Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Introduction

Diseases triggered by glucose and lipid metabolic disorders, such as hyperglycemia and hyperlipidemia, have become a global health threat. According to statistics, diabetic patients have exceeded 463 million worldwide, and the prevalence of hyperlipidemia is also continuously rising. These glycolipid metabolic diseases not only significantly increase the risk of complications such as cardiovascular disease, stroke, and kidney disease but also impose a huge economic burden on the global healthcare system. Despite the continuous emergence of treatment methods for glucose and lipid metabolic diseases with the advancement of research technology, existing therapies still face many challenges. In recent years, the rapid development of nanotechnology has injected new vitality into the medical field. As an emerging research field, nanomedicine has attracted much attention for its application prospects in the treatment of glycolipid metabolic diseases. Nanotechnology is expected to provide more precise and efficient solutions for the treatment of these diseases, thereby reducing global health and economic pressures.

Objective

The objective of this article is to comprehensively review the relationship between nanotechnology and glucose and lipid metabolism.

Methods

We have carried out a series of literature searches, focusing on glycolipid effects and toxicity of nano-materials.

Results

Nanoparticles as drug carriers or nanoparticles enhance bioavailability and activity. Nano-material-based optical reporters aid in detecting lysosome lipid content, facilitating treatment and drug development for glucose and lipid metabolism disorders. Additionally, nanomaterials find applications in glucose biofuel cells and microalgal lipid metabolism regulation. However, nanomaterials, such as polystyrene nanoplastics, may have toxic effects, inducing macrophage transformation and lipid accumulation in the liver.

Conclusion

The development of nanotechnology is still in its infancy, and many disease-based studies are still in the stage of animal experiments and have not yet been applied in clinical practice. However, the universality and multilateralism of the use of nanotechnology give it excellent development prospects and also provide a research direction for medical research.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501347158250305074908
2025-03-10
2025-10-31
Loading full text...

Full text loading...

References

  1. VeisehO. TangB.C. WhiteheadK.A. AndersonD.G. LangerR. Managing diabetes with nanomedicine: Challenges and opportunities.Nat. Rev. Drug Discov.2015141455710.1038/nrd447725430866
    [Google Scholar]
  2. YuJ. WeiZ. LiQ. WanF. ChaoZ. ZhangX. LinL. MengH. TianL. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a MOF nanoplatform.Adv. Sci.2021819210146710.1002/advs.20210146734363341
    [Google Scholar]
  3. LamP.L. WongW.Y. BianZ. ChuiC.H. GambariR. Recent advances in green nanoparticulate systems for drug delivery: Efficient delivery and safety concern.Nanomedicine201712435738510.2217/nnm‑2016‑030528078952
    [Google Scholar]
  4. GourishettiK. KeniR. NayakP.G. JittaS.R. BhaskaranN.A. KumarL. KumarN. NandakumarK. ShenoyR. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats.Int. J. Nanomedicine2020159265928210.2147/IJN.S26894133262587
    [Google Scholar]
  5. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  6. MajdalawiehA.F. MansourZ.R. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action.Eur. J. Pharmacol.2019855758910.1016/j.ejphar.2019.05.00831063773
