Skip to content
2000
Volume 26, Issue 10
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Tuberculosis (TB) is a serious infectious disease that primarily affects the lungs but can also spread to the brain and spine. The highly pathogenic bacteria that causes TB is called (). Usually, when an infected person coughs, sneezes, or speaks, the disease spreads through the air. TB is treatable with antibiotics, but it requires a long course of treatment, usually 6 to 9 months to eliminate the bacteria and prevent drug resistance. Thus, developing novel anti-tubercular therapeutics with various structural classes is necessary to solve the problems brought on by strains that are resistant to several currently available therapies. Resistance to widely used anti-tubercular drugs is increasing daily. As a result, continuing medication therapy is necessary to stop more microbial infections. However, it leads to treatment resistance, which increases the likelihood that the disease may resurface in immune-compromised patients. Several anti-tubercular medications with various molecular structures show appropriate anti-tubercular action against strains that are drug-sensitive and drug-resistant. Compared to conventional synthetic methods, synthetic reactions can be carried out more effectively and selectively under simple reaction conditions by employing microwave radiation. Microwave-assisted organic synthesis (MAOS) is a useful method for increasing product yield and selectivity while accelerating the reaction rate for different types of organic synthesis. Several lead compounds with anti-tubercular properties that were synthesized using the microwave irradiation (MWI) approach are discussed in the current work.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501346600250414075741
2025-04-23
2025-11-06
Loading full text...

Full text loading...

References

  1. QuevalC.J. BroschR. SimeoneR. The macrophage: A disputed fortress in the battle against Mycobacterium tuberculosis.Front. Microbiol.201782284229510.3389/fmicb.2017.02284 29218036
    [Google Scholar]
  2. CamineroJ.A. ScardigliA. Classification of antituberculosis drugs: A new proposal based on the most recent evidence.Eur. Respir. J.201546488789310.1183/13993003.00432‑2015 26424519
    [Google Scholar]
  3. RattanA. KaliaA. AhmadN. Multidrug-resistant Mycobacterium tuberculosis: Molecular perspectives.Emerg. Infect. Dis.19984219520910.3201/eid0402.980207 9621190
    [Google Scholar]
  4. SantosL.C. The molecular basis of resistance in Mycobacterium tuberculosis.Open J. Med. Microbiol.201221243610.4236/ojmm.2012.21004
    [Google Scholar]
  5. PalominoJ. MartinA. Drug resistance mechanisms in Mycobacterium tuberculosis.Antibiotics20143331734010.3390/antibiotics3030317 27025748
    [Google Scholar]
  6. KoulA. ArnoultE. LounisN. GuillemontJ. AndriesK. The challenge of new drug discovery for tuberculosis.Nature2011469733148349010.1038/nature09657 21270886
    [Google Scholar]
  7. De RosaM. GisingJ. OdellL.R. LarhedM. Syntheses of new tuberculosis inhibitors promoted by microwave irradiation.Ups. J. Med. Sci.2014119218119110.3109/03009734.2014.899655 24666224
    [Google Scholar]
  8. GabaM. DhingraN. Microwave chemistry: General features and applications. Indian.J. Pharm. Educ. Res2011452175183
    [Google Scholar]
  9. GedyeR. SmithF. WestawayK. AliH. BaldiseraL. LabergeL. RousellJ. The use of microwave ovens for rapid organic synthesis.Tetrahedron Lett.198627327928210.1016/S0040‑4039(00)83996‑9
    [Google Scholar]
  10. SadlerS. MoellerA.R. JonesG.B. Microwave and continuous flow technologies in drug discovery.Expert Opin. Drug Discov.20127121107112810.1517/17460441.2012.727393 23004354
    [Google Scholar]
  11. MahatoA.K. SahooB.M. BanikB.K. MohantaB.C. Microwave-assisted synthesis: Paradigm of green chemistry.J. Indian Chem. Soc.2018951113271339
    [Google Scholar]
