Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Several fibroblast growth factors are expressed in the developmental stage, while others are present in adults. They are vital in maintaining cellular homeostasis and signaling important cellular functions, such as regeneration and growth. Over the years, a spike of interest has been observed in clinical applications of the different members of this family, especially for their implications in glucose and lipid homeostasis, cancer, and regeneration. Yet, the extent of this vast family's roles in different cellular activities and their mechanism of action remain unclear. Furthermore, they are structurally unstable molecules, making clinical applications more difficult. This work reviews the mechanism of action of FGFs and offers valuable insights into their therapeutic potential.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501351461250301072444
2025-03-06
2025-10-29
Loading full text...

Full text loading...

References

  1. YunY.R. WonJ.E. JeonE. LeeS. KangW. JoH. JangJ.H. ShinU.S. KimH.W. DayR. Fibroblast growth factors: Biology, function, and application for tissue regeneration.J. Tissue Eng.20101121814210.4061/2010/21814221350642
    [Google Scholar]
  2. BeenkenA. MohammadiM. The FGF family: Biology, pathophysiology and therapy.Nat. Rev. Drug Discov.20098323525310.1038/nrd279219247306
    [Google Scholar]
  3. LiuY. DengJ. LiuY. LiW. NieX. FGF, mechanism of action, role in parkinson’s disease, and therapeutics.Front. Pharmacol.20211267572510.3389/fphar.2021.67572534234672
    [Google Scholar]
  4. ChenL. FuL. SunJ. HuangZ. FangM. ZinkleA. LiuX. LuJ. PanZ. WangY. LiangG. LiX. ChenG. MohammadiM. Structural basis for FGF hormone signalling.Nature2023618796686287010.1038/s41586‑023‑06155‑937286607
    [Google Scholar]
  5. DolegowskaK. Marchelek-MysliwiecM. Nowosiad-MagdaM. SlawinskiM. DolegowskaB. FGF19 subfamily members: FGF19 and FGF21.J. Physiol. Biochem.201975222924010.1007/s13105‑019‑00675‑730927227
    [Google Scholar]
  6. ItohN. OrnitzD.M. Evolution of the FGF and FGFR gene families.Tren. Gene.2004201156356910.1016/j.tig.2004.08.00715475116
    [Google Scholar]
  7. OrnitzD.M. ItohN. The fibroblast growth factor signaling pathway.Wil. Interdiscipl. Revi. Develop. Biol.20154321526610.1002/wdev.17625772309
    [Google Scholar]
  8. OrnitzD.M. ItohN. New developments in the biology of fibroblast growth factors.Wires. Mech. Dise.2022144e154910.1002/wsbm.154935142107
    [Google Scholar]
  9. EvelethD.D. EvelethJ.J. SubramaniamA. HahnR. ZhouP. GordonM.K. BradshawR.A. An engineered human fibroblast growth factor-1 derivative, tthx1114, ameliorates short-term corneal nitrogen mustard injury in rabbit organ cultures.Invest. Ophthalmol. Vis. Sci.201859114720473010.1167/iovs.18‑2456830267094
    [Google Scholar]
  10. BingM. Da-ShengC. Zhao-FanX. Dao-FengB. WeiL. Zhi-FangC. QiangW. JiaH. Jia-KeC. Chuan-AnS. Yong-HuaS. Guo-AnZ. Xiao-HuaH. Randomized, multicenter, double-blind, and placebo-controlled trial using topical recombinant human acidic fibroblast growth factor for deep partial-thickness burns and skin graft donor site.Wound Repair Regen.200715679579910.1111/j.1524‑475X.2007.00307.x18028126
    [Google Scholar]
  11. XueY.N. YanY. ChenZ.Z. ChenJ. TangF.J. XieH.Q. TangS.J. CaoK. ZhouX. WangA.J. ZhouJ.D. Lncrna tug1 regulates FGF1 to enhance endothelial differentiation of adipose-derived stem cells by sponging mir-143.J. Cell. Biochem.201912011190871909710.1002/jcb.2923231264280
    [Google Scholar]
  12. PaluckS.J. NguyenT.H. LeeJ.P. MaynardH.D. A heparin-mimicking block copolymer both stabilizes and increases the activity of fibroblast growth factor 2 (FGF2).Biomacromolecules201617103386339510.1021/acs.biomac.6b0118227580376
    [Google Scholar]
  13. MohammadiM. Structural basis for fibroblast growth factor (FGF) receptor activation.FASEB J.2002164A523A523
    [Google Scholar]
  14. ItohN. OrnitzD.M. Functional evolutionary history of the mouse FGF gene family.Develop. Dynam.20082371182710.1002/dvdy.2138818058912
    [Google Scholar]
  15. HamamotoJ. YasudaH. NonakaY. FujiwaraM. NakamuraY. SoejimaK. BetsuyakuT. The FGF2 aptamer inhibits the growth of FGF2-FGFR pathway driven lung cancer cells.Biochem. Biophys. Res. Commun.201850331330133410.1016/j.bbrc.2018.07.04430005872
    [Google Scholar]
  16. ZhaoY. CaoF. YuX. ChenC. MengJ. ZhongR. ZhangY. ZhuD. Linc-ram is required for FGF2 function in regulating myogenic cell differentiation.RNA Biol.201815340441210.1080/15476286.2018.143149429364044
    [Google Scholar]
  17. HuangZ. TanY. GuJ. LiuY. SongL. NiuJ. ZhaoL. SrinivasanL. LinQ. DengJ. LiY. ConklinD.J. NeubertT.A. CaiL. LiX. MohammadiM. Uncoupling the mitogenic and metabolic functions of FGF1 by tuning FGF1-FGF receptor dimer stability.Cell Rep.20172071717172810.1016/j.celrep.2017.06.06328813681
    [Google Scholar]
  18. ImamuraT. FriedmanS.A. GambleS. TokitaY. OpalenikS.R. ThompsonJ.A. MaciagT. Identification of the domain within fibroblast growth factor-1 responsible for heparin-dependence.Biochim. Biophys. Acta Mol. Cell Res.19951266212413010.1016/0167‑4889(95)00009‑H7742376
    [Google Scholar]
  19. KosakaN. SakamotoH. TeradaM. OchiyaT. Pleiotropic function of FGF-4: Its role in development and stem cells.Dev. Dyn.2009238226527610.1002/dvdy.2169918792115
    [Google Scholar]
  20. SugiY. ItoN. SzebenyiG. MyersK. FallonJ.F. MikawaT. MarkwaldR.R. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation.Dev. Biol.2003258225226310.1016/S0012‑1606(03)00099‑X12798286
    [Google Scholar]
  21. YuanH. CorbiN. BasilicoC. DaileyL. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of sox2 and oct-3.Genes Dev.19959212635264510.1101/gad.9.21.26357590241
    [Google Scholar]