    [Google Scholar]
  7. ZhaoS. WangD. LiY. HanL. XiaoX. MaM. WanD.C.C. HongA. MaY. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects.Int. J. Nanomedicine2017122143216010.2147/IJN.S13056628356733
    [Google Scholar]
  8. ZhangJ.S. GaoX.Y. ZhangL.D. BaoY.P. Biological effects of a nano red elemental selenium.Biofactors2001151273810.1002/biof.552015010311673642
    [Google Scholar]
  9. WinzellM.S. AhrénB. Role of VIP and PACAP in islet function.Peptides20072891805181310.1016/j.peptides.2007.04.02417559974
    [Google Scholar]
  10. OssaiE.C. MaduekeA.C. AmadiB.E. OgugoforM.O. MomohA.M. OkpalaC.O.R. AnosikeC.A. NjokuO.U. Potential enhancement of metformin hydrochloride in lipid vesicles targeting therapeutic efficacy in diabetic treatment.Int. J. Mol. Sci.2021226285210.3390/ijms2206285233799652
    [Google Scholar]
  11. ViolletB. GuigasB. GarciaN.S. LeclercJ. ForetzM. AndreelliF. Cellular and molecular mechanisms of metformin: An overview.Clin. Sci. 2012122625327010.1042/CS2011038622117616
    [Google Scholar]
  12. TesauroD. AccardoA. DiaferiaC. MilanoV. GuillonJ. RongaL. RossiF. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives.Molecules201924235110.3390/molecules2402035130669445
    [Google Scholar]
  13. LiY. CuiT. KongX. YiX. KongD. ZhangJ. LiuC. GongM. Nanoparticles induced by embedding self-assembling cassette into glucagon-like peptide 1 for improving in vivo stability.FASEB J.20183262992300410.1096/fj.201701033RRR29401602
    [Google Scholar]
  14. ZhangY. WangZ. GemeinhartR.A. Progress in microRNA delivery.J. Control. Release2013172396297410.1016/j.jconrel.2013.09.01524075926
    [Google Scholar]
  15. ZhaoX. ZhangH. LiJ. TianM. YangJ. SunS. HuQ. YangL. ZhangS. Orally administered saccharide-sequestering nanocomplex to manage carbohydrate metabolism disorders.Sci. Adv.2021714eabf731110.1126/sciadv.abf731133789906
    [Google Scholar]
  16. BrownleeM. CeramiA. A glucose-controlled insulin-delivery system: Semi synthetic insulin bound to lectin.Science197920644231190119110.1126/science.505005505005
    [Google Scholar]
  17. RavaineV. AnclaC. CatargiB. Chemically controlled closed-loop insulin delivery.J. Control. Release2008132121110.1016/j.jconrel.2008.08.00918782593
    [Google Scholar]
  18. OwensD.R. ZinmanB. BolliG.B. Insulins today and beyond.Lancet2001358928373974610.1016/S0140‑6736(01)05842‑111551598
    [Google Scholar]
  19. BankarS.B. BuleM.V. SinghalR.S. AnanthanarayanL. Glucose oxidase — An overview.Biotechnol. Adv.200927448950110.1016/j.biotechadv.2009.04.00319374943
    [Google Scholar]
  20. BullS.D. DavidsonM.G. van den ElsenJ.M.H. FosseyJ.S. JenkinsA.T.A. JiangY.B. KuboY. MarkenF. SakuraiK. ZhaoJ. JamesT.D. Exploiting the reversible covalent bonding of boronic acids: Recognition, sensing, and assembly.Acc. Chem. Res.201346231232610.1021/ar300130w23148559
    [Google Scholar]
  21. GuZ. DangT.T. MaM. TangB.C. ChengH. JiangS. DongY. ZhangY. AndersonD.G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery.ACS Nano2013786758676610.1021/nn401617u23834678
    [Google Scholar]
  22. GuZ. AimettiA.A. WangQ. DangT.T. ZhangY. VeisehO. ChengH. LangerR.S. AndersonD.G. Injectable nano-network for glucose-mediated insulin delivery.ACS Nano2013754194420110.1021/nn400630x23638642
    [Google Scholar]
  23. XiaD. HeH. WangY. WangK. ZuoH. GuH. XuP. HuY. Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin.Acta Biomater.20186930131210.1016/j.actbio.2018.01.02929421303
    [Google Scholar]
  24. RickelsM.R. RobertsonR.P. Pancreatic islet transplantation in humans: Recent progress and future directions.Endocr. Rev.201940263166810.1210/er.2018‑0015430541144