  12. KappeC.O. Controlled microwave heating in modern organic synthesis.Angew. Chem. Int. Ed.200443466250628410.1002/anie.200400655 15558676
    [Google Scholar]
  13. GiguereR.J. BrayT.L. DuncanS.M. MajetichG. Application of commercial microwave ovens to organic synthesis.Tetrahedron Lett.198627414945494810.1016/S0040‑4039(00)85103‑5
    [Google Scholar]
  14. Ben AmarJ. DhahriB. AouinaH. AzzabiS. BaccarM.A. El GharbiL. BouachaH. Treatment of tuberculosis.Rev. Pneumol. Clin.2015712-312212910.1016/j.pneumo.2014.09.001 25434510
    [Google Scholar]
  15. SunJ. WangW. YueQ. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies.Materials20169423110.3390/ma9040231 28773355
    [Google Scholar]
  16. InoyamaD. PagetS.D. RussoR. KandasamyS. KumarP. SingletonE. OcciJ. TuckmanM. ZimmermanM.D. HoH.P. PerrymanA.L. DartoisV. ConnellN. FreundlichJ.S. Novel pyrimidines as antitubercular agents.Antimicrob. Agents Chemother.2018623e02063e1710.1128/AAC.02063‑17 29311070
    [Google Scholar]
  17. LiuP. YangY. TangY. YangT. SangZ. LiuZ. ZhangT. LuoY. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents.Eur. J. Med. Chem.201916316918210.1016/j.ejmech.2018.11.054 30508666
    [Google Scholar]
  18. MohanS.B. Ravi KumarB.V.V. DindaS.C. NaikD. Prabu SeenivasanS. KumarV. RanaD.N. BrahmkshatriyaP.S. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives.Bioorg. Med. Chem. Lett.201222247539754210.1016/j.bmcl.2012.10.032 23122523
    [Google Scholar]
  19. SurejaD.K. DholakiaS.P. VadaliaK.R. Conventional and microwave-assisted synthesis of novel pyrimidine derivatives as anti-microbial and anti-tubercular agent.Pharm. Lett.201689181186
    [Google Scholar]
  20. TenevaY. SimeonovaR. ValchevaV. AngelovaV.T. Recent advances in anti-tuberculosis drug discovery based on hydrazide-hydrazone and thiadiazole derivatives targeting InhA.Pharmaceuticals202316448450810.3390/ph16040484 37111241
    [Google Scholar]
  21. PatelH.M. NoolviM.N. SethiN.S. GadadA.K. CameotraS.S. Synthesis and antitubercular evaluation of imidazo[2,1- b][1,3,4]thiadiazole derivatives.Arab. J. Chem.201710S996S100210.1016/j.arabjc.2013.01.001
    [Google Scholar]
  22. ZalaM. VoraJ.J. KhedkarV.M. Synthesis, characterization, antitubercular activity, and molecular docking studies of pyrazolylpyrazoline-clubbed triazole and tetrazole hybrids.ACS Omega2023823202622027110.1021/acsomega.2c07267 37323386
    [Google Scholar]
  23. AhmadA. HusainA. KhanS.A. MujeebM. BhandariA. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives.J. Saudi Chem. Soc.201620557758410.1016/j.jscs.2014.12.004
    [Google Scholar]
  24. SinghR.K. SahooB.M. BhattA. KantR. Synthesis, characterization and anti-tubercular activity of novel 2,5-dimethyl-4-(aryl or heteroaryl)substituted-aniline-1,3-oxazole derivatives.World J. Pharm. Res.201871962969
    [Google Scholar]
  25. SamantaS. KumarS. AratikatlaE.K. GhorpadeS.R. SinghV. Recent developments of imidazo[1,2- a]pyridine analogues as antituberculosis agents.RSC Med. Chem.202314464465710.1039/D3MD00019B 37122538
    [Google Scholar]
  26. WangH. WangA. GuJ. FuL. LvK. MaC. TaoZ. WangB. LiuM. GuoH. LuY. Synthesis and antitubercular evaluation of reduced lipophilic imidazo[1,2-a]pyridine-3-carboxamide derivatives.Eur. J. Med. Chem.2019165111710.1016/j.ejmech.2018.12.071 30654236
    [Google Scholar]
  27. MusciaG.C. AsisS.E. BuldainG.Y. Microwave-assisted synthesis of 2-styrylquinoline-4-carboxylic acids as anti-tubercular agents.Med. Chem.2017135448452 27585570
    [Google Scholar]
  28. RaniA. ViljoenA. SumanjitL. KremerL. KumarV. Microwave-assisted highly efficient route to 4-aminoquinoline-phthalimide conjugates: Synthesis and anti-tubercular evaluation.ChemistrySelect2017233107821078510.1002/slct.201702220
    [Google Scholar]
  29. KidwaiM. KumarR. SrivastavaA. GuptaH.P. Microwave-assisted synthesis of novel 1,3,4-thiadiazolyl-substituted-1,2,4-triazines as potential anti-tubercular agents.Bioorg. Chem.19982628929410.1006/bioo.1998.1108
    [Google Scholar]