  22. SunX. LewandoskiM. MeyersE.N. LiuY.H. MaxsonR.E.Jr MartinG.R. Conditional inactivation of FGF4 reveals complexity of signalling during limb bud development.Nat. Genet.2000251838610.1038/7564410802662
    [Google Scholar]
  23. BouletA.M. MoonA.M. ArenkielB.R. CapecchiM.R. The roles of FGF4 and FGF8 in limb bud initiation and outgrowth.Dev. Biol.2004273236137210.1016/j.ydbio.2004.06.01215328019
    [Google Scholar]
  24. GrinesC.L. WatkinsM.W. HelmerG. PennyW. BrinkerJ. MarmurJ.D. WestA. RadeJ.J. MarrottP. HammondH.K. EnglerR.L. Angiogenic gene therapy (agent) trial in patients with stable angina pectoris.Circulation2002105111291129710.1161/hc1102.10559511901038
    [Google Scholar]
  25. SuzukiS. OtaY. OzawaK. ImamuraT. Dual-mode regulation of hair growth cycle by two FGF-5 gene products.J. Invest. Dermatol.2000114345646310.1046/j.1523‑1747.2000.00912.x10692103
    [Google Scholar]
  26. AmanoR. NamekataM. HoriuchiM. SasoM. YanagisawaT. TanakaY. GhaniF.I. YamamotoM. SakamotoT. Specific inhibition of FGF5-induced cell proliferation by rna aptamers.Sci. Rep.2021111297610.1038/s41598‑021‑82350‑w33536494
    [Google Scholar]
  27. SuzukiS. KatoT. TakimotoH. MasuiS. OshimaH. OzawaK. SuzukiS. ImamuraT. Localization of rat FGF-5 protein in skin macrophage-like cells and FGF-5s protein in hair follicle: Possible involvement of two FGF-5 gene products in hair growth cycle regulation.J. Invest. Dermatol.1998111696397210.1046/j.1523‑1747.1998.00427.x9856803
    [Google Scholar]
  28. HigginsC.A. PetukhovaL. HarelS. HoY.Y. DrillE. ShapiroL. WajidM. ChristianoA.M. FGF5 is a crucial regulator of hair length in humans.Proc. Natl. Acad. Sci. USA201411129106481065310.1073/pnas.140286211124989505
    [Google Scholar]
  29. Heilmann-HeimbachS. HeroldC. HochfeldL.M. HillmerA.M. NyholtD.R. HeckerJ. JavedA. ChewE.G.Y. PechlivanisS. DrichelD. HengX.T. del RosarioR.C.H. FierH.L. PausR. RueediR. GaleslootT.E. MoebusS. AnhaltT. PrabhakarS. LiR. KanoniS. PapanikolaouG. KutalikZ. DeloukasP. PhilpottM.P. WaeberG. SpectorT.D. VollenweiderP. KiemeneyL.A.L.M. DedoussisG. RichardsJ.B. NothnagelM. MartinN.G. BeckerT. HindsD.A. NöthenM.M. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness.Nat. Commun.2017811469410.1038/ncomms1469428272467
    [Google Scholar]
  30. PawlikowskiB. VoglerT.O. GadekK. OlwinB.B. Regulation of skeletal muscle stem cells by fibroblast growth factors.Dev. Dyn.2017246535936710.1002/dvdy.2449528249356
    [Google Scholar]
  31. CoulierF. BatozM. MaricsI. de LapeyrièreO. BirnbaumD. Putative structure of the FGF6 gene product and role of the signal peptide.Oncogene199168143714441886714
    [Google Scholar]
  32. BinghamM. In this issue of diabetes.Diabetes202372442943010.2337/db23‑ti04
    [Google Scholar]
  33. CaiQ. WuG. ZhuM. GeH. XueC. ZhangQ. ChengB. XuS. WuP. FGF6 enhances muscle regeneration after nerve injury by relying on erk1/2 mechanism.Life Sci.202024811746510.1016/j.lfs.2020.11746532105707
    [Google Scholar]
  34. HuZ. ChenP. WangL. ZhuY. ChenG. ChenY. HuZ. MeiL. YouW. CongW. JinL. WangX. WangY. GuanX. FGF6 promotes cardiac repair after myocardial infarction by inhibiting the hippo pathway.Cell Prolif.2022555e1322110.1111/cpr.1322135355356
    [Google Scholar]
  35. GuoS. JiangS. EpperlaN. MaY. MaadooliatM. YeZ. OlsonB. WangM. KitchnerT. JoyceJ. AnP. WangF. StrennR. MazzaJ.J. MeeceJ.K. WuW. JinL. SmithJ.A. WangJ. SchrodiS.J. A gene-based recessive diplotype exome scan discovers FGF6, a novel hepcidin-regulating iron-metabolism gene.Blood2019133171888189810.1182/blood‑2018‑10‑87958530814063
    [Google Scholar]
  36. OrnitzD.M. XuJ. ColvinJ.S. McEwenD.G. MacArthurC.A. CoulierF. GaoG. GoldfarbM. Receptor specificity of the fibroblast growth factor family.J. Biol. Chem.199627125152921529710.1074/jbc.271.25.152928663044
    [Google Scholar]
  37. OulionS. BertrandS. EscrivaH. Evolution of the FGF gene family.Int. J. Evol. Biol.2012201229814722919541
    [Google Scholar]
  38. ReuterI. JäckelsJ. KneitzS. KuperJ. LeschK.P. LillesaarC. FGF3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish.Biol. Open201986bio.04068310.1242/bio.04068331036752
    [Google Scholar]
  39. ZinkleA. MohammadiM. Structural biology of the FGF7 subfamily.Front. Genet.20191010210.3389/fgene.2019.0010230809251
    [Google Scholar]
  40. JangJ.H. KanM. WangF. McKeehanW.L. Heparan sulfate is required for interaction and activation of the epithelial cell fibroblast growth factor receptor-2iiib with stromal-derived fibroblast growth factor 7.Mol. Biol. Cell1996710751075
    [Google Scholar]
  41. BellostaP. IwahoriA. PlotnikovA.N. EliseenkovaA.V. BasilicoC. MohammadiM. Identification of receptor and heparin binding sites in fibroblast growth factor 4 by structure-based mutagenesis.Mol. Cell. Biol.200121175946595710.1128/MCB.21.17.5946‑5957.200111486033
    [Google Scholar]
  42. FriedlA. ChangZ. TierneyA. RapraegerA.C. Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: Comparison of normal and abnormal human tissues.Am. J. Pathol.19971504144314559094999
    [Google Scholar]
  43. AnY.J. LeeK.W. JungY.E. JeongY.E. KimS.J. WooJ. JinJ. LeeW.K. ChaK. ChaS.S. LeeJ-H. YimH-S. Improvement of FGF7 thermal stability by introduction of mutations in close vicinity to disulfide bond and surface salt bridge.Int. J. Pept. Res. Ther.20222838510.1007/s10989‑022‑10394‑1
    [Google Scholar]
  44. YangB.B. GillespieB. SmithB. SmithW. LissmatsA. RudebeckM. KullenbergT. OlssonB. Pharmacokinetic and pharmacodynamic interactions between palifermin and heparin.J. Clin. Pharmacol.201555101109111810.1002/jcph.51625880826
    [Google Scholar]
  45. LeeC.Y. YangC.Y. LinC.C. YuM.C. SheuS.J. KuanY.H. Hair growth is promoted by beautop via expression of EGF and FGF-7.Mol. Med. Rep.20181768047805210.3892/mmr.2018.891729693180
    [Google Scholar]
