Skip to content
2000
image of Microwave-assisted Green Synthesis: An Approach for the Development of Anti-tubercular Agents

Abstract

Tuberculosis (TB) is a serious infectious disease that primarily affects the lungs but can also spread to the brain and spine. The highly pathogenic bacteria that causes TB is called (). Usually, when an infected person coughs, sneezes, or speaks, the disease spreads through the air. TB is treatable with antibiotics, but it requires a long course of treatment, usually 6 to 9 months to eliminate the bacteria and prevent drug resistance. Thus, developing novel anti-tubercular therapeutics with various structural classes is necessary to solve the problems brought on by strains that are resistant to several currently available therapies.

Resistance to widely used anti-tubercular drugs is increasing daily. As a result, continuing medication therapy is necessary to stop more microbial infections. However, it leads to treatment resistance, which increases the likelihood that the disease may resurface in immune-compromised patients. Several anti-tubercular medications with various molecular structures show appropriate anti-tubercular action against strains that are drug-sensitive and drug-resistant. Compared to conventional synthetic methods, synthetic reactions can be carried out more effectively and selectively under simple reaction conditions by employing microwave radiation. Microwave-assisted organic synthesis (MAOS) is a useful method for increasing product yield and selectivity while accelerating the reaction rate for different types of organic synthesis. Several lead compounds with anti-tubercular properties that were synthesized using the microwave irradiation (MWI) approach are discussed in the current work.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501346600250414075741
2025-04-23
2025-09-02
Loading full text...

Full text loading...

