar]
  193. BourneR.S. MillsG.H. Melatonin: Possible implications for the postoperative and critically ill patient.Intensive Care Med.200632337137910.1007/s00134‑005‑0061‑x16477412
    [Google Scholar]
  194. LiJ. LiuL. ZhouX. LuX. LiuX. LiG. LongJ. Melatonin Attenuates Sepsis-Induced Acute Lung Injury Through Improvement of Epithelial Sodium Channel-Mediated Alveolar Fluid Clearance Via Activation of SIRT1/SGK1/Nedd4-2 Signaling Pathway.Front. Pharmacol.20201159065210.3389/fphar.2020.59065233362546
    [Google Scholar]
  195. WulffP. VallonV. HuangD.Y. VölklH. YuF. RichterK. JansenM. SchlünzM. KlingelK. LoffingJ. KauselmannG. BöslM.R. LangF. KuhlD. Impaired renal Na+ retention in the sgk1-knockout mouse.J. Clin. Invest.200211091263126810.1172/JCI021569612417564
    [Google Scholar]
  196. ZhangX.Y. LiW. ZhangJ.R. LiC.Y. ZhangJ. LvX.J. Roles of sirtuin family members in chronic obstructive pulmonary disease.Respir. Res.20222316610.1186/s12931‑022‑01986‑y35313881
    [Google Scholar]
  197. JiangY.Z. HuangX.R. ChangJ. ZhouY. HuangX.T. SIRT1: An intermediator of key pathways regulating pulmonary diseases.Lab. Invest.2024104510204410.1016/j.labinv.2024.10204438452903
    [Google Scholar]
  198. MichanS. SinclairD. Sirtuins in mammals: Insights into their biological function.Biochem. J.2007404111310.1042/BJ2007014017447894
    [Google Scholar]
  199. LongoV.D. KennedyB.K. Sirtuins in aging and age-related disease.Cell2006126225726810.1016/j.cell.2006.07.00216873059
    [Google Scholar]
  200. LeeC. EtchegarayJ.P. CagampangF.R.A. LoudonA.S.I. ReppertS.M. Posttranslational mechanisms regulate the mammalian circadian clock.Cell2001107785586710.1016/S0092‑8674(01)00610‑911779462
    [Google Scholar]
  201. BlaskD.E. DauchyR.T. SauerL.A. Putting cancer to sleep at night: The neuroendocrine/circadian melatonin signal.Endocr. J.200527217918810.1385/ENDO:27:2:17916217131
    [Google Scholar]
  202. LahtiT.A. PartonenT. KyyrönenP. KauppinenT. PukkalaE. Night-time work predisposes to non-Hodgkin lymphoma.Int. J. Cancer200812392148215110.1002/ijc.2356618697199
    [Google Scholar]
  203. ViswanathanA.N. SchernhammerE.S. Circulating melatonin and the risk of breast and endometrial cancer in women.Cancer Lett.200928111710.1016/j.canlet.2008.11.00219070424
    [Google Scholar]
  204. KuboT. OzasaK. MikamiK. WakaiK. FujinoY. WatanabeY. MikiT. NakaoM. HayashiK. SuzukiK. MoriM. WashioM. SakauchiF. ItoY. YoshimuraT. TamakoshiA. Prospective cohort study of the risk of prostate cancer among rotating-shift workers: Findings from the Japan collaborative cohort study.Am. J. Epidemiol.2006164654955510.1093/aje/kwj23216829554
    [Google Scholar]
  205. GirgertR. HanfV. EmonsG. GründkerC. Membrane-bound melatonin receptor MT1 down-regulates estrogen responsive genes in breast cancer cells.J. Pineal Res.2009471233110.1111/j.1600‑079X.2009.00684.x19522736
    [Google Scholar]
  206. JooS.S. YooY.M. Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: Therapeutic implications for prostate cancer.J. Pineal Res.200947181410.1111/j.1600‑079X.2009.00682.x19522739
    [Google Scholar]
  207. ErrenT.C. ReiterR.J. PiekarskiC. Light, timing of biological rhythms, and chronodisruption in man.Naturwissenschaften2003901148549410.1007/s00114‑003‑0468‑614610644
    [Google Scholar]
  208. Jung-HynesB. AhmadN. Role of p53 in the anti-proliferative effects of Sirt1 inhibition in prostate cancer cells.Cell Cycle20098101478148310.4161/cc.8.10.840819377286
    [Google Scholar]