  46. RadekK.A. TaylorK.R. GalloR.L. FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation.Wound Repair Regen.200917111812610.1111/j.1524‑475X.2008.00449.x19152659
    [Google Scholar]
  47. JamesonJ. UgarteK. ChenN. YachiP. FuchsE. BoismenuR. HavranW.L. A role for skin gammadelta t cells in wound repair.Science2002296556874774910.1126/science.106963911976459
    [Google Scholar]
  48. MarcheseC. ChedidM. DirschO.R. CsakyK.G. SantanelliF. LatiniC. LaRochelleW.J. TorrisiM.R. AaronsonS.A. Modulation of keratinocyte growth factor and its receptor in reepithelializing human skin.J. Exp. Med.199518251369137610.1084/jem.182.5.13697595207
    [Google Scholar]
  49. LiuL. SongC. LiJ. WangQ. ZhuM. HuY. ChenJ. ChenC. ZhangJ.S. DongN. ChenC. Fibroblast growth factor 10 alleviates particulate matter-induced lung injury by inhibiting the hmgb1-tlr4 pathway.Aging (Albany NY)20201221186120010.18632/aging.10267631958320
    [Google Scholar]
  50. TaghizadehS. ChaoC.M. GuentherS. GlaserL. GersmannL. MichelG. KrautS. GothK. KoepkeJ. HeinerM. Vazquez-ArmendarizA.I. HeroldS. SamakovlisC. WeissmannN. RicciF. AquilaG. BoyerL. EhrhardtH. MinooP. BellusciS. RivettiS. FGF10 triggers de novo alveologenesis in a bronchopulmonary dysplasia model: Impact on resident mesenchymal niche cells.Stem Cells202240660561710.1093/stmcls/sxac02535437594
    [Google Scholar]
  51. BarrientosS. BremH. StojadinovicO. Tomic-CanicM. Clinical application of growth factors and cytokines in wound healing.Wound Repair Regen.201422556957810.1111/wrr.1220524942811
    [Google Scholar]
  52. BeyerT. WernerS. DicksonC. GroseR. Fibroblast growth factor 22 and its potential role during skin development and repair.Exp. Cell Res.2003287222823610.1016/S0014‑4827(03)00139‑312837279
    [Google Scholar]
  53. JaroszM. Robbez-MassonL. ChioniA.M. CrossB. RosewellI. GroseR. Fibroblast growth factor 22 is not essential for skin development and repair but plays a role in tumorigenesis.PLoS One201276e3943610.1371/journal.pone.003943622737238
    [Google Scholar]
  54. AljovićA. JacobiA. MarcantoniM. KagererF. LoyK. KendirliA. BräutigamJ. FabbioL. Van SteenbergenV. PleśniarK. KerschensteinerM. BareyreF.M. Synaptogenic gene therapy with FGF22 improves circuit plasticity and functional recovery following spinal cord injury.EMBO Mol. Med.2023152e1611110.15252/emmm.20221611136601738
    [Google Scholar]
  55. XuY.H. YuM. WeiH. YaoS. ChenS.Y. ZhuX.L. LiY.F. Fibroblast growth factor 22 is a novel modulator of depression through interleukin-1β.CNS Neurosci. Ther.2017231190791610.1111/cns.1276028948716
    [Google Scholar]
  56. TanakaA. MiyamotoK. MinaminoN. TakedaM. SatoB. MatsuoH. MatsumotoK. Cloning and characterization of an androgen-induced growth-factor essential for the androgen-dependent growth of mouse mammary-carcinoma cells.Proc Natl Acad Sci USA1992898928893210.1073/pnas.89.19.8928
    [Google Scholar]
  57. SzebenyiG. FallonJ.F. Fibroblast growth factors as multifunctional signaling factors.Int. Rev. Cytol.19981854510610.1016/S0074‑7696(08)60149‑79750265
    [Google Scholar]
  58. KreugerJ. JemthP. Sanders-LindbergE. EliahuL. RonD. BasilicoC. SalmivirtaM. LindahlU. Fibroblast growth factors share binding sites in heparan sulphate.Biochem. J.2005389114515010.1042/BJ2004212915769253
    [Google Scholar]
  59. SatoT. NakamuraH. The FGF8 signal causes cerebellar differentiation by activating the ras-erk signaling pathway.Development2004131174275428510.1242/dev.0128115294862
    [Google Scholar]
  60. LiuR. HuangS. LeiY. ZhangT. WangK. LiuB. NiceE.C. XiangR. XieK. LiJ. HuangC. FGF8 promotes colorectal cancer growth and metastasis by activating yap1.Oncotarget20156293595210.18632/oncotarget.282225473897
    [Google Scholar]
  61. JomrichG. WilfingL. RadosavljevicS. ParakA. WinklerD. TimelthalerG. SchindlM. SchoppmannS.F. KlöschB. Fibroblast growth factor 8 overexpression is predictive of poor prognosis in pancreatic ductal adenocarcinoma.Eur. Surg.202052628228910.1007/s10353‑020‑00669‑6
    [Google Scholar]
  62. HaoY. XiaoY. LiaoX. TangS. XieX. LiuR. ChenQ. FGF8 induces epithelial-mesenchymal transition and promotes metastasis in oral squamous cell carcinoma.Int. J. Oral Sci.2021131610.1038/s41368‑021‑00111‑x33649301
    [Google Scholar]
  63. ChandraK.B. KumarV. RanjanS. SainiA. TomarA.K. SharmaJ.B. MathurS.R. YadavS. Unveiling the significance of FGF8 overexpression in orchestrating the progression of ovarian cancer.Int. J. Mol. Sci.202324181423910.3390/ijms24181423937762545
    [Google Scholar]
  64. PoliE. BarbonV. LucchettaS. CattelanM. SantoroL. ZinA. MilanoG.M. ZanettiI. BisognoG. BonviniP. Immunoreactivity against fibroblast growth factor 8 in alveolar rhabdomyosarcoma patients and its involvement in tumor aggressiveness.OncoImmunology2022111209634910.1080/2162402X.2022.209634935813575
    [Google Scholar]
  65. Tabares-SeisdedosR. RubensteinJ.L.R. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: Implications for schizophrenia, autism and cancer.Mol. Psychiat.200914656358910.1038/mp.2009.219204725
    [Google Scholar]
  66. PolnaszekN. Kwabi-AddoB. WangJ. IttmannM. FGF17 is an autocrine prostatic epithelial growth factor and is upregulated in benign prostatic hyperplasia.Prostate2004601182410.1002/pros.2002615129425
    [Google Scholar]
  67. IramT. KernF. KaurA. MyneniS. MorningstarA.R. ShinH. GarciaM.A. YerraL. PalovicsR. YangA.C. HahnO. LuN. ShukenS.R. HaneyM.S. LehallierB. IyerM. LuoJ. ZetterbergH. KellerA. ZucheroJ.B. Wyss-CorayT. Young csf restores oligodendrogenesis and memory in aged mice via FGF17.Nature2022605791050951510.1038/s41586‑022‑04722‑035545674
    [Google Scholar]
  68. XiongX.Y. SemyanovA. TangY. Restored oligodendrogenesis by fibroblast growth factor 17: Molecular mechanism for rejuvenating ageing-related memory deficit.Signal Transduct. Target. Ther.20227123710.1038/s41392‑022‑01092‑x35842438