    [Google Scholar]
  25. ChatenoudL. Chemical immunosuppression in islet transplantation-Friend or foe?N. Engl. J. Med.2008358111192119310.1056/NEJMcibr070806718337609
    [Google Scholar]
  26. SyedF. BuglianiM. NovelliM. OlimpicoF. SuleimanM. MarselliL. BoggiU. FilipponiF. RaffaV. KrolS. CampaniD. MasielloP. De TataV. MarchettiP. Conformal coating by multilayer nano-encapsulation for the protection of human pancreatic islets: In-vitro and in-vivo studies.Nanomedicine20181472191220310.1016/j.nano.2018.06.01330016718
    [Google Scholar]
  27. ZhangQ. Gonelle-GispertC. LiY. GengZ. Gerber-LemaireS. WangY. BuhlerL. Islet encapsulation: New developments for the treatment of type 1 diabetes.Front. Immunol.20221386998410.3389/fimmu.2022.86998435493496
    [Google Scholar]
  28. KozlovskayaV. ZavgorodnyaO. ChenY. EllisK. TseH.M. CuiW. ThompsonJ.A. KharlampievaE. Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells.Adv. Funct. Mater.201222163389339810.1002/adfm.20120013823538331
    [Google Scholar]
  29. ZhangS. XiaF. Demoustier-ChampagneS. JonasA.M. Layer-by-layer assembly in nanochannels: Assembly mechanism and applications.Nanoscale202113167471749710.1039/D1NR01113H33870383
    [Google Scholar]
  30. JafariH. Ghaffari-BohlouliP. NiknezhadS.V. AbediA. IzadifarZ. MohammadinejadR. VarmaR.S. ShavandiA. Tannic acid: A versatile polyphenol for design of biomedical hydrogels.J. Mater. Chem. B Mater. Biol. Med.202210315873591210.1039/D2TB01056A35880440
    [Google Scholar]
  31. ZhiZ. KerbyA. KingA.J.F. JonesP.M. PickupJ.C. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes.Diabetologia20125541081109010.1007/s00125‑011‑2431‑y22246376
    [Google Scholar]
  32. ZhaoY. WangY. RanF. CuiY. LiuC. ZhaoQ. GaoY. WangD. WangS. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics.Sci. Rep.201771413110.1038/s41598‑017‑03834‑228646143
    [Google Scholar]
  33. SlowingI. TrewynB.G. LinV.S.Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells.J. Am. Chem. Soc.200612846147921479310.1021/ja064594317105274
    [Google Scholar]
  34. Di PasquaA.J. SharmaK.K. ShiY.L. TomsB.B. OuelletteW. DabrowiakJ.C. AsefaT. Cytotoxicity of mesoporous silica nanomaterials.J. Inorg. Biochem.200810271416142310.1016/j.jinorgbio.2007.12.02818279965
    [Google Scholar]
  35. LaiC.Y. TrewynB.G. JeftinijaD.M. JeftinijaK. XuS. JeftinijaS. LinV.S.Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules.J. Am. Chem. Soc.2003125154451445910.1021/ja028650l12683815
    [Google Scholar]
  36. TaoZ. MorrowM.P. AsefaT. SharmaK.K. DuncanC. AnanA. PenefskyH.S. GoodismanJ. SouidA.K. Mesoporous silica nanoparticles inhibit cellular respiration.Nano Lett.2008851517152610.1021/nl080250u18376867
    [Google Scholar]
  37. KarageorgisG. ReckzehE.S. CeballosJ. SchwalfenbergM. SieversS. OstermannC. PahlA. ZieglerS. WaldmannH. Chromopynones are pseudo natural product glucose uptake inhibitors targeting glucose transporters GLUT-1 and -3.Nat. Chem.201810111103111110.1038/s41557‑018‑0132‑630202104
    [Google Scholar]
  38. FuL.H. HuY.R. QiC. HeT. JiangS. JiangC. HeJ. QuJ. LinJ. HuangP. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy.ACS Nano20191312139851399410.1021/acsnano.9b0583631833366
    [Google Scholar]
  39. SonveauxP. VégranF. SchroederT. WerginM.C. VerraxJ. RabbaniZ.N. De SaedeleerC.J. KennedyK.M. DiepartC. JordanB.F. KelleyM.J. GallezB. WahlM.L. FeronO. DewhirstM.W. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice.J. Clin. Invest.2008118123930394210.1172/JCI3684319033663
    [Google Scholar]