  209. Jung-HynesB. AhmadN. SIRT1 controls circadian clock circuitry and promotes cell survival: A connection with age-related neoplasms.FASEB J.20092392803280910.1096/fj.09‑12914819439501
    [Google Scholar]
  210. SunY. SunD. LiF. TianL. LiC. LiL. LinR. WangS. Downregulation of Sirt1 by antisense oligonucleotides induces apoptosis and enhances radiation sensitization in A549 lung cancer cells.Lung Cancer2007581212910.1016/j.lungcan.2007.05.01317624472
    [Google Scholar]
  211. YuanJ. Minter-DykhouseK. LouZ. A c-Myc–SIRT1 feedback loop regulates cell growth and transformation.J. Cell Biol.2009185220321110.1083/jcb.20080916719364925
    [Google Scholar]
  212. FiresteinR. BlanderG. MichanS. OberdoerfferP. OginoS. CampbellJ. BhimavarapuA. LuikenhuisS. de CaboR. FuchsC. HahnW.C. GuarenteL.P. SinclairD.A. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth.PLoS One200834e202010.1371/journal.pone.000202018414679
    [Google Scholar]
  213. WangR.H. ZhengY. KimH.S. XuX. CaoL. LahusenT. LeeM.H. XiaoC. VassilopoulosA. ChenW. GardnerK. ManY.G. HungM.C. FinkelT. DengC.X. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis.Mol. Cell2008321112010.1016/j.molcel.2008.09.01118851829
    [Google Scholar]
  214. LaiS.W. LiuY.S. LuD.Y. TsaiC.F. Melatonin modulates the microenvironment of glioblastoma multiforme by targeting sirtuin 1.Nutrients2019116134310.3390/nu1106134331207928
    [Google Scholar]
  215. ZhengB. MengJ. ZhuY. DingM. ZhangY. ZhouJ. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS.J. Ovarian Res.202114115210.1186/s13048‑021‑00912‑y34758863
    [Google Scholar]
  216. HamplR. DrábkováP. KanďárR. StěpánJ. Impact of oxidative stress on male infertility.Ceska Gynekol.201277324124522779727
    [Google Scholar]
  217. RajenderS. MahdiA.A. RajenderS. Apoptosis spermatogenesis and male infertility.Front. Biosci. (Elite Ed.)2012E4274675410.2741/e41522201910
    [Google Scholar]
  218. OthmanA.I. EdreesG.M. El-MissiryM.A. AliD.A. Aboel-NourM. DabdoubB.R. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity.Toxicol. Ind. Health20163291537154910.1177/074823371456128625537623
    [Google Scholar]
  219. XuG. ZhaoJ. LiuH. WangJ. LuW. Melatonin inhibits apoptosis and oxidative stress of mouse leydig cells via a SIRT1-dependent mechanism.Molecules20192417308410.3390/molecules2417308431450679
    [Google Scholar]
  220. ZhangJ. FangY. TangD. XuX. ZhuX. WuS. YuH. ChengH. LuoT. ShenQ. GaoY. MaC. LiuY. WeiZ. ChenX. TaoF. HeX. CaoY. Activation of MT1/MT2 to protect testes and leydig cells against cisplatin-induced oxidative stress through the SIRT1/Nrf2 signaling pathway.Cells20221110169010.3390/cells1110169035626727
    [Google Scholar]
  221. WangP. ZhangS. LinS. LvZ. Melatonin ameliorates diabetic hyperglycaemia-induced impairment of Leydig cell steroidogenic function through activation of SIRT1 pathway.Reprod. Biol. Endocrinol.202220111710.1186/s12958‑022‑00991‑635962432
    [Google Scholar]
  222. RaiS. GhoshH. Modulation of human ovarian function by melatonin.Front. Biosci. (Elite Ed.)202113114015710.2741/87533048779
    [Google Scholar]
  223. TamuraH. JozakiM. TanabeM. ShirafutaY. MiharaY. ShinagawaM. TamuraI. MaekawaR. SatoS. TaketaniT. TakasakiA. ReiterR.J. SuginoN. Importance of melatonin in assisted reproductive technology and ovarian aging.Int. J. Mol. Sci.2020213113510.3390/ijms2103113532046301
    [Google Scholar]
  224. IvanovD. MazzoccoliG. AndersonG. LinkovaN. DyatlovaA. MironovaE. PolyakovaV. KvetnoyI. EvsyukovaI. CarboneA. NasyrovR. Melatonin, its beneficial effects on embryogenesis from mitigating oxidative stress to regulating gene expression.Int. J. Mol. Sci.20212211588510.3390/ijms2211588534070944