    [Google Scholar]
  69. LingY. DuQ. FGF10/FGF17 as prognostic and drug response markers in acute myeloid leukemia.Curr. Res. Transl. Med.202270110331610.1016/j.retram.2021.10331634731724
    [Google Scholar]
  70. KatohM. KatohM. Comparative genomics on FGF8, FGF17, and FGF18 orthologs.Int. J. Mol. Med.200516349349610.3892/ijmm.16.3.49316077960
    [Google Scholar]
  71. CormierS. LeroyC. DelezoideA.L. SilveC. Expression of fibroblast growth factors 18 and 23 during human embryonic and fetal development.Gene Expr. Patterns20055456957310.1016/j.modgep.2004.10.00815749088
    [Google Scholar]
  72. MarieP.J. Fibroblast growth factor signaling controlling osteoblast differentiation.Gene2003316233210.1016/S0378‑1119(03)00748‑014563548
    [Google Scholar]
  73. GuoK. MaZ. ZhangY. HanL. ShaoC. FengY. GaoF. DiS. ZhangZ. ZhangJ. TabbòF. EkmanS. SudaK. CappuzzoF. HanJ. LiX. YanX. Hdac7 promotes nsclc proliferation and metastasis via stabilization by deubiquitinase usp10 and activation of β-catenin-FGF18 pathway.J. Exp. Clin. Cancer Res.20224119110.1186/s13046‑022‑02266‑935012593
    [Google Scholar]
  74. KatohY. KatohM. FGF signaling inhibitor, spry4, is evolutionarily conserved target of wnt signaling pathway in progenitor cells.Int. J. Mol. Med.200617352953210.3892/ijmm.17.3.52916465403
    [Google Scholar]
  75. LohmanderL.S. HellotS. DreherD. KrantzE.F.W. KrugerD.S. GuermaziA. EcksteinF. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis.Arthri. Rheumatol.20146671820183110.1002/art.38614
    [Google Scholar]
  76. HochbergM.C. GuermaziA. GuehringH. AydemirA. WaxS. Fleuranceau-MorelP. Reinstrup BihletA. ByrjalsenI. Ragnar AndersenJ. EcksteinF. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis.JAMA2019322141360137010.1001/jama.2019.1473531593273
    [Google Scholar]
  77. DahlbergL.E. AydemirA. MuurahainenN. GühringH. Fredberg EdeboH. Krarup-JensenN. LadelC.H. JurvelinJ.S. A first-in-human, double-blind, randomised, placebo-controlled, dose ascending study of intra-articular RHFGF18 (sprifermin) in patients with advanced knee osteoarthritis.Clin. Exp. Rheumatol.201634344545027050139
    [Google Scholar]
  78. BrettA. BowesM.A. ConaghanP.G. LadelC. KrainesJ. GühringH. MoreauF. EcksteinF. Mri data from the sprifermin phase ii forward study: Confirmation of manual cartilage segmentation findings by automated segmentation.Ann. Rheum. Dis.20197814211422
    [Google Scholar]
  79. EcksteinF. KrainesJ.L. AydemirA. WirthW. MaschekS. HochbergM.C. Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: Post-hoc analysis of a randomised, placebo-controlled phase ii clinical trial.Ann. Rheum. Dis.202079452552810.1136/annrheumdis‑2019‑21645332098758
    [Google Scholar]
  80. ColvinJ.S. WhiteA.C. PrattS.J. OrnitzD.M. Lung hypoplasia and neonatal death in FGF9 -null mice identify this gene as an essential regulator of lung mesenchyme.Development2001128112095210610.1242/dev.128.11.209511493531
    [Google Scholar]
  81. WhiteA.C. XuJ. YinY. SmithC. SchmidG. OrnitzD.M. FGF9 and shh signaling coordinate lung growth and development through regulation of distinct mesenchymal domains.Development200613381507151710.1242/dev.0231316540513
    [Google Scholar]
  82. KimY. KobayashiA. SekidoR. DiNapoliL. BrennanJ. ChaboissierM.C. PoulatF. BehringerR.R. Lovell-BadgeR. CapelB. FGF9 and wnt4 act as antagonistic signals to regulate mammalian sex determination.PLoS Biol.200646e18710.1371/journal.pbio.004018716700629
    [Google Scholar]
  83. SchmahlJ. KimY. ColvinJ.S. OrnitzD.M. CapelB. FGF9 induces proliferation and nuclear localization of FGFR2 in sertoli precursors during male sex determination.Development2004131153627363610.1242/dev.0123915229180
    [Google Scholar]
  84. BowlesJ. FengC.W. SpillerC. DavidsonT.L. JacksonA. KoopmanP. FGF9 suppresses meiosis and promotes male germ cell fate in mice.Dev. Cell201019344044910.1016/j.devcel.2010.08.01020833365
    [Google Scholar]
  85. BarakH. HuhS.H. ChenS. JeanpierreC. MartinovicJ. ParisotM. Bole-FeysotC. NitschkéP. SalomonR. AntignacC. OrnitzD.M. KopanR. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man.Dev. Cell20122261191120710.1016/j.devcel.2012.04.01822698282
    [Google Scholar]
  86. HungI.H. YuK. LavineK.J. OrnitzD.M. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod.Dev. Biol.2007307230031310.1016/j.ydbio.2007.04.04817544391
    [Google Scholar]
  87. SunY.L. ZengS. YeK. YangC. LiM.H. HuangB.F. SunL.N. ZhouL.Y. WangD.S. Involvement of FGF9/16/20 subfamily in female germ cell development of the nile tilapia, oreochromis niloticus.Fish Physiol. Biochem.20123851427143910.1007/s10695‑012‑9630‑422451340
    [Google Scholar]
  88. HuangJ. WangK. ShiflettL.A. BrottoL. BonewaldL.F. WackerM.J. DallasS.L. BrottoM. Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of c2c12 and human muscle cells.Cell Cycle201918243562358010.1080/15384101.2019.169179631735119
    [Google Scholar]
  89. GayD. KwonO. ZhangZ. SpataM. PlikusM.V. HollerP.D. ItoM. YangZ. TreffeisenE. KimC.D. NaceA. ZhangX. BaratonoS. WangF. OrnitzD.M. MillarS.E. CotsarelisG. FGF9 from dermal γδ t cells induces hair follicle neogenesis after wounding.Nat. Med.201319791692310.1038/nm.318123727932
    [Google Scholar]
  90. PlotnikovA.N. EliseenkovaA.V. IbrahimiO.A. ShriverZ. SasisekharanR. LemmonM.A. MohammadiM. Crystal structure of fibroblast growth factor 9 reveals regions implicated in dimerization and autoinhibition.J. Biol. Chem.200127664322432910.1074/jbc.M00650220011060292
    [Google Scholar]
