Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Globally, high mortality is brought on by RNA viruses, which are linked to chronic human disorders. Viruses dominate the WHO's current ranking of the top 10 global health hazards, especially RNA viruses. RNA viruses, like HIV, SARS-CoV-2, and influenza, which are among the most prevalent and frequently encountered RNA viruses, use RNA as their genetic material, making them prone to quick changes. They adapt rapidly, complicating the body's immune responses. HIV, a significant retrovirus, infiltrates the immune system, causing AIDS by compromising defenses against infections. SARS-CoV-2, which led to COVID-19, sparked a worldwide pandemic with respiratory symptoms, emphasizing the need for research and therapeutic innovations. The COVID-19 pandemic has demonstrated the insufficiency of available resources in effectively addressing emerging viral infections. Influenza, a seasonal RNA virus, triggers flu outbreaks, impacting public health. Research is crucial to understanding how these viruses interact with hosts, aiding the development of effective treatments and strengthening our ability to face new viral threats. The most effective defenses against viral illnesses are virus-specific vaccinations and antiviral drugs. The present review emphasizes the prevalence of the three most pathogenic and widespread RNA viruses, namely HIV, influenza, and SARS-CoV2, their pathophysiology, and the current treatment with FDA-approved drugs. It also incorporates novel analogs that are under clinical trials as there is an urgent need for innovative antiviral medications, and enormous global efforts are required to find secure and efficient cures for these viral infections.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501336800250220051811
2025-02-24
2025-10-29
Loading full text...

Full text loading...

References

  1. MoellingK. BroeckerF. Viruses, and evolution–viruses first? A personal perspective.Front. Microbiol.20191052310.3389/fmicb.2019.0052330941110
    [Google Scholar]
  2. SuttleC.A. Viruses in the sea.Nature2005437705735636110.1038/nature0416016163346
    [Google Scholar]
  3. Claus-DesbonnetH. NiklyE. NalbantovaV. Karcheva-BahchevanskaD. IvanovaS. PierreG. BenbassatN. KatsarovP. MichaudP. LukovaP. DelattreC. Polysaccharides, and their derivatives as potential antiviral molecules.Viruses202214242610.3390/v1402042635216019
    [Google Scholar]
  4. DineshD.C. TamilarasanS. RajaramK. BouřaE. Antiviral drug targets of single-stranded RNA viruses causing chronic human diseases.Curr. Drug Targets202021210512410.2174/138945011966619092015324731538891
    [Google Scholar]
  5. KálaiT. PongráczJ.E. MátyusP. Recent advances in influenza, HIV and SARS-CoV-2 infection prevention and drug treatment—The need for precision medicine.Chemistry (Basel)20224221625810.3390/chemistry4020019
    [Google Scholar]
  6. PerlmanS. Another decade, another coronavirus.N. Engl. J. Med.2020382876076210.1056/NEJMe200112631978944
    [Google Scholar]
  7. JoshiS. ParkarJ. AnsariA. VoraA. TalwarD. TiwaskarM. PatilS. BarkateH. Role of favipiravir in the treatment of COVID-19.Int. J. Infect. Dis.202110250150810.1016/j.ijid.2020.10.06933130203
    [Google Scholar]
  8. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.10592432081636
    [Google Scholar]
  9. ChengS.C. ChangY.C. Fan ChiangY.L. ChienY.C. ChengM. YangC.H. HuangC.H. HsuY.N. First case of coronavirus disease 2019 (COVID-19) pneumonia in Taiwan.J. Formos. Med. Assoc.2020119374775110.1016/j.jfma.2020.02.00732113824