    [Google Scholar]
  225. TamuraH. KawamotoM. SatoS. TamuraI. MaekawaR. TaketaniT. AasadaH. TakakiE. NakaiA. ReiterR.J. SuginoN. Long-term melatonin treatment delays ovarian aging.J. Pineal Res.2017622e1238110.1111/jpi.1238127889913
    [Google Scholar]
  226. HuangQ. ChenS. ZhaoY. ChenJ. ChenW. LinS. ShiQ. Melatonin enhances autologous adipose-derived stem cells to improve mouse ovarian function in relation to the SIRT6/NF-κB pathway.Stem Cell Res. Ther.202213139910.1186/s13287‑022‑03060‑235927704
    [Google Scholar]
  227. MaM. ChenX.Y. LiB. LiX.T. Melatonin protects premature ovarian insufficiency induced by tripterygium glycosides: Role of SIRT1.Am. J. Transl. Res.2017941580160228469767
    [Google Scholar]
  228. LordT. NixonB. JonesK.T. AitkenR.J. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro .Biol. Reprod.20138836710.1095/biolreprod.112.10645023365415
    [Google Scholar]
  229. ShiJ.M. TianX.Z. ZhouG.B. WangL. GaoC. ZhuS.E. ZengS.M. TianJ.H. LiuG.S. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes.J. Pineal Res.200947431832310.1111/j.1600‑079X.2009.00717.x19817971
    [Google Scholar]
  230. TamuraH. TakasakiA. MiwaI. TaniguchiK. MaekawaR. AsadaH. TaketaniT. MatsuokaA. YamagataY. ShimamuraK. MoriokaH. IshikawaH. ReiterR.J. SuginoN. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate.J. Pineal Res.200844328028710.1111/j.1600‑079X.2007.00524.x18339123
    [Google Scholar]
  231. YangQ. DaiS. LuoX. ZhuJ. LiF. LiuJ. YaoG. SunY. Melatonin attenuates postovulatory oocyte dysfunction by regulating SIRT1 expression.Reproduction20181561819210.1530/REP‑18‑021129752296
    [Google Scholar]
  232. TamuraH. NakamuraY. KorkmazA. ManchesterL.C. TanD.X. SuginoN. ReiterR.J. Melatonin and the ovary: Physiological and pathophysiological implications.Fertil. Steril.200992132834310.1016/j.fertnstert.2008.05.01618804205
    [Google Scholar]
  233. ReiterR.J. GuerreroJ.M. GarciaJ.J. Acuña-CastroviejoD. Reactive oxygen intermediates, molecular damage, and aging. Relation to melatonin.Ann. N. Y. Acad. Sci.1998854141042410.1111/j.1749‑6632.1998.tb09920.x9928448
    [Google Scholar]
  234. ReiterR.J. The ageing pineal gland and its physiological consequences.BioEssays199214316917510.1002/bies.9501403071586370
    [Google Scholar]
  235. VoltH. GarcíaJ.A. DoerrierC. Díaz-CasadoM.E. Guerra-LibreroA. LópezL.C. EscamesG. TresguerresJ.A. Acuña-CastroviejoD. Same molecule but different expression: Aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin.J. Pineal Res.201660219320510.1111/jpi.1230326681113
    [Google Scholar]
  236. ReiterR.J. Action spectra, dose-response relationships, and temporal aspects of light’s effects on the pineal gland.Ann. N. Y. Acad. Sci.1985453121523010.1111/j.1749‑6632.1985.tb11812.x3907458
    [Google Scholar]
  237. PangS.F. TangP.L. Decreased serum and pineal concentrations of melatonin and N-acetylserotonin in aged male hamsters.Horm. Res.198317422823410.1159/0001797026884985
    [Google Scholar]
  238. TresguerresJ.A.F. KireevR. TresguerresA.F. BorrasC. VaraE. AriznavarretaC. Molecular mechanisms involved in the hormonal prevention of aging in the rat.J. Steroid Biochem. Mol. Biol.20081083-531832610.1016/j.jsbmb.2007.09.01018252241
    [Google Scholar]
  239. KireevR.A. VaraE. TresguerresJ.A.F. Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats.Biogerontology201314443144210.1007/s10522‑013‑9443‑623852044
    [Google Scholar]
  240. KireevR.A. VaraE. ViñaJ. TresguerresJ.A.F. Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats.Age (Omaha)2014365970710.1007/s11357‑014‑9707‑325135305