  91. HaradaM. MurakamiH. OkawaA. OkimotoN. HiraokaS. NakaharaT. AkasakaR. ShiraishiY. FutatsugiN. Mizutani-KosekiY. KuroiwaA. ShirouzuM. YokoyamaS. TaijiM. IsekiS. OrnitzD.M. KosekiH. FGF9 monomer–dimer equilibrium regulates extracellular matrix affinity and tissue diffusion.Nat. Genet.200941328929810.1038/ng.31619219044
    [Google Scholar]
  92. DiNapoliL. BatchvarovJ. CapelB. FGF9 promotes survival of germ cells in the fetal testis.Development200613381519152710.1242/dev.0230316540514
    [Google Scholar]
  93. ChangM.M. HongS.Y. YangS.H. WuC.C. WangC.Y. HuangB.M. Anti-cancer effect of cordycepin on FGF9-induced testicular tumorigenesis.Int. J. Mol. Sci.20202121833610.3390/ijms2121833633172093
    [Google Scholar]
  94. ChangM.M. WuS.Z. YangS.H. WuC.C. WangC.Y. HuangB.M. FGF9/FGFR1 promotes cell proliferation, epithelial-mesenchymal transition, m2 macrophage infiltration and liver metastasis of lung cancer.Transl. Oncol.2021141110120810.1016/j.tranon.2021.10120834438248
    [Google Scholar]
  95. ZhangZ. ZhangY. QinX. WangY. FuJ. FGF9 promotes cisplatin resistance in colorectal cancer via regulation of wnt/β- catenin signaling pathway.Exp. Ther. Med.20191931711171810.3892/etm.2019.839932104224
    [Google Scholar]
  96. TangL. WuM. LuS. ZhangH. ShenY. ShenC. LiangH. GeH. DingX. WangZ. FGF9 negatively regulates bone mass by inhibiting osteogenesis and promoting osteoclastogenesis via mapk and pi3k/akt signaling.J. Bone Miner. Res.202036477979110.1002/jbmr.423033316109
    [Google Scholar]
  97. ItohN. OhtaH. NakayamaY. KonishiM. Roles of FGF signals in heart development, health, and disease.Front. Cell Dev. Biol.2016411010.3389/fcell.2016.0011027803896
    [Google Scholar]
  98. HuangK. LiangJ.J. LinY.Q. ZhuJ.J. MaJ.Q. WangY. Molecular characterization of fibroblast growth factor-16 and its role in promoting the differentiation of intramuscular preadipocytes in goat.Animal202014112351236210.1017/S175173112000116032624066
    [Google Scholar]
  99. LavineK.J. YuK. WhiteA.C. ZhangX. SmithC. PartanenJ. OrnitzD.M. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo .Dev. Cell200581859510.1016/j.devcel.2004.12.00215621532
    [Google Scholar]
  100. NomuraR. KameiE. HottaY. KonishiM. MiyakeA. ItohN. FGF16 is essential for pectoral fin bud formation in zebrafish.Biochem. Biophys. Res. Commun.2006347134034610.1016/j.bbrc.2006.06.10816815307
    [Google Scholar]
  101. WrightT.J. HatchE.P. KarabagliH. KarabagliP. SchoenwolfG.C. MansourS.L. Expression of mouse fibroblast growth factor and fibroblast growth factor receptor genes during early inner ear development.Dev. Dyn.2003228226727210.1002/dvdy.1036214517998
    [Google Scholar]
  102. ChapmanS.C. CaiQ. BleylS.B. SchoenwolfG.C. Restricted expression of FGF16 within the developing chick inner ear.Dev. Dyn.200623582276228110.1002/dvdy.2087216786592
    [Google Scholar]
  103. FerreiraR.M. ChiarattiM.R. MacabelliC.H. RodriguesC.A. FerrazM.L. WatanabeY.F. SmithL.C. MeirellesF.V. BaruselliP.S. The infertility of repeat-breeder cows during summer is associated with decreased mitochondrial dna and increased expression of mitochondrial and apoptotic genes in oocytes1.Biol. Reprod.20169436610.1095/biolreprod.115.13301726843447
    [Google Scholar]
  104. HottaY. SasakiS. KonishiM. KinoshitaH. KuwaharaK. NakaoK. ItohN. FGF16 is required for cardiomyocyte proliferation in the mouse embryonic heart.Dev. Dyn.2008237102947295410.1002/dvdy.2172618816849
    [Google Scholar]
  105. LuS.Y. SheikhF. SheppardP.C. FresnozaA. DuckworthM.L. DetillieuxK.A. CattiniP.A. FGF-16 is required for embryonic heart development.Biochem. Biophys. Res. Commun.2008373227027410.1016/j.bbrc.2008.06.02918565327
    [Google Scholar]
  106. YeL. YuY. ZhaoZ.A. ZhaoD.Z. NiX. WangY. FangX. YuM. WangY. TangJ. ChenY. ShenZ. LeiW. HuS. Abstract p305: Patient-specific ipsc-derived cardiomyocytes reveal abnormal regulation of FGF16 in a familial atrial septal defect.Circ. Res.2021129Suppl. 110.1161/res.129.suppl_1.P305
    [Google Scholar]
  107. MatsumotoE. SasakiS. KinoshitaH. KitoT. OhtaH. KonishiM. KuwaharaK. NakaoK. ItohN. Angiotensin ii -induced cardiac hypertrophy and fibrosis are promoted in mice lacking FGF16.Genes Cells201318754455310.1111/gtc.1205523600527
    [Google Scholar]
  108. JamsheerA. ZemojtelT. KolanczykM. StrickerS. HechtJ. KrawitzP. DoelkenS.C. GlazarR. SochaM. MundlosS. Whole exome sequencing identifies FGF16 nonsense mutations as the cause of x-linked recessive metacarpal 4/5 fusion.J. Med. Genet.201350957958410.1136/jmedgenet‑2013‑10165923709756
    [Google Scholar]
  109. KettunenP. FurmanekT. ChaulagainR. Hals KvinnslandI. LuukkoK. Developmentally regulated expression of intracellular FGF11-13, hormone-like FGF15 and canonical FGF16, -17 and -20 mrnas in the developing mouse molar tooth.Acta Odontol. Scand.201169636036610.3109/00016357.2011.56896821449687
    [Google Scholar]
  110. XueQ. ZhangG. LiT. LingJ. ZhangX. WangJ. Transcriptomic profile of leg muscle during early growth in chicken.PLoS One2017123e017382410.1371/journal.pone.017382428291821
    [Google Scholar]
  111. WangS. LinH. ZhaoT. HuangS. FernigD.G. XuN. WuF. ZhouM. JiangC. TianH. Expression and purification of an FGF9 fusion protein in E. coli, and the effects of the FGF9 subfamily on human hepatocellular carcinoma cell proliferation and migration.Appl. Microbiol. Biotechnol.2017101217823783510.1007/s00253‑017‑8468‑128921304
    [Google Scholar]
  112. XuF.F. XieW.F. ZhaG.Q. ChenH.W. DengL. Mir-520f promotes cell aggressiveness by regulating fibroblast growth factor 16 in hepatocellular carcinoma.Oncotarget201786510954610955810.18632/oncotarget.2272629312628
    [Google Scholar]
  113. HeW. LiuX. LuoZ. LiL. FangX. FGF16 regulated by mir-520b enhances the cell proliferation of lung cancer.Open Med. (Wars.)202116141942710.1515/med‑2021‑023233758783
    [Google Scholar]