  30. PemmadiR.V. KurreP.N. GuruvelliP.V.S. JamullamudiR.N. MuthyalaM.K.K. Microwave assisted synthesis and SAR studies of novel hybrid phenothiazine analogs as potential anti-tubercular agents.Indian J. Chem.201857B556566
    [Google Scholar]
  31. HosamaniK.M. ReddyD.S. RangappaK.S. Microwave-assisted synthesis of benzocoumarin-benzothiazepine hybrids as potent anti-tubercular agents and their DNA cleavage study.Eur J. Biomed. Pharm. Sci201523576592
    [Google Scholar]
  32. PatelV.M. PatelN.B. Microwave irradiated synthesis, biological evaluation and molecular docking studies of 3-((substituted-benzo[d]thiazol-2-ylamino)methyl)-5-(pyridin-4-yl)-1,3,4-oxadiazole-2(3H)-thione.Int. J. Pharm. Sci. Res.20178940214033
    [Google Scholar]
  33. SahooB.M. BanikB.K. MahatoA.K. ShanthiC.N. Microwave-assisted synthesis of anti-tubercular agents: A novel approach.Advances Green and Sustainable Chemistry, Green Approaches in Medicinal Chemistry for Sustainable Drug Design2nd edElsevier202444547410.1016/B978‑0‑443‑16164‑3.00019‑4
    [Google Scholar]
  34. SivakumarP.M. SeenivasanS.P. KumarV. DobleM. Synthesis, antimycobacterial activity evaluation, and QSAR studies of chalcone derivatives.Bioorg. Med. Chem. Lett.20071761695170010.1016/j.bmcl.2006.12.112 17276682
    [Google Scholar]
  35. SivakumarP.M. KumarV. SeenivasanS.P. PriyaJ.M. DobleM. Experimental and theoretical approaches to enhance the anti-tubercular activity of chalcones.WSEAS Trans Biol Biomed2010275161
    [Google Scholar]
  36. Oliver KappeC. Microwave dielectric heating in synthetic organic chemistry.Chem. Soc. Rev.20083761127113910.1039/b803001b 18497926
    [Google Scholar]
  37. GisingJ. OdellL.R. LarhedM. Microwave-assisted synthesis of small molecules targeting the infectious diseases tuberculosis, HIV/AIDS, malaria and hepatitis C.Org. Biomol. Chem.201210142713272910.1039/c2ob06833h 22227602
    [Google Scholar]
  38. KaleM.G. RaichurkarA. P, S.H.; Waterson, D.; McKinney, D.; Manjunatha, M.R.; Kranthi, U.; Koushik, K.; Jena, L.; Shinde, V.; Rudrapatna, S.; Barde, S.; Humnabadkar, V.; Madhavapeddi, P.; Basavarajappa, H.; Ghosh, A.; Ramya, V.K.; Guptha, S.; Sharma, S.; Vachaspati, P.; Kumar, K.N.M.; Giridhar, J.; Reddy, J.; Panduga, V.; Ganguly, S.; Ahuja, V.; Gaonkar, S.; Kumar, C.N.N.; Ogg, D.; Tucker, J.A.; Boriack-Sjodin, P.A.; de Sousa, S.M.; Sambandamurthy, V.K.; Ghorpade, S.R. Thiazolopyridine ureas as novel antitubercular agents acting through inhibition of DNA Gyrase B.J. Med. Chem.201356218834884810.1021/jm401268f 24088190
    [Google Scholar]
  39. DesaiN.C. BhattK. MonaparaJ. PanditU. KhedkarV.M. Conventional and microwave-assisted synthesis, antitubercular activity, and molecular docking studies of pyrazole and oxadiazole hybrids.ACS Omega2021642282702828410.1021/acsomega.1c04411 34723024
    [Google Scholar]
  40. ShrinivasD.J. DevendraK. SheshagiriR.D. AshwiniS.J. TejrajM.A. Drug resistance of anti-tubercular agents at the genetic level in Mycobacterium species: A road map to drug development for counteracting the resistance.Mini Rev. Org. Chem.201613426228010.2174/1570193X13666160613094646
    [Google Scholar]
  41. MoriM. StelitanoG. ChiarelliL.R. CazzanigaG. GelainA. BarloccoD. PiniE. MeneghettiF. VillaS. Synthesis, characterization, and biological evaluation of new derivatives targeting MbtI as antitubercular agents.Pharmaceuticals202114215516210.3390/ph14020155 33668554
    [Google Scholar]
  42. DevarajiM. ThanikachalamP.V. Microwave-assisted synthesis and characterization of novel 1,3,4-oxadiazole derivatives and evaluation of in vitro antimycobacterial activity.Cureus2024169e6967910.7759/cureus.69679 39429365
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501346600250414075741
Loading
/content/journals/cdt/10.2174/0113894501346600250414075741
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): drug; green chemistry; heterocycles; infection; Microwave; tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test