    [Google Scholar]
  241. ParedesS.D. RancanL. KireevR. GonzálezA. LouzaoP. GonzálezP. Rodríguez-BobadaC. GarcíaC. VaraE. TresguerresJ.A.F. Melatonin counteracts at a transcriptional level the inflammatory and apoptotic response secondary to ischemic brain injury induced by middle cerebral artery blockade in aging rats.Biores. Open Access20154140741610.1089/biores.2015.003226594596
    [Google Scholar]
  242. AkbulutK.G. AktasS.H. AkbulutH. The role of melatonin, sirtuin2 and FoXO1 transcription factor in the aging process of colon in male rats.Biogerontology20151619910810.1007/s10522‑014‑9540‑125430724
    [Google Scholar]
  243. HirscheyM.D. ShimazuT. GoetzmanE. JingE. SchwerB. LombardD.B. GrueterC.A. HarrisC. BiddingerS. IlkayevaO.R. StevensR.D. LiY. SahaA.K. RudermanN.B. BainJ.R. NewgardC.B. FareseR.V.Jr AltF.W. KahnC.R. VerdinE. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.Nature2010464728512112510.1038/nature0877820203611
    [Google Scholar]
  244. SundaresanN.R. GuptaM. KimG. RajamohanS.B. IsbatanA. GuptaM.P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice.J. Clin. Invest.200911992758277110.1172/JCI3916219652361
    [Google Scholar]
  245. KimH.S. PatelK. Muldoon-JacobsK. BishtK.S. Aykin-BurnsN. PenningtonJ.D. van der MeerR. NguyenP. SavageJ. OwensK.M. VassilopoulosA. OzdenO. ParkS.H. SinghK.K. AbdulkadirS.A. SpitzD.R. DengC.X. GiusD. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress.Cancer Cell2010171415210.1016/j.ccr.2009.11.02320129246
    [Google Scholar]
  246. QuirósI. SáinzR.M. HeviaD. García-SuárezO. AstudilloA. RivasM. MayoJ.C. Upregulation of manganese superoxide dismutase (SOD2) is a common pathway for neuroendocrine differentiation in prostate cancer cells.Int. J. Cancer200912571497150410.1002/ijc.2450119507253
    [Google Scholar]
  247. ReiterR.J. TanD.X. Rosales-CorralS. GalanoA. JouM.J. Acuna-CastroviejoD. Melatonin mitigates mitochondrial meltdown: Interactions with SIRT3.Int. J. Mol. Sci.2018198243910.3390/ijms1908243930126181
    [Google Scholar]
  248. CorpasR. Griñán-FerréC. Palomera-ÁvalosV. PorquetD. García de FrutosP. Franciscato CozzolinoS.M. Rodríguez-FarréE. PallàsM. SanfeliuC. CardosoB.R. Melatonin induces mechanisms of brain resilience against neurodegeneration.J. Pineal Res.2018654e1251510.1111/jpi.1251529907977
    [Google Scholar]
  249. HoutkooperR.H. PirinenE. AuwerxJ. Sirtuins as regulators of metabolism and healthspan.Nat. Rev. Mol. Cell Biol.201213422523810.1038/nrm329322395773
    [Google Scholar]
  250. RibeiroR.F.N. PereiraD. de AlmeidaL.P. SilvaM.M.C. CavadasC. SIRT1 activation and its circadian clock control: A promising approach against (frailty in) neurodegenerative disorders.Aging Clin. Exp. Res.202234122963297610.1007/s40520‑022‑02257‑y36306110
    [Google Scholar]
  251. SoniS.K. BasuP. SingaravelM. SharmaR. Pandi-PerumalS.R. CardinaliD.P. ReiterR.J. Sirtuins and the circadian clock interplay in cardioprotection: Focus on sirtuin 1.Cell. Mol. Life Sci.20217862503251510.1007/s00018‑020‑03713‑633388853
    [Google Scholar]
  252. ZhaoL. CaoJ. HuK. HeX. YunD. TongT. HanL. Sirtuins and their biological relevance in aging and age-related diseases.Aging Dis.202011492794510.14336/AD.2019.082032765955
    [Google Scholar]
  253. WenZ. ChenZ. LiS. ZhangQ. WangY. LiQ. LeiQ. Melatonin protects against spinal cord injury through sirt-1 modulation of oxidative stress and neuronal cell loss.J. Biomed. Nanotechnol.20231971286129410.1166/jbn.2023.3625
    [Google Scholar]