  114. KarS. MajiN. SenK. RoyS. MaityA. Ghosh DastidarS. NathS. BasuG. BasuM. Reprogramming of glucose metabolism via pfkfb4 is critical in FGF16-driven invasion of breast cancer cells.Biosci. Rep.2023438BSR2023067710.1042/BSR2023067737222403
    [Google Scholar]
  115. Martínez-RamírezA.S. Díaz-MuñozM. BattastiniA.M. Campos-ContrerasA. OlveraA. BergaminL. GlaserT. Jacintho MoritzC.E. UlrichH. Vázquez-CuevasF.G. Cellular migration ability is modulated by extracellular purines in ovarian carcinoma skov-3 cells.J. Cell. Biochem.2017118124468447810.1002/jcb.2610428464260
    [Google Scholar]
  116. BuchtovaM. ChaloupkovaR. ZakrzewskaM. VeselaI. CelaP. BarathovaJ. GudernovaI. ZajickovaR. TrantirekL. MartinJ. KostasM. OtlewskiJ. DamborskyJ. KozubikA. WiedlochaA. KrejciP. Instability restricts signaling of multiple fibroblast growth factors.Cell. Mol. Life Sci.201572122445245910.1007/s00018‑015‑1856‑825854632
    [Google Scholar]
  117. HaghnejadL. EmamalizadehB. JamshidiJ. BidokiA.Z. GhaediH. AhmadiE. AbdollahiS. ShahmohammadibeniN. TaghaviS. FazeliA. MotallebiM. ZarnehA.E.S. MohammadihosseinabadS. AbbaszadeganM.R. TorkamandiS. GavenaroudiM.A. PedramN. ShahidiG.A. TafakhoriA. DarvishH. MovafaghA. Variation in the mirna-433 binding site of FGF20 is a risk factor for parkinson’s disease in iranian population.J. Neurol. Sci.20153551-2727410.1016/j.jns.2015.05.02026070653
    [Google Scholar]
  118. TakagiY. TakahashiJ. SaikiH. MorizaneA. HayashiT. KishiY. FukudaH. OkamotoY. KoyanagiM. IdeguchiM. HayashiH. ImazatoT. KawasakiH. SuemoriH. OmachiS. IidaH. ItohN. NakatsujiN. SasaiY. HashimotoN. Dopaminergic neurons generated from monkey embryonic stem cells function in a parkinson primate model.J. Clin. Invest.2005115110210910.1172/JCI2113715630449
    [Google Scholar]
  119. JeanpierreC. FGF9 and FGF20 maintain the stemness of nephron progenitors during kidney development.Med. Sci. (Paris)201329325425610.1051/medsci/201329300923544377
    [Google Scholar]
  120. YangL.M. CheahK.S.E. HuhS.H. OrnitzD.M. Sox2 and FGF20 interact to regulate organ of corti hair cell and supporting cell development in a spatially-graded manner.PLoS Genet.2019157e100825410.1371/journal.pgen.100825431276493
    [Google Scholar]
  121. LoveN.R. ChenY. IshibashiS. KritsiligkouP. LeaR. KohY. GallopJ.L. DoreyK. AmayaE. Amputation-induced reactive oxygen species are required for successful xenopus tadpole tail regeneration.Nat. Cell Biol.201315222222810.1038/ncb265923314862
    [Google Scholar]
  122. KalininaJ. ByronS.A. MakarenkovaH.P. OlsenS.K. EliseenkovaA.V. LarochelleW.J. DhanabalM. BlaisS. OrnitzD.M. DayL.A. NeubertT.A. PollockP.M. MohammadiM. Homodimerization controls the fibroblast growth factor 9 subfamily’s receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix.Mol. Cell. Biol.200929174663467810.1128/MCB.01780‑0819564416
    [Google Scholar]
  123. HayashiT. RayC.A. Bermingham-McDonoghO. FGF20 is required for sensory epithelial specification in the developing cochlea.J. Neurosci.200828235991599910.1523/JNEUROSCI.1690‑08.200818524904
    [Google Scholar]
  124. LanY. JiaS. JiangR. Molecular patterning of the mammalian dentition.Semin. Cell Dev. Biol.201425-26617010.1016/j.semcdb.2013.12.00324355560
    [Google Scholar]
  125. GuoR. WangX. FangY. ChenX. ChenK. HuangW. ChenJ. HuJ. LiangF. DuJ. DordoeC. TianX. LinL. RHFGF20 promotes angiogenesis and vascular repair following traumatic brain injury by regulating wnt/β-catenin pathway.Biomed. Pharmacother.202114311220010.1016/j.biopha.2021.11220034649342
    [Google Scholar]
  126. AraG. WatkinsB.A. ZhongH. HawthorneT.R. KarkariaC.E. SonisS.T. LarochelleW.J. Velafermin (RHFGF-20) reduces the severity and duration of hamster cheek pouch mucositis induced by fractionated radiation.Int. J. Radiat. Biol.200884540141210.1080/0955300080200760118464069
    [Google Scholar]
  127. KatohM. KatohM. Wnt signaling pathway and stem cell signaling network.Clin. Cancer Res.200713144042404510.1158/1078‑0432.CCR‑06‑231617634527
    [Google Scholar]
  128. LeeK.W. AnY.J. LeeJ. JungY.E. KoI.Y. JinJ. ParkJ.H. LeeW.K. ChaK. KoS.S.C. LeeJ.H. YimH.S. Expression and purification of intracrine human FGF 11 and study of its FGFR-dependent biological activity.J. Microbiol.202260111086109410.1007/s12275‑022‑2406‑336318359
    [Google Scholar]
  129. KnowlesH.J. Hypoxia-induced fibroblast growth factor 11 stimulates osteoclast-mediated resorption of bone.Calcif. Tissue Int.2017100438239110.1007/s00223‑016‑0228‑128097375
    [Google Scholar]
  130. ChoJ.H. KimK. ChoH.C. LeeJ. KimE.K. Silencing of hypothalamic FGF11 prevents diet-induced obesity.Mol. Brain20221517510.1186/s13041‑022‑00962‑336064426
    [Google Scholar]
  131. WooJ. SuhW. SungJ.H. Hair growth regulation by fibroblast growth factor 12 (FGF12).Int. J. Mol. Sci.20222316946710.3390/ijms2316946736012732
    [Google Scholar]
  132. YeoY. YiE.S. KimJ.M. JoE.K. SeoS. KimR.I. KimK.L. SungJ.H. ParkS.G. SuhW. FGF12 (fibroblast growth factor 12) inhibits vascular smooth muscle cell remodeling in pulmonary arterial hypertension.Hypertension20207661778178610.1161/HYPERTENSIONAHA.120.1506833100045
    [Google Scholar]
  133. YuH. WangH. QieA. WangJ. LiuY. GuG. YangJ. ZhangH. PanW. TianZ. WangC. FGF13 enhances resistance to platinum drugs by regulating hctr1 and atp7a via a microtubule-stabilizing effect.Cancer Sci.2021112114655466810.1111/cas.1513734533854
    [Google Scholar]
  134. ChenQ. LiF. GaoY. YangF. YuanL. Identification of FGF13 as a potential biomarker and target for diagnosis of impaired glucose tolerance.Int. J. Mol. Sci.2023242180710.3390/ijms2402180736675322
    [Google Scholar]
  135. WuQ.F. YangL. LiS. WangQ. YuanX.B. GaoX. BaoL. ZhangX. Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration.Cell201214971549156410.1016/j.cell.2012.04.04622726441
    [Google Scholar]