    [Google Scholar]
  10. ChengY. LuoR. WangK. ZhangM. WangZ. DongL. LiJ. YaoY. GeS. XuG. Kidney disease is associated with in-hospital death of patients with COVID-19.Kidney Int.202097582983810.1016/j.kint.2020.03.00532247631
    [Google Scholar]
  11. RaufA. Abu-IzneidT. OlatundeA. Ahmed KhalilA. AlhumaydhiF.A. TufailT. ShariatiM.A. RebezovM. AlmarhoonZ.M. MabkhotY.N. AlsayariA. RengasamyK.R.R. COVID-19 pandemic: Epidemiology, etiology, conventional and non-conventional therapies.Int. J. Environ. Res. Public Health20201721815510.3390/ijerph1721815533158234
    [Google Scholar]
  12. XuX. ChenP. WangJ. FengJ. ZhouH. LiX. ZhongW. HaoP. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission.Sci. China Life Sci.202063345746010.1007/s11427‑020‑1637‑532009228
    [Google Scholar]
  13. V’kovskiP. KratzelA. SteinerS. StalderH. ThielV. Coronavirus biology and replication: Implications for SARS-COV-2.Nat. Rev. Microbiol.202119315517010.1038/s41579‑020‑00468‑633116300
    [Google Scholar]
  14. CallawayE. The coronavirus is mutating — does it matter?Nature2020585782417417710.1038/d41586‑020‑02544‑632901123
    [Google Scholar]
  15. van de VeerdonkF.L. Giamarellos-BourboulisE. PickkersP. DerdeL. LeavisH. van CrevelR. EngelJ.J. WiersingaW.J. VlaarA.P.J. Shankar-HariM. van der PollT. BontenM. AngusD.C. van der MeerJ.W.M. NeteaM.G. A guide to immunotherapy for COVID-19.Nat. Med.2022281395010.1038/s41591‑021‑01643‑935064248
    [Google Scholar]
  16. CannalireR TramontanoE SummaV. Focus on Severe Acute Respiratory Syndrome (SARS) Coronavirus (SARS-CoVs) 1 and 2.New Drug Development for Known and Emerging Viruses. Rübsamen-SchaeffH. BuschmannH. New YorkAmerican Chemical Society2022652716274610.1021/acs.jmedchem.0c01140
    [Google Scholar]
  17. National institutes of health the COVID-19 treatment guidelines panel's statement on therapies for high-risk Non-hospitalized Patients with Mild to Moderate COVID-19.2023Available from: https://www.omeditbretagne.fr/wp-content/uploads/2022/01/NIH_covid19treatmentguidelines_161221.pdf
  18. WarrenT.K. JordanR. LoM.K. RayA.S. MackmanR.L. SolovevaV. SiegelD. PerronM. BannisterR. HuiH.C. LarsonN. StrickleyR. WellsJ. StuthmanK.S. Van TongerenS.A. GarzaN.L. DonnellyG. ShurtleffA.C. RettererC.J. GharaibehD. ZamaniR. KennyT. EatonB.P. GrimesE. WelchL.S. GombaL. WilhelmsenC.L. NicholsD.K. NussJ.E. NagleE.R. KugelmanJ.R. PalaciosG. DoerfflerE. NevilleS. CarraE. ClarkeM.O. ZhangL. LewW. RossB. WangQ. ChunK. WolfeL. BabusisD. ParkY. StrayK.M. TranchevaI. FengJ.Y. BarauskasO. XuY. WongP. BraunM.R. FlintM. McMullanL.K. ChenS.S. FearnsR. SwaminathanS. MayersD.L. Spiropoulou LeeW.A. NicholS.T. CihlarT. BavariS. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.Nature2016531759438138510.1038/nature1718026934220
    [Google Scholar]
  19. Babalola BA, Adegboyega AE. Computational discovery of novel imidazole derivatives as inhibitors of SARS-CoV-2 main protease: An integrated approach combining molecular dynamics and binding affinity analysis.COVID20244667269510.3390/covid4060046
    [Google Scholar]
  20. Babalola BA, Adetobi TE, Akinsuyi OS, Adebisi OA, Folajimi EO. Computational study of the therapeutic potential of novel heterocyclic derivatives against SARS-CoV-2.COVID20211475777410.3390/covid1040061
    [Google Scholar]