  254. Ansari DezfouliM. ZahmatkeshM. FarahmandfarM. KhodagholiF. Melatonin protective effect against amyloid β-induced neurotoxicity mediated by mitochondrial biogenesis; involvement of hippocampal Sirtuin-1 signaling pathway.Physiol. Behav.2019204657510.1016/j.physbeh.2019.02.01630769106
    [Google Scholar]
  255. LiuL. CaoQ. GaoW. LiB. XiaZ. ZhaoB. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: Involvement of the Akt-SIRT3-SOD2 signaling pathway.Aging (Albany NY)20211312161051612310.18632/aging.20313734118791
    [Google Scholar]
  256. ZhaiM. LiB. DuanW. JingL. ZhangB. ZhangM. YuL. LiuZ. YuB. RenK. GaoE. YangY. LiangH. JinZ. YuS. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT 3-dependent regulation of oxidative stress and apoptosis.J. Pineal Res.2017632e1241910.1111/jpi.1241928500761
    [Google Scholar]
  257. WangY. ZhangS. MaY. XiangA. SunH. SongJ. YangW. LiX. XuH. Melatonin protected against myocardial infarction injury in rats through a Sirt6-dependent antioxidant pathway.Adv. Clin. Exp. Med.202231327728410.17219/acem/11206035077033
    [Google Scholar]
  258. Jafari-AzadA. HosseiniL. RajabiM. Høilund-CarlsenP.F. VafaeeM.S. FeyzizadehS. BadalzadehR. Nicotinamide mononucleotide and melatonin counteract myocardial ischemia-reperfusion injury by activating SIRT3/FOXO1 and reducing apoptosis in aged male rats.Mol. Biol. Rep.20214843089309610.1007/s11033‑021‑06351‑833866495
    [Google Scholar]
  259. NaazS. MishraS. PalP.K. ChattopadhyayA. DasA.R. BandyopadhyayD. Activation of SIRT1/PGC 1α/SIRT3 pathway by melatonin provides protection against mitochondrial dysfunction in isoproterenol induced myocardial injury.Heliyon2020610e0515910.1016/j.heliyon.2020.e0515933088945
    [Google Scholar]
  260. WangB. LiJ. BaoM. ChenR. LiH. LuB. Melatonin attenuates diabetic myocardial microvascular injury through activating the AMPK/SIRT1 signaling pathway.Oxid. Med. Cell. Longev.20212021888213010.1155/2021/888213034336116
    [Google Scholar]
  261. ChenJ. XiaH. ZhangL. ZhangH. WangD. TaoX. Protective effects of melatonin on sepsis-induced liver injury and dysregulation of gluconeogenesis in rats through activating SIRT1/STAT3 pathway.Biomed. Pharmacother.201911710915010.1016/j.biopha.2019.10915031234024
    [Google Scholar]
  262. RenX. XuK. XuJ. MeiQ. Melatonin attenuates monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats via activation of Sirtuin-3.J. Biochem. Mol. Toxicol.2023379e2342210.1002/jbt.2342237350538
    [Google Scholar]
  263. PiH. XuS. ReiterR.J. GuoP. ZhangL. LiY. LiM. CaoZ. TianL. XieJ. ZhangR. HeM. LuY. LiuC. DuanW. YuZ. ZhouZ. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin.Autophagy20151171037105110.1080/15548627.2015.105220826120888
    [Google Scholar]
  264. YalcinB. YayA.H. TanF.C. ÖzdamarS. YildizO.G. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation.Pathol. Res. Pract.202324615447710.1016/j.prp.2023.15447737148837
    [Google Scholar]
  265. KobroobA. KongkaewA. WongmekiatO. Melatonin reduces aggravation of renal ischemia–reperfusion injury in obese rats by maintaining mitochondrial homeostasis and integrity through AMPK/PGC-1α/SIRT3/SOD2 activation.Curr. Issues Mol. Biol.202345108239825410.3390/cimb4510052037886963
    [Google Scholar]
  266. DengZ. HeM. HuH. ZhangW. ZhangY. GeY. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation.Autophagy202320111510.1080/15548627.2023.225226537651673
    [Google Scholar]
  267. ChenW. ChenX. ChenA.C. ShiQ. PanG. PeiM. YangH. LiuT. HeF. Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties.Free Radic. Biol. Med.20201469210610.1016/j.freeradbiomed.2019.10.41231669348