  40. IppolitoL. MorandiA. GiannoniE. ChiarugiP. Lactate: A metabolic driver in the tumour landscape.Trends Biochem. Sci.201944215316610.1016/j.tibs.2018.10.01130473428
    [Google Scholar]
  41. FaubertB. LiK.Y. CaiL. HensleyC.T. KimJ. ZachariasL.G. YangC. DoQ.N. DoucetteS. BurgueteD. LiH. HuetG. YuanQ. WigalT. ButtY. NiM. TorrealbaJ. OliverD. LenkinskiR.E. MalloyC.R. WachsmannJ.W. YoungJ.D. KernstineK. DeBerardinisR.J. Lactate metabolism in human lung tumors.Cell20171712358371.e910.1016/j.cell.2017.09.01928985563
    [Google Scholar]
  42. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  43. LiX. JiangC. WangQ. YangS. CaoY. HaoJ.N. NiuD. ChenY. HanB. JiaX. ZhangP. LiY. A “valve-closing” starvation strategy for amplification of tumor-specific chemotherapy.Adv. Sci. 202298210467110.1002/advs.20210467135038243
    [Google Scholar]
  44. GouldG W HolmanG D The glucose transporter family: Structure, function and tissue-specific expression.Biochem J.19932952329341
    [Google Scholar]
  45. FanX. WeiX. HuH. ZhangB. YangD. DuH. ZhuR. SunX. OhY. GuN. Effects of oral administration of polystyrene nanoplastics on plasma glucose metabolism in mice.Chemosphere2022288Pt 313260710.1016/j.chemosphere.2021.13260734678341
    [Google Scholar]
  46. BedardK. KrauseK.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology.Physiol. Rev.200787124531310.1152/physrev.00044.200517237347
    [Google Scholar]
  47. LushchakV.I. Environmentally induced oxidative stress in aquatic animals.Aquat. Toxicol.20111011133010.1016/j.aquatox.2010.10.00621074869
    [Google Scholar]
  48. LiJ.B. XiW.S. TanS.Y. LiuY.Y. WuH. LiuY. CaoA. WangH. Effects of VO2 nanoparticles on human liver HepG2 cells: Cytotoxicity, genotoxicity, and glucose and lipid metabolism disorders.NanoImpact20212410035110.1016/j.impact.2021.10035135559810
    [Google Scholar]
  49. MoonR.J. MartiniA. NairnJ. SimonsenJ. YoungbloodJ. Cellulose nanomaterials review: Structure, properties and nanocomposites.Chem. Soc. Rev.20114073941399410.1039/c0cs00108b21566801
    [Google Scholar]
  50. PapakostasD. RancanF. SterryW. Blume-PeytaviU. VogtA. Nanoparticles in dermatology.Arch. Dermatol. Res.2011303853355010.1007/s00403‑011‑1163‑721837474
    [Google Scholar]
  51. MistryA. StolnikS. IllumL. Nanoparticles for direct nose- to-brain delivery of drugs.Int. J. Pharm.2009379114615710.1016/j.ijpharm.2009.06.01919555750
    [Google Scholar]
  52. AkelH. IsmailR. CsókaI. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease.Eur. J. Pharm. Biopharm.2020148385310.1016/j.ejpb.2019.12.01431926222
    [Google Scholar]
  53. LiuY. ZuckierL.S. GhesaniN.V. Dominant uptake of fatty acid over glucose by prostate cells: A potential new diagnostic and therapeutic approach.Anticancer Res.2010302369374[J].20332441
    [Google Scholar]
  54. LiJ. ChengJ.X. Direct visualization of de novo lipogenesis in single living cells.Sci. Rep.201441680710.1038/srep0680725351207
    [Google Scholar]
  55. CaroP. KishanA.U. NorbergE. StanleyI.A. ChapuyB. FicarroS.B. PolakK. TonderaD. GounaridesJ. YinH. ZhouF. GreenM.R. ChenL. MontiS. MartoJ.A. ShippM.A. DanialN.N. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma.Cancer Cell201222454756010.1016/j.ccr.2012.08.01423079663
    [Google Scholar]
  56. PascualG. AvgustinovaA. MejettaS. MartínM. CastellanosA. AttoliniC.S.O. BerenguerA. PratsN. TollA. HuetoJ.A. BescósC. Di CroceL. BenitahS.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36.Nature20175417635414510.1038/nature2079127974793
    [Google Scholar]