References

  1. Queval C.J. Brosch R. Simeone R. The macrophage: A disputed fortress in the battle against Mycobacterium tuberculosis. Front. Microbiol. 2017 8 2284 2295 10.3389/fmicb.2017.02284 29218036
    [Google Scholar]
  2. Caminero J.A. Scardigli A. Classification of antituberculosis drugs: A new proposal based on the most recent evidence. Eur. Respir. J. 2015 46 4 887 893 10.1183/13993003.00432‑2015 26424519
    [Google Scholar]
  3. Rattan A. Kalia A. Ahmad N. Multidrug-resistant Mycobacterium tuberculosis: Molecular perspectives. Emerg. Infect. Dis. 1998 4 2 195 209 10.3201/eid0402.980207 9621190
    [Google Scholar]
  4. Santos L.C. The molecular basis of resistance in Mycobacterium tuberculosis. Open J. Med. Microbiol. 2012 2 1 24 36 10.4236/ojmm.2012.21004
    [Google Scholar]
  5. Palomino J. Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics 2014 3 3 317 340 10.3390/antibiotics3030317 27025748
    [Google Scholar]
  6. Koul A. Arnoult E. Lounis N. Guillemont J. Andries K. The challenge of new drug discovery for tuberculosis. Nature 2011 469 7331 483 490 10.1038/nature09657 21270886
    [Google Scholar]
  7. De Rosa M. Gising J. Odell L.R. Larhed M. Syntheses of new tuberculosis inhibitors promoted by microwave irradiation. Ups. J. Med. Sci. 2014 119 2 181 191 10.3109/03009734.2014.899655 24666224
    [Google Scholar]
  8. Gaba M. Dhingra N. Microwave chemistry: General features and applications. Indian. J. Pharm. Educ. Res 2011 45 2 175 183
    [Google Scholar]
  9. Gedye R. Smith F. Westaway K. Ali H. Baldisera L. Laberge L. Rousell J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986 27 3 279 282 10.1016/S0040‑4039(00)83996‑9
    [Google Scholar]
  10. Sadler S. Moeller A.R. Jones G.B. Microwave and continuous flow technologies in drug discovery. Expert Opin. Drug Discov. 2012 7 12 1107 1128 10.1517/17460441.2012.727393 23004354
    [Google Scholar]
  11. Mahato A.K. Sahoo B.M. Banik B.K. Mohanta B.C. Microwave-assisted synthesis: Paradigm of green chemistry. J. Indian Chem. Soc. 2018 95 11 1327 1339
    [Google Scholar]
  12. Kappe C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004 43 46 6250 6284 10.1002/anie.200400655 15558676
    [Google Scholar]
  13. Giguere R.J. Bray T.L. Duncan S.M. Majetich G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett. 1986 27 41 4945 4948 10.1016/S0040‑4039(00)85103‑5
    [Google Scholar]
  14. Ben Amar J. Dhahri B. Aouina H. Azzabi S. Baccar M.A. El Gharbi L. Bouacha H. Treatment of tuberculosis. Rev. Pneumol. Clin. 2015 71 2-3 122 129 10.1016/j.pneumo.2014.09.001 25434510
    [Google Scholar]
  15. Sun J. Wang W. Yue Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016 9 4 231 10.3390/ma9040231 28773355
    [Google Scholar]
  16. Inoyama D. Paget S.D. Russo R. Kandasamy S. Kumar P. Singleton E. Occi J. Tuckman M. Zimmerman M.D. Ho H.P. Perryman A.L. Dartois V. Connell N. Freundlich J.S. Novel pyrimidines as antitubercular agents. Antimicrob. Agents Chemother. 2018 62 3 e02063-17 10.1128/AAC.02063‑17 29311070
    [Google Scholar]
  17. Liu P. Yang Y. Tang Y. Yang T. Sang Z. Liu Z. Zhang T. Luo Y. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur. J. Med. Chem. 2019 163 169 182 10.1016/j.ejmech.2018.11.054 30508666
    [Google Scholar]
  18. Mohan S.B. Ravi Kumar B.V.V. Dinda S.C. Naik D. Prabu Seenivasan S. Kumar V. Rana D.N. Brahmkshatriya P.S. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Bioorg. Med. Chem. Lett. 2012 22 24 7539 7542 10.1016/j.bmcl.2012.10.032 23122523
    [Google Scholar]
  19. Sureja D.K. Dholakia S.P. Vadalia K.R. Conventional and microwave-assisted synthesis of novel pyrimidine derivatives as anti-microbial and anti-tubercular agent. Pharm. Lett. 2016 8 9 181 186
    [Google Scholar]
  20. Teneva Y. Simeonova R. Valcheva V. Angelova V.T. Recent advances in anti-tuberculosis drug discovery based on hydrazide–hydrazone and thiadiazole derivatives targeting InhA. Pharmaceuticals 2023 16 4 484 508 10.3390/ph16040484 37111241
    [Google Scholar]
  21. Patel H.M. Noolvi M.N. Sethi N.S. Gadad A.K. Cameotra S.S. Synthesis and antitubercular evaluation of imidazo[2,1- b ][1,3,4]thiadiazole derivatives. Arab. J. Chem. 2017 10 S996 S1002 10.1016/j.arabjc.2013.01.001
    [Google Scholar]
  22. Zala M. Vora J.J. Khedkar V.M. Synthesis, characterization, antitubercular activity, and molecular docking studies of pyrazolylpyrazoline-clubbed triazole and tetrazole hybrids. ACS Omega 2023 8 23 20262 20271 10.1021/acsomega.2c07267 37323386
    [Google Scholar]
  23. Ahmad A. Husain A. Khan S.A. Mujeeb M. Bhandari A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc. 2016 20 5 577 584 10.1016/j.jscs.2014.12.004
    [Google Scholar]
  24. Singh R.K. Sahoo B.M. Bhatt A. Kant R. Synthesis, characterization and anti-tubercular activity of novel 2,5-dimethyl-4-(aryl or heteroaryl)substituted-aniline-1,3-oxazole derivatives. World J. Pharm. Res. 2018 7 1 962 969
    [Google Scholar]
  25. Samanta S. Kumar S. Aratikatla E.K. Ghorpade S.R. Singh V. Recent developments of imidazo[1,2- a ]pyridine analogues as antituberculosis agents. RSC Med. Chem. 2023 14 4 644 657 10.1039/D3MD00019B 37122538