    [Google Scholar]
  268. ZhangY. ZhuX. WangG. ChenL. YangH. HeF. LinJ. Melatonin rescues the Ti particle-impaired osteogenic potential of bone marrow mesenchymal stem cells via the SIRT1/SOD2 signaling pathway.Calcif. Tissue Int.2020107547448810.1007/s00223‑020‑00741‑z32767062
    [Google Scholar]
  269. ChenW. LvN. LiuH. GuC. ZhouX. QinW. Melatonin improves the resistance of oxidative stress-induced cellular senescence in osteoporotic bone marrow mesenchymal stem cells.Oxid. Med. Cell. Longev.20222022742072610.1155/2022/742072635087617
    [Google Scholar]
  270. NingL. RuiX. GuoruiL. TinglvF. DonghangL. ChenzhenX. XiaojingW. QingG. A novel mechanism for the protection against acute lung injury by melatonin: Mitochondrial quality control of lung epithelial cells is preserved through SIRT3-dependent deacetylation of SOD2.Cell. Mol. Life Sci.2022791261010.1007/s00018‑022‑04628‑036449070
    [Google Scholar]
  271. Rodríguez-SantanaC. López-RodríguezA. Martinez-RuizL. FloridoJ. CelaO. CapitanioN. Ramírez-CasasY. Acuña-CastroviejoD. EscamesG. The relationship between clock genes, sirtuin 1, and mitochondrial activity in head and neck squamous cell cancer: Effects of melatonin treatment.Int. J. Mol. Sci.202324191503010.3390/ijms24191503037834478
    [Google Scholar]
  272. Moreno-SanJuanS. Puentes-PardoJ.D. CasadoJ. Escudero-FeliuJ. KhaldyH. ArnedoJ. CarazoÁ. LeónJ. Agomelatine, a melatonin-derived drug, as a new strategy for the treatment of colorectal cancer.Antioxidants202312492610.3390/antiox1204092637107301
    [Google Scholar]
  273. BonominiF. FaveroG. PetroniA. ParoniR. RezzaniR. Melatonin modulates the sirt1-related pathways via transdermal cryopass-laser administration in prostate tumor xenograft.Cancers (Basel)20231520490810.3390/cancers1520490837894275
    [Google Scholar]
  274. Rodríguez-SantanaC. FloridoJ. Martínez-RuizL. López-RodríguezA. Acuña-CastroviejoD. EscamesG. Role of melatonin in cancer: Effect on clock genes.Int. J. Mol. Sci.2023243191910.3390/ijms2403191936768253
    [Google Scholar]
  275. ChengY. CaiL. JiangP. WangJ. GaoC. FengH. WangC. PanH. YangY. SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells.Eur. J. Pharmacol.20137151-321922910.1016/j.ejphar.2013.05.01723726949
    [Google Scholar]
  276. WangM. ZhuC. ZengL. ChengL. MaL. ZhangM. ZhangY. Melatonin regulates the cross-talk between autophagy and apoptosis by SIRT3 in testicular Leydig cells.Biochem. Biophys. Res. Commun.202155518218910.1016/j.bbrc.2021.03.13833823364
    [Google Scholar]
  277. XuD. LiuL. ZhaoY. YangL. ChengJ. HuaR. ZhangZ. LiQ. Melatonin protects mouse testes from palmitic acid-induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1-dependent manner.J. Pineal Res.2020694e1269010.1111/jpi.1269032761924
    [Google Scholar]
  278. KumarJ. HaldarC. VermaR. Melatonin ameliorates LPS-induced testicular nitro-oxidative stress (iNOS/TNFα) and inflammation (NF-kB/COX-2) via modulation of SIRT-1.Reprod. Sci.202128123417343010.1007/s43032‑021‑00597‑033929710
    [Google Scholar]
  279. LiB. HeX. ZhuangM. NiuB. WuC. MuH. TangF. CuiY. LiuW. ZhaoB. PengS. LiG. HuaJ. Melatonin ameliorates busulfan-induced spermatogonial stem cell oxidative apoptosis in mouse testes.Antioxid. Redox Signal.201828538540010.1089/ars.2016.679228027652
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501360934250512052503
Loading
/content/journals/cdt/10.2174/0113894501360934250512052503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test