  136. StruppM. MaulS. KonteB. HartmannA.M. GieglingI. WollenteitS. FeilK. RujescuD. A variation in FGF14 is associated with downbeat nystagmus in a genome-wide association study.Cerebellum202019334835710.1007/s12311‑020‑01113‑x32157568
    [Google Scholar]
  137. PellerinD. WilkeC. TraschützA. NagyS. CurròR. DicaireM.-J. Garcia-MorenoH. AnheimM. WirthT. FaberJ. Intronic FGF14 gaa repeat expansions are a common cause of ataxia syndromes with neuropathy and bilateral vestibulopathy.J. Neurolog. Sci.202345512117310.1016/j.jns.2023.121185
    [Google Scholar]
  138. LiuZ. WadsworthP. SinghA.K. ChenH. WangP. FolorunsoO. ScadutoP. AliS.R. LaezzaF. ZhouJ. Identification of peptidomimetics as novel chemical probes modulating fibroblast growth factor 14 (FGF14) and voltage-gated sodium channel 1.6 (nav1.6) protein-protein interactions.Bioorg. Med. Chem. Lett.201929341341910.1016/j.bmcl.2018.12.03130587448
    [Google Scholar]
  139. GeH. BaribaultH. VonderfechtS. LemonB. WeiszmannJ. GardnerJ. LeeK.J. GupteJ. MookherjeeP. WangM. ShengJ. WuX. LiY. Characterization of a FGF19 variant with altered receptor specificity revealed a central role for FGFR1C in the regulation of glucose metabolism.PLoS One201273e3360310.1371/journal.pone.003360322457778
    [Google Scholar]
  140. NishimuraT. NakatakeY. KonishiM. ItohN. Identification of a novel FGF, FGF-21, preferentially expressed in the liver.Biochim. Biophys. Acta Gene Struct. Expr.20001492120320610.1016/S0167‑4781(00)00067‑110858549
    [Google Scholar]
  141. PhanP. SaikiaB.B. SonnailaS. AgrawalS. AlraawiZ. KumarT.K.S. IyerS. The saga of endocrine FGFS.Cells2021109241810.3390/cells1009241834572066
    [Google Scholar]
  142. KimK.H. JeongY.T. OhH. KimS.H. ChoJ.M. KimY.N. KimS.S. KimD.H. HurK.Y. KimH.K. KoT. HanJ. KimH.L. KimJ. BackS.H. KomatsuM. ChenH. ChanD.C. KonishiM. ItohN. ChoiC.S. LeeM.S. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing FGF21 as a mitokine.Nat. Med.2013191839210.1038/nm.301423202295
    [Google Scholar]
  143. KharitonenkovA. BealsJ.M. MicanovicR. StriflerB.A. RathnachalamR. WroblewskiV.J. LiS. KoesterA. FordA.M. CoskunT. DunbarJ.D. ChengC.C. FryeC.C. BumolT.F. MollerD.E. Rational design of a fibroblast growth factor 21-based clinical candidate, ly2405319.PLoS One201383e5857510.1371/journal.pone.005857523536797
    [Google Scholar]
  144. NygaardE.B. MøllerC.L. KievitP. GroveK.L. AndersenB. Increased fibroblast growth factor 21 expression in high-fat diet-sensitive non-human primates (macaca mulatta).Int. J. Obes.201438218319110.1038/ijo.2013.7923736354
    [Google Scholar]
  145. WenteW. EfanovA.M. BrennerM. KharitonenkovA. KösterA. SanduskyG.E. SewingS. TreiniesI. ZitzerH. GromadaJ. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and akt signaling pathways.Diabetes20065592470247810.2337/db05‑143516936195
    [Google Scholar]
  146. ZhuL. ZhaoH. LiuJ. CaiH. WuB. LiuZ. ZhouS. LiuQ. LiX. BaoB. LiuJ. DaiH. WangJ. Dynamic folding modulation generates FGF21 variant against diabetes.EMBO Rep.2021221e5135210.15252/embr.20205135233295692
    [Google Scholar]
  147. LeeS. ChoiJ. MohantyJ. SousaL.P. TomeF. PardonE. SteyaertJ. LemmonM.A. LaxI. SchlessingerJ. Structures of β-klotho reveal a ‘zip code’-like mechanism for endocrine FGF signalling.Nature2018553768950150510.1038/nature2501029342135
    [Google Scholar]
  148. KharitonenkovA. ShiyanovaT.L. KoesterA. FordA.M. MicanovicR. GalbreathE.J. SanduskyG.E. HammondL.J. MoyersJ.S. OwensR.A. GromadaJ. BrozinickJ.T. HawkinsE.D. WroblewskiV.J. LiD.S. MehrbodF. JaskunasS.R. ShanafeltA.B. FGF-21 as a novel metabolic regulator.J. Clin. Invest.200511561627163510.1172/JCI2360615902306
    [Google Scholar]
  149. AdamsA.C. YangC. CoskunT. ChengC.C. GimenoR.E. LuoY. KharitonenkovA. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue.Mol. Metab.201321313710.1016/j.molmet.2012.08.00724024127
    [Google Scholar]
  150. GaichG. ChienJ.Y. FuH. GlassL.C. DeegM.A. HollandW.L. KharitonenkovA. BumolT. SchilskeH.K. MollerD.E. The effects of ly2405319, an FGF21 analog, in obese human subjects with type 2 diabetes.Cell Metab.201318333334010.1016/j.cmet.2013.08.00524011069
    [Google Scholar]
  151. SongL. ZhuY. WangH. BelovA.A. NiuJ. ShiL. XieY. YeC. LiX. HuangZ. A solid-phase pegylation strategy for protein therapeutics using a potent FGF21 analog.Biomaterials201435195206521510.1016/j.biomaterials.2014.03.02324685265
    [Google Scholar]
  152. AdamsA.C. HalsteadC.A. HansenB.C. IrizarryA.R. MartinJ.A. MyersS.R. ReynoldsV.L. SmithH.W. WroblewskiV.J. KharitonenkovA. Ly2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys.PLoS One201386e6576310.1371/journal.pone.006576323823755
    [Google Scholar]
  153. DongJ.Q. RossulekM. SomayajiV.R. BaltrukonisD. LiangY. HudsonK. Hernandez-IllasM. CalleR.A. Pharmacokinetics and pharmacodynamics of pf-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study.Br. J. Clin. Pharmacol.20158051051106310.1111/bcp.1267625940675
    [Google Scholar]
  154. HuangJ. IshinoT. ChenG. RolzinP. OsothpraropT.F. RettingK. LiL. JinP. MatinM.J. HuygheB. TalukdarS. BradshawC.W. PalankiM. ViolandB.N. WoodnuttG. LappeR.W. OgilvieK. LevinN. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody.J. Pharmacol. Exp. Ther.2013346227028010.1124/jpet.113.20442023720456
    [Google Scholar]
  155. WengY. ChabotJ.R. BernardoB. YanQ. ZhuY. BrennerM.B. VageC. LoganA. CalleR. TalukdarS. Pharmacokinetics (pk), pharmacodynamics (pd) and integrated pk/pd modeling of a novel long acting FGF21 clinical candidate pf-05231023 in diet-induced obese and leptin-deficient obese mice.PLoS One2015103e011910410.1371/journal.pone.011910425790234
    [Google Scholar]