    [Google Scholar]
  26. Wang H. Wang A. Gu J. Fu L. Lv K. Ma C. Tao Z. Wang B. Liu M. Guo H. Lu Y. Synthesis and antitubercular evaluation of reduced lipophilic imidazo[1,2-a]pyridine-3-carboxamide derivatives. Eur. J. Med. Chem. 2019 165 11 17 10.1016/j.ejmech.2018.12.071 30654236
    [Google Scholar]
  27. Muscia G.C. Asis S.E. Buldain G.Y. Microwave-assisted synthesis of 2-styrylquinoline-4-carboxylic acids as anti-tubercular agents. Med. Chem. 2017 13 5 448 452 27585570
    [Google Scholar]
  28. Rani A. Viljoen A. Sumanjit L. Kremer L. Kumar V. Microwave-assisted highly efficient route to 4-aminoquinoline-phthalimide conjugates: Synthesis and anti-tubercular evaluation. ChemistrySelect 2017 2 33 10782 10785 10.1002/slct.201702220
    [Google Scholar]
  29. Kidwai M. Kumar R. Srivastava A. Gupta H.P. Microwave-assisted synthesis of novel 1,3,4-thiadiazolyl-substituted-1,2,4-triazines as potential anti-tubercular agents. Bioorg. Chem. 1998 26 289 294 10.1006/bioo.1998.1108
    [Google Scholar]
  30. Pemmadi R.V. Kurre P.N. Guruvelli P.V.S. Jamullamudi R.N. Muthyala M.K.K. Microwave assisted synthesis and SAR studies of novel hybrid phenothiazine analogs as potential anti-tubercular agents. Indian J. Chem. 2018 57B 556 566
    [Google Scholar]
  31. Hosamani K.M. Reddy D.S. Rangappa K.S. Microwave-assisted synthesis of benzocoumarin-benzothiazepine hybrids as potent anti-tubercular agents and their DNA cleavage study. Eur J. Biomed. Pharm. Sci 2015 2 3 576 592
    [Google Scholar]
  32. Patel V.M. Patel N.B. Microwave irradiated synthesis, biological evaluation and molecular docking studies of 3-((substituted-benzo[d]thiazol-2-ylamino)methyl)-5-(pyridin-4-yl)-1,3,4-oxadiazole-2(3H)-thione. Int. J. Pharm. Sci. Res. 2017 8 9 4021 4033
    [Google Scholar]
  33. Sahoo B.M. Banik B.K. Mahato A.K. Shanthi C.N. Microwave-assisted synthesis of anti-tubercular agents: A novel approach. Advances Green and Sustainable Chemistry, Green Approaches in Medicinal Chemistry for Sustainable Drug Design. 2nd ed Elsevier 2024 445 474 10.1016/B978‑0‑443‑16164‑3.00019‑4
    [Google Scholar]
  34. Sivakumar P.M. Seenivasan S.P. Kumar V. Doble M. Synthesis, antimycobacterial activity evaluation, and QSAR studies of chalcone derivatives. Bioorg. Med. Chem. Lett. 2007 17 6 1695 1700 10.1016/j.bmcl.2006.12.112 17276682
    [Google Scholar]
  35. Sivakumar P.M. Kumar V. Seenivasan S.P. Priya J.M. Doble M. Experimental and theoretical approaches to enhance the anti-tubercular activity of chalcones. WSEAS Trans Biol Biomed 2010 2 7 51 61
    [Google Scholar]
  36. Oliver Kappe C. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev. 2008 37 6 1127 1139 10.1039/b803001b 18497926
    [Google Scholar]
  37. Gising J. Odell L.R. Larhed M. Microwave-assisted synthesis of small molecules targeting the infectious diseases tuberculosis, HIV/AIDS, malaria and hepatitis C. Org. Biomol. Chem. 2012 10 14 2713 2729 10.1039/c2ob06833h 22227602
    [Google Scholar]
  38. Kale M.G. Raichurkar A. P S.H. Waterson D. McKinney D. Manjunatha M.R. Kranthi U. Koushik K. Jena L. Shinde V. Rudrapatna S. Barde S. Humnabadkar V. Madhavapeddi P. Basavarajappa H. Ghosh A. Ramya V.K. Guptha S. Sharma S. Vachaspati P. Kumar K.N.M. Giridhar J. Reddy J. Panduga V. Ganguly S. Ahuja V. Gaonkar S. Kumar C.N.N. Ogg D. Tucker J.A. Boriack-Sjodin P.A. de Sousa S.M. Sambandamurthy V.K. Ghorpade S.R. Thiazolopyridine ureas as novel antitubercular agents acting through inhibition of DNA Gyrase B. J. Med. Chem. 2013 56 21 8834 8848 10.1021/jm401268f 24088190
    [Google Scholar]
  39. Desai N.C. Bhatt K. Monapara J. Pandit U. Khedkar V.M. Conventional and microwave-assisted synthesis, antitubercular activity, and molecular docking studies of pyrazole and oxadiazole hybrids. ACS Omega 2021 6 42 28270 28284 10.1021/acsomega.1c04411 34723024
    [Google Scholar]
  40. Shrinivas D.J. Devendra K. Sheshagiri R.D. Ashwini S.J. Tejraj M.A. Drug resistance of anti-tubercular agents at the genetic level in Mycobacterium species: A road map to drug development for counteracting the resistance. Mini Rev. Org. Chem. 2016 13 4 262 280 10.2174/1570193X13666160613094646
    [Google Scholar]
  41. Mori M. Stelitano G. Chiarelli L.R. Cazzaniga G. Gelain A. Barlocco D. Pini E. Meneghetti F. Villa S. Synthesis, characterization, and biological evaluation of new derivatives targeting MbtI as antitubercular agents. Pharmaceuticals 2021 14 2 155 162 10.3390/ph14020155 33668554
    [Google Scholar]
  42. Devaraji M. Thanikachalam P.V. Microwave-assisted synthesis and characterization of novel 1,3,4-oxadiazole derivatives and evaluation of in vitro antimycobacterial activity. Cureus 2024 16 9 e69679 10.7759/cureus.69679 39429365
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501346600250414075741
Loading
/content/journals/cdt/10.2174/0113894501346600250414075741
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: tuberculosis ; Microwave ; green chemistry ; infection ; drug ; heterocycles ; synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test