  57. YueS. LiJ. LeeS.Y. LeeH.J. ShaoT. SongB. ChengL. MastersonT.A. LiuX. RatliffT.L. ChengJ.X. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness.Cell Metab.201419339340610.1016/j.cmet.2014.01.01924606897
    [Google Scholar]
  58. AldawsariH. AhmedO. AlhakamyN. NeamatallahT. FahmyU. Badr-EldinS. Lipidic nano-sized emulsomes potentiates the cytotoxic and apoptotic effects of raloxifene hydrochloride in MCF-7 human breast cancer cells: Factorial analysis and in vitro anti-tumor activity assessment.Pharmaceutics202113678310.3390/pharmaceutics1306078334073780
    [Google Scholar]
  59. El-ZaafaranyG.M. SolimanM.E. MansourS. AwadG.A.S. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies.Int. J. Pharm.20165031-212714010.1016/j.ijpharm.2016.02.03826924357
    [Google Scholar]
  60. VyasS.P. SubhedarR. JainS. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver.J. Pharm. Pharmacol.200658332132610.1211/jpp.58.3.000516536898
    [Google Scholar]
  61. YangS. ChenB. ZhangB. LiC. QiuY. YangH. HuangZ. miR-204-5p promotes apoptosis and inhibits migration of gastric cancer cells by targeting HER-2.Mol. Med. Rep.20202242645265410.3892/mmr.2020.1136732945425
    [Google Scholar]
  62. DuB. ZhuW. YuL. WangY. ZhengM. HuangJ. ShenG. ZhouJ. YaoH. TPGS2k-PLGA composite nanoparticles by depleting lipid rafts in colon cancer cells for overcoming drug resistance.Nanomedicine20213510230710.1016/j.nano.2020.10230732987192
    [Google Scholar]
  63. OfriR. RossM. The future of retinal gene therapy: Evolving from subretinal to intravitreal vector delivery.Neural Regen. Res.20211691751175910.4103/1673‑5374.30606333510064
    [Google Scholar]
  64. SimonsK. SampaioJ.L. Membrane organization and lipid rafts.Cold Spring Harb. Perspect. Biol.2011310a00469710.1101/cshperspect.a00469721628426
    [Google Scholar]
  65. BonacinaF. PirilloA. CatapanoA.L. NorataG.D. Cholesterol membrane content has a ubiquitous evolutionary function in immune cell activation: The role of HDL.Curr. Opin. Lipidol.201930646246910.1097/MOL.000000000000064231577612
    [Google Scholar]
  66. RaghavanV. VijayaraghavaluS. PeetlaC. YamadaM. MorisadaM. LabhasetwarV. Sustained epigenetic drug delivery depletes cholesterol-Sphingomyelin rafts from resistant breast cancer cells, influencing biophysical characteristics of membrane lipids.Langmuir20153142115641157310.1021/acs.langmuir.5b0260126439800
    [Google Scholar]
  67. VanićZ. HolaeterA.M. Skalko-BasnetN. (Phospho)lipid-based nanosystems for skin administration.Curr. Pharm. Des.201521294174419210.2174/138161282166615090109583826323431
    [Google Scholar]
  68. HayR.J. JohnsN.E. WilliamsH.C. BolligerI.W. DellavalleR.P. MargolisD.J. MarksR. NaldiL. WeinstockM.A. WulfS.K. MichaudC. J L MurrayC. NaghaviM. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions.J. Invest. Dermatol.201413461527153410.1038/jid.2013.44624166134
    [Google Scholar]
  69. CouvreurP. VauthierC. Nanotechnology: Intelligent design to treat complex disease.Pharm. Res.20062371417145010.1007/s11095‑006‑0284‑816779701
    [Google Scholar]
  70. GaoH. ZhangQ. YuZ. HeQ. Cell-penetrating peptide-based intelligent liposomal systems for enhanced drug delivery.Curr. Pharm. Biotechnol.201415321021910.2174/138920101566614061709255224938896
    [Google Scholar]
  71. RiehemannK. SchneiderS.W. LugerT.A. GodinB. FerrariM. FuchsH. Nanomedicine-Challenge and perspectives.Angew. Chem. Int. Ed.200948587289710.1002/anie.20080258519142939
    [Google Scholar]
  72. GeusensB. StrobbeT. BrackeS. DynoodtP. SandersN. GeleM.V. LambertJ. Lipid-mediated gene delivery to the skin.Eur. J. Pharm. Sci.201143419921110.1016/j.ejps.2011.04.00321515366
    [Google Scholar]