  156. SanyalA. CharlesE.D. Neuschwander-TetriB.A. LoombaR. HarrisonS.A. AbdelmalekM.F. LawitzE.J. Halegoua-DeMarzioD. KunduS. NovielloS. LuoY. ChristianR. Pegbelfermin (bms-986036), a pegylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: A randomised, double-blind, placebo-controlled, phase 2a trial.Lancet2018392101652705271710.1016/S0140‑6736(18)31785‑930554783
    [Google Scholar]
  157. AbdelmalekM.F. CharlesE.D. SanyalA.J. HarrisonS.A. Neuschwander-TetriB.A. GoodmanZ. EhmanR.A. KarsdalM. NakajimaA. DuS. TirucheraiG.S. KlingerG.H. MoraJ. YamaguchiM. ShevellD.E. LoombaR. The falcon program: Two phase 2b randomized, double-blind, placebo-controlled studies to assess the efficacy and safety of pegbelfermin in the treatment of patients with nonalcoholic steatohepatitis and bridging fibrosis or compensated cirrhosis.Contemp. Clin. Trials202110410633510.1016/j.cct.2021.10633533657443
    [Google Scholar]
  158. BrownE.A. MinnichA. SanyalA.J. LoombaR. DuS. SchwarzJ. EhmanR.L. KarsdalM. LeemingD.J. CizzaG. CharlesE.D. Effect of pegbelfermin on nash and fibrosis-related biomarkers and correlation with histological response in the falcon 1 trial.JHEP Rep. Innov. Hepatol.20235410066110.1016/j.jhepr.2022.10066136866389
    [Google Scholar]
  159. LoombaR. SanyalA.J. NakajimaA. Neuschwander-TetriB.A. GoodmanZ. HarrisonS.A. LawitzE.J. GunnN. ImajoK. RavendhranN. Efficacy and safety of pegbelfermin in patients with nonalcoholic steatohepatitis and stage 3 fibrosis: Results from the phase 2b, randomized, double-blind, placebo-controlled falcon 1 study.Hepatology20217461385A1386A
    [Google Scholar]
  160. AbdelmalekM.F. SanyalA.J. NakajimaA. Neuschwander-TetriB.A. GoodmanZ.D. LawitzE.J. HarrisonS.A. JacobsonI.M. ImajoK. GunnN. Pegbelfermin in patients with nonalcoholic steatohepatitis and compensated cirrhosis (falcon 2): A randomized phase 2b study.Clin. Gastroenterol. Hepatol.2023221113123.e910.1016/j.cgh.2023.04.01237088458
    [Google Scholar]
  161. FriasJ.P. LawitzE.J. Ortiz-LaSantaG. FraneyB. MorrowL. ChenC.Y. TsengL. CharltonR.W. MansbachH. MargalitM. BIO89-100 demonstrated robust reductions in liver fat and liver fat volume (LFV) by MRI-PDFF, favorable tolerability and potential for weekly (QW) or every 2 weeks (Q2W) dosing in a phase 1b/2a placebo-controlled, double-blind, multiple ascending dose study in NASH.J Endocr. Soc.20215Suppl 1A5A6
    [Google Scholar]
  162. ShimadaT. KakitaniM. YamazakiY. HasegawaH. TakeuchiY. FujitaT. FukumotoS. TomizukaK. YamashitaT. Targeted ablation of FGF23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism.J. Clin. Invest.2004113456156810.1172/JCI20041908114966565
    [Google Scholar]
  163. WhiteK.E. EvansW.E. O’RiordanJ.L.H. SpeerM.C. EconsM.J. Lorenz-DepiereuxB. GrabowskiM. MeitingerT. StromT.M. ConsortiumA. ADHR Consortium Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23.Nat. Genet.200026334534810.1038/8166411062477
    [Google Scholar]
  164. CarpenterT.O. ShawN.J. PortaleA.A. WardL.M. AbramsS.A. PettiforJ.M. Rickets.Nat. Rev. Dis. Primers2017311710110.1038/nrdp.2017.10129265106
    [Google Scholar]
  165. EdmonstonD. WolfM. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis.Nat. Rev. Nephrol.202016171910.1038/s41581‑019‑0189‑531519999
    [Google Scholar]
  166. FaulC. AmaralA.P. OskoueiB. HuM.C. SloanA. IsakovaT. GutiérrezO.M. Aguillon-PradaR. LincolnJ. HareJ.M. MundelP. MoralesA. SciallaJ. FischerM. SolimanE.Z. ChenJ. GoA.S. RosasS.E. NesselL. TownsendR.R. FeldmanH.I. St John SuttonM. OjoA. GadegbekuC. Di MarcoG.S. ReuterS. KentrupD. TiemannK. BrandM. HillJ.A. MoeO.W. Kuro-OM. KusekJ.W. KeaneM.G. WolfM. FGF23 induces left ventricular hypertrophy.J. Clin. Invest.2011121114393440810.1172/JCI4612221985788
    [Google Scholar]
  167. CarpenterT.O. WhyteM.P. ImelE.A. BootA.M. HöglerW. LinglartA. PadidelaR. van’t HoffW. MaoM. ChenC.Y. SkrinarA. KakkisE. San MartinJ. PortaleA.A. Burosumab therapy in children with x-linked hypophosphatemia.N. Engl. J. Med.2018378211987199810.1056/NEJMoa171464129791829
    [Google Scholar]
  168. BaiX. LeventalM. KaraplisA.C. Burosumab treatment for autosomal recessive hypophosphatemic rickets type 1 (ARHR1).J. Clin. Endocrinol. Metab.2022107102777278310.1210/clinem/dgac43335896139
    [Google Scholar]
  169. Jan de BeurS.M. CimmsT. NixonA. Theodore-OklotaC. LucaD. RobertsM.S. EganS. GrahamC.A. HribalE. EvansC.J. WoodS. WilliamsA. Burosumab improves patient-reported outcomes in adults with tumor-induced osteomalacia: Mixed-methods analysis.J. Bone Miner. Res.202338111654166410.1002/jbmr.490037578099
    [Google Scholar]
  170. GladdingA. SzymczukV. AubleB.A. BoyceA.M. Burosumab treatment for fibrous dysplasia.Bone202115011600410.1016/j.bone.2021.11600433984553
    [Google Scholar]
  171. PaccouJ. Burosumab in tumor-induced osteomalacia: A case report.J. Bone Miner. Res.202338215216
    [Google Scholar]
  172. SugarmanJ. MaruriA. HamiltonD.J. TabatabaiL. LucaD. CimmsT. KrolczykS. RobertsM.S. CarpenterT.O. The efficacy and safety of burosumab in two patients with cutaneous skeletal hypophosphatemia syndrome.Bone202316611659810.1016/j.bone.2022.11659836341949
    [Google Scholar]
  173. BärL. GroßmannC. GekleM. FöllerM. Calcineurin inhibitors regulate fibroblast growth factor 23 (FGF23) synthesis.Naunyn Schmiedebergs Arch. Pharmacol.2017390111117112310.1007/s00210‑017‑1411‑228761977
    [Google Scholar]
  174. LiuS.H. XiaoZ. MishraS.K. MitchellJ.C. SmithJ.C. QuarlesL.D. PetridisL. Identification of small- molecule inhibitors of fibroblast growth factor 23 signaling via in silico hot spot prediction and molecular docking to α-klotho.J. Chem. Inf. Model.202262153627363710.1021/acs.jcim.2c0063335868851
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501351461250301072444
Loading
/content/journals/cdt/10.2174/0113894501351461250301072444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test