  21. GordonC.J. TchesnokovE.P. WoolnerE. PerryJ.K. FengJ.Y. PorterD.P. GötteM. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency.J. Biol. Chem.2020295206785679710.1074/jbc.RA120.01367932284326
    [Google Scholar]
  22. NaydenovaK. MuirK.W. WuL.F. ZhangZ. CosciaF. PeetM.J. Castro-HartmannP. QianP. SaderK. DentK. KimaniusD. SutherlandJ.D. LöweJ. BarfordD. RussoC.J. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP.Proc. Natl. Acad. Sci. USA20211187e202194611810.1073/pnas.202194611833526596
    [Google Scholar]
  23. PadhiA.K. DandapatJ. SaudagarP. UverskyV.N. TripathiT. Interface-based design of the favipiravir-binding site in SARS-CoV-2 RNA-dependent RNA polymerase reveals mutations conferring resistance to chain termination.FEBS Lett.2021595182366238210.1002/1873‑3468.1418234409597
    [Google Scholar]
  24. BabalolaB.A. AkinsuyiO.S. FolajimiE.O. OlujimiF. ChikereB. AdewumagunI.A. AdetobiT.E. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeuticsBiomed. Pharmacother.20231211509910.1016/j.biopha.2023.11509937406505
    [Google Scholar]
  25. OwenD.R. AllertonC.M.N. AndersonA.S. AschenbrennerL. AveryM. BerrittS. BorasB. CardinR.D. CarloA. CoffmanK.J. DantonioA. DiL. EngH. FerreR. GajiwalaK.S. GibsonS.A. GreasleyS.E. HurstB.L. KadarE.P. KalgutkarA.S. LeeJ.C. LeeJ. LiuW. MasonS.W. NoellS. NovakJ.J. ObachR.S. OgilvieK. PatelN.C. PetterssonM. RaiD.K. ReeseM.R. SammonsM.F. SathishJ.G. SinghR.S.P. SteppanC.M. StewartA.E. TuttleJ.B. UpdykeL. VerhoestP.R. WeiL. YangQ. ZhuY. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19.Science202137465751586159310.1126/science.abl478434726479
    [Google Scholar]
  26. LiP. WangY. LavrijsenM. LamersM.M. de VriesA.C. RottierR.J. BrunoM.J. PeppelenboschM.P. HaagmansB.L. PanQ. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination.Cell Res.202232332232410.1038/s41422‑022‑00618‑w35058606
    [Google Scholar]
  27. TakashitaE. KinoshitaN. YamayoshiS. Sakai-TagawaY. FujisakiS. ItoM. Iwatsuki-HorimotoK. ChibaS. HalfmannP. NagaiH. SaitoM. AdachiE. SullivanD. PekoszA. WatanabeS. MaedaK. ImaiM. YotsuyanagiH. MitsuyaH. OhmagariN. TakedaM. HasegawaH. KawaokaY. Efficacy of antibodies and antiviral drugs against Covid-19 Omicron variant.N. Engl. J. Med.20223861099599810.1056/NEJMc211940735081300
    [Google Scholar]
  28. RathnayakeA.D. ZhengJ. KimY. PereraK.D. MackinS. MeyerholzD.K. KashipathyM.M. BattaileK.P. LovellS. PerlmanS. GroutasW.C. ChangK.O. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice.Sci. Transl. Med.202012557eabc533210.1126/scitranslmed.abc533232747425
    [Google Scholar]
  29. RonaG. ZekeA. Miwatani-MinterB. de VriesM. KaurR. SchinleverA. GarciaS.F. GoldbergH.V. WangH. HindsT.R. BaillyF. ZhengN. CotelleP. DesmaëleD. LandauN.R. DittmannM. PaganoM. The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target.Cell Death Differ.202229228529210.1038/s41418‑021‑00900‑134862481
    [Google Scholar]
  30. TampereM. PettkeA. SalataC. WallnerO. KoolmeisterT. Cazares-KörnerA. VisnesT. HesselmanM.C. KunoldE. WiitaE. KalderénC. LightowlerM. JemthA.S. LehtiöJ. RosenquistÅ. Warpman-BerglundU. HelledayT. MirazimiA. JafariR. PuumalainenM.R. Novel broad-spectrum antiviral inhibitors targeting host factors essential for replication of pathogenic RNA viruses.Viruses20201212142310.3390/v1212142333322045
    [Google Scholar]
  31. ChitaliaV.C. MunawarA.H. A painful lesson from the COVID-19 pandemic: The need for broad-spectrum, host-directed antivirals.J. Transl. Med.202018139010.1186/s12967‑020‑02476‑933059719
    [Google Scholar]