  73. FiremanS. ToledanoO. NeimannK. LobodaN. DayanN. A look at emerging delivery systems for topical drug products.Dermatol. Ther.201124547748810.1111/j.1529‑8019.2012.01464.x22353154
    [Google Scholar]
  74. ZhaoR. LuQ. YangR. DuJ. DengS. SheQ. Comparative efficacy of sirolimus-eluting stents and paclitaxel-eluting stents in East Asian versus non-East Asian patients: A systematic review and meta-analysis.Minerva Cardioangiol.201728146142
    [Google Scholar]
  75. BanerjeeR. Overcoming the stratum corneum barrier: A nano approach.Drug Deliv. Transl. Res.20133320520810.1007/s13346‑013‑0149‑825788129
    [Google Scholar]
  76. CevcG. GebauerD. StieberJ. SchätzleinA. BlumeG. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin.Biochim. Biophys. Acta Biomembr.19981368220121510.1016/S0005‑2736(97)00177‑69459598
    [Google Scholar]
  77. Honeywell-NguyenP.L. Wouter GroeninkH.W. de GraaffA.M. BouwstraJ.A. The in vivo transport of elastic vesicles into human skin: Effects of occlusion, volume and duration of application.J. Control. Release200390224325510.1016/S0168‑3659(03)00202‑512810306
    [Google Scholar]
  78. CevcG. SchätzleinA. RichardsenH. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.Biochim. Biophys. Acta Biomembr.200215641213010.1016/S0005‑2736(02)00401‑712100992
    [Google Scholar]
  79. CevcG. Transdermal drug delivery of insulin with ultradeformable carriers.Clin. Pharmacokinet.200342546147410.2165/00003088‑200342050‑0000412739984
    [Google Scholar]
  80. TrottaM. PeiraE. CarlottiM.E. GallarateM. Deformable liposomes for dermal administration of methotrexate.Int. J. Pharm.20042701-211912510.1016/j.ijpharm.2003.10.00614726128
    [Google Scholar]
  81. SrisukP. ThongnopnuaP. RaktanonchaiU. KanokpanontS. Physico-chemical characteristics of methotrexate-entrapped oleic acid- containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment.Int. J. Pharm.2012427242643410.1016/j.ijpharm.2012.01.04522310459
    [Google Scholar]
  82. TouitouE. DayanN. BergelsonL. GodinB. EliazM. Ethosomes — Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065340341810.1016/S0168‑3659(99)00222‑910699298
    [Google Scholar]
  83. ZhangY.T. FengN-P. ShenL-N. ZhaoJ-H. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis.Int. J. Nanomedicine2014966967810.2147/IJN.S5731424489470
    [Google Scholar]
  84. PavelićŽ. Škalko-BasnetN. JalšenjakI. Liposomes containing drugs for treatment of vaginal infections.Eur. J. Pharm. Sci.19998434535110.1016/S0928‑0987(99)00033‑010425385
    [Google Scholar]
  85. PavelićŽ. Škalko-BasnetN. Filipović-GrčićJ. MartinacA. JalšenjakI. Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir.J. Control. Release20051061-2344310.1016/j.jconrel.2005.03.03215979189
    [Google Scholar]
  86. VanićŽ. HurlerJ. FerderberK. Golja GašparovićP. Škalko-BasnetN. Filipović-GrčićJ. Novel vaginal drug delivery system: Deformable propylene glycol liposomes-in-hydrogel.J. Liposome Res.2014241273610.3109/08982104.2013.82624223931627
    [Google Scholar]
  87. PalacZ. EngeslandA. FlatenG.E. Škalko-BasnetN. Filipović- GrčićJ. VanićŽ. Liposomes for (trans)dermal drug delivery: The skin-PVPA as a novel in vitro stratum corneum model in formulation development.J. Liposome Res.201424431332210.3109/08982104.2014.89936824646434
    [Google Scholar]
  88. ManconiM. CaddeoC. SinicoC. ValentiD. MostallinoM.C. BiggioG. FaddaA.M. Ex-vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle-skin interaction.Eur. J. Pharm. Biopharm.2011781273510.1016/j.ejpb.2010.12.01021167279
    [Google Scholar]
  89. Dragicevic-CuricN. ScheglmannD. AlbrechtV. FahrA. Development of different temoporfin-loaded invasomes—novel nanocarriers of temoporfin: Characterization, stability and in vitro skin penetration studies.Colloids Surf. B Biointerfaces200970219820610.1016/j.colsurfb.2008.12.03019188048
    [Google Scholar]
  90. WangS. Moustaid-MoussaN. ChenL. MoH. ShastriA. SuR. BapatP. KwunI. ShenC.L. Novel insights of dietary polyphenols and obesity.J. Nutr. Biochem.201425111810.1016/j.jnutbio.2013.09.00124314860
    [Google Scholar]
  91. WalleT. HsiehF. DeLeggeM.H. OatisJ.E.Jr WalleU.K. High absorption but very low bioavailability of oral resveratrol in humans.Drug Metab. Dispos.200432121377138210.1124/dmd.104.00088515333514
    [Google Scholar]
  92. BonechiC. MartiniS. CianiL. LamponiS. RebmannH. RossiC. RistoriS. Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol.PLoS One201278e4143810.1371/journal.pone.004143822936976
    [Google Scholar]
  93. ZuY. OverbyH. RenG. FanZ. ZhaoL. WangS. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes.Colloids Surf. B Biointerfaces201816441442310.1016/j.colsurfb.2017.12.04429433059
    [Google Scholar]
  94. ZobeiriM. BelwalT. ParviziF. NaseriR. FarzaeiM.H. NabaviS.F. SuredaA. NabaviS.M. Naringenin and its nano-formulations for fatty liver: Cellular modes of action and clinical perspective.Curr. Pharm. Biotechnol.201819319620510.2174/138920101966618051417012229766801
    [Google Scholar]
  95. WangS. DuL.B. JinL. WangZ. PengJ. LiaoN. ZhaoY.Y. ZhangJ.L. PauluhnJ. HaiC.X. WangX. LiW.L. Nano-oleanolic acid alleviates metabolic dysfunctions in rats with high fat and fructose diet.Biomed. Pharmacother.20181081181118710.1016/j.biopha.2018.09.15030372819
    [Google Scholar]
  96. SunY. ShiF. NiuY. ZhangY. XiongF. Fe3O4@OA@Poloxamer nanoparticles lower triglyceride in hepatocytes through liposuction effect and nano-enzyme effect.Colloids Surf. B Biointerfaces201918411052810.1016/j.colsurfb.2019.11052831590050
    [Google Scholar]
  97. IsmailN. IsmailM. AzmiN.H. BakarM.F.A. YidaZ. StanslasJ. SaniD. BasriH. AbdullahM.A. Beneficial effects of TQRF and TQ nano- and conventional emulsions on memory deficit, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble Aβ levels in high fat-cholesterol diet-induced rats.Chem. Biol. Interact.2017275617310.1016/j.cbi.2017.07.01428734741
    [Google Scholar]
  98. Al-OkbiS.Y. HusseinA.M.S. ElbakryH.F.H. FoudaK.A. MahmoudK.F. HassanM.E. Health benefits of fennel, rosemary volatile oils and their nano-forms in dyslipidemic rat model.Pak. J. Biol. Sci.201821734835810.3923/pjbs.2018.348.35830417995
    [Google Scholar]
  99. JenaP.V. RoxburyD. GalassiT.V. AkkariL. HoroszkoC.P. IaeaD.B. Budhathoki-UpretyJ. PipaliaN. HakaA.S. HarveyJ.D. MittalJ. MaxfieldF.R. JoyceJ.A. HellerD.A. A carbon nanotube optical reporter maps endolysosomal lipid flux.ACS Nano20171111106891070310.1021/acsnano.7b0474328898055
    [Google Scholar]
  100. SadriS.S. ThompsonR.C. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England.Mar. Pollut. Bull.2014811556010.1016/j.marpolbul.2014.02.02024613232
    [Google Scholar]
  101. MattssonK. EkvallM.T. HanssonL.A. LinseS. MalmendalA. CedervallT. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles.Environ. Sci. Technol.201549155356110.1021/es505365525380515
    [Google Scholar]
  102. LundqvistM. StiglerJ. EliaG. LynchI. CedervallT. DawsonK.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.Proc. Natl. Acad. Sci.200810538142651427010.1073/pnas.080513510518809927
    [Google Scholar]
  103. GeimA.K. Graphene: Status and prospects.Science200932459341530153410.1126/science.115887719541989
    [Google Scholar]