  32. MeiM. TanX. Current strategies of antiviral drug discovery for COVID-19.Front. Mol. Biosci.2021867126310.3389/fmolb.2021.67126334055887
    [Google Scholar]
  33. HoffmannM. Hofmann-WinklerH. SmithJ.C. KrügerN. AroraP. SørensenL.K. SøgaardO.S. HasselstrømJ.B. WinklerM. HempelT. RaichL. OlssonS. DanovO. JonigkD. YamazoeT. YamatsutaK. MizunoH. LudwigS. NoéF. KjolbyM. BraunA. SheltzerJ.M. PöhlmannS. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity.EBioMedicine20216510325510.1016/j.ebiom.2021.10325533676899
    [Google Scholar]
  34. SinghI. AroraR. DhimanH. PahwaR. Carbon quantum dots: Synthesis, characterization and biomedical applications.Turk. J. Pharm. Sci.201815221923010.4274/tjps.6349732454664
    [Google Scholar]
  35. BreiningP. FrølundA.L. HøjenJ.F. GunstJ.D. StaerkeN.B. SaedderE. Cases-ThomasM. LittleP. NielsenL.P. SøgaardO.S. KjolbyM. Camostat mesylate against SARS-CoV-2 and COVID-19—Rationale, dosing and safety.Basic Clin. Pharmacol. Toxicol.2021128220421210.1111/bcpt.1353333176395
    [Google Scholar]
  36. SukhatmeV.P. ReiersenA.M. VayttadenS.J. SukhatmeV.V. Fluvoxamine: A review of its mechanism of action and its role in COVID-19.Front. Pharmacol.20211265268810.3389/fphar.2021.65268833959018
    [Google Scholar]
  37. HashimotoY. SuzukiT. HashimotoK. Mechanisms of action of fluvoxamine for COVID-19: A historical review.Mol. Psychiatry20222741898190710.1038/s41380‑021‑01432‑334997196
    [Google Scholar]
  38. ChaccourC. HammannF. Ramón-GarcíaS. RabinovichN.R. Ivermectin and COVID-19: Keeping rigor in times of urgency.Am. J. Trop. Med. Hyg.202010261156115710.4269/ajtmh.20‑027132314704
    [Google Scholar]
  39. CalyL. DruceJ.D. CattonM.G. JansD.A. WagstaffK.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro.Antiviral Res.202017810478710.1016/j.antiviral.2020.10478732251768
    [Google Scholar]
  40. ZaidiA.K. Dehgani-MobarakiP. The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review.J. Antibiot. (Tokyo)2022752607110.1038/s41429‑021‑00491‑634931048
    [Google Scholar]
  41. LyttonJ. WestlinM. HanleyM.R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps.J. Biol. Chem.199126626170671707110.1016/S0021‑9258(19)47340‑71832668
    [Google Scholar]
  42. LosadaA. Muñoz-AlonsoM.J. GarcíaC. Sánchez-MurciaP.A. Martínez-LealJ.F. DomínguezJ.M. LilloM.P. GagoF. GalmariniC.M. Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin.Sci. Rep.2016613510010.1038/srep3510027713531
    [Google Scholar]
  43. WhiteK.M. RosalesR. YildizS. KehrerT. MiorinL. MorenoE. JangraS. UccelliniM.B. RathnasingheR. CoughlanL. Martinez-RomeroC. BatraJ. RojcA. BouhaddouM. FabiusJ.M. ObernierK. DejosezM. GuillénM.J. LosadaA. AvilésP. SchotsaertM. ZwakaT. VignuzziM. ShokatK.M. KroganN.J. García-SastreA. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A.Science2021371653292693110.1126/science.abf405833495306
    [Google Scholar]
  44. KumariP. RawatK. SahaL. Pipeline pharmacological therapies in clinical trial for COVID-19 pandemic: A recent update.Curr. Pharmacol. Rep.20206522824010.1007/s40495‑020‑00226‑532837854
    [Google Scholar]
  45. HeesterbeekH. AndersonR.M. AndreasenV. BansalS. De AngelisD. DyeC. EamesK.T.D. EdmundsW.J. FrostS.D.W. FunkS. HollingsworthT.D. HouseT. IshamV. KlepacP. LesslerJ. Lloyd-SmithJ.O. MetcalfC.J.E. MollisonD. PellisL. PulliamJ.R.C. RobertsM.G. ViboudC. Modeling infectious disease dynamics in the complex landscape of global health.Science20153476227aaa433910.1126/science.aaa433925766240