  104. AkhavanO. GhaderiE. RahighiR. Toward single-DNA electrochemical biosensing by graphene nanowalls.ACS Nano2012642904291610.1021/nn300261t22385391
    [Google Scholar]
  105. ChangY. YangS.T. LiuJ.H. DongE. WangY. CaoA. LiuY. WangH. in vitro toxicity evaluation of graphene oxide on A549 cells.Toxicol. Lett.2011200320121010.1016/j.toxlet.2010.11.01621130147
    [Google Scholar]
  106. BrennerS. The genetics of Caenorhabditis elegans.Genetics1974771719410.1093/genetics/77.1.714366476
    [Google Scholar]
  107. GilstM.R.V. HadjivassiliouH. JollyA. YamamotoK.R. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.PLoS Biol.200532e5310.1371/journal.pbio.003005315719061
    [Google Scholar]
  108. BrockT.J. BrowseJ. WattsJ.L. Genetic regulation of unsaturated fatty acid composition in C. elegans.PLoS Genet.200627e10810.1371/journal.pgen.002010816839188
    [Google Scholar]
  109. KimY. JeongJ. YangJ. JooS.W. HongJ. ChoiJ. Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans.Toxicology2018410839510.1016/j.tox.2018.09.00630218681
    [Google Scholar]
  110. DomenechJ. HernándezA. RubioL. MarcosR. CortésC. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier.Arch. Toxicol.20209492997301210.1007/s00204‑020‑02805‑332592077
    [Google Scholar]
  111. DingY. ZhangR. LiB. DuY. LiJ. TongX. WuY. JiX. ZhangY. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells.Environ. Pollut.202128011697410.1016/j.envpol.2021.11697433784569
    [Google Scholar]
  112. FloranceI. RamasubbuS. MukherjeeA. ChandrasekaranN. Polystyrene nanoplastics dysregulate lipid metabolism in murine macrophages in vitro .Toxicology202145815285010.1016/j.tox.2021.15285034217793
    [Google Scholar]
  113. ShiH. MaoX. ZhongY. LiuY. ZhaoX. YuK. ZhuR. WeiY. ZhuJ. SunH. MaoY. ZengQ. Lanatoside C promotes foam cell formation and atherosclerosis.Sci. Rep.2016612015410.1038/srep2015426821916
    [Google Scholar]
  114. McLarenJ.E. MichaelD.R. AshlinT.G. RamjiD.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy.Prog. Lipid Res.201150433134710.1016/j.plipres.2011.04.00221601592
    [Google Scholar]
  115. YangH. XuY. DuL. LiuC. ZhaoQ. WeiW. YouY. QuanZ. Chemokine SR-PSOX/CXCL16 expression in peripheral blood of patients with acute coronary syndrome.Chin. Med. J.2008121211211710.1097/00029330‑200801020‑0000418272035
    [Google Scholar]
  116. ZhangY.N. PoonW. TavaresA.J. McGilvrayI.D. ChanW.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination.J. Control. Release201624033234810.1016/j.jconrel.2016.01.02026774224
    [Google Scholar]
  117. PetrickL. RosenblatM. PalandN. AviramM. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation.Environ. Toxicol.201631671372310.1002/tox.2208425448404
    [Google Scholar]
  118. KongT. ZhangS.H. ZhangC. ZhangJ.L. YangF. WangG.Y. YangZ.J. BaiD.Y. ShiY.Y. LiuT.Q. LiH.L. The effects of 50 nm unmodified nano-ZnO on lipid metabolism and semen quality in male mice.Biol. Trace Elem. Res.2020194243244210.1007/s12011‑019‑01792‑631264129
    [Google Scholar]
  119. JiaJ. LiF. ZhouH. BaiY. LiuS. JiangY. JiangG. YanB. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice.Environ. Sci. Technol.201751169334934310.1021/acs.est.7b0275228723108
    [Google Scholar]
  120. RenD. LiY. XueY. TangX. YongL. LiY. A study using LC-MS/MS-based metabolomics to investigate the effects of iron oxide nanoparticles on rat liver.NanoImpact20212410036010.1016/j.impact.2021.10036035559819
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501347158250305074908
Loading
/content/journals/cdt/10.2174/0113894501347158250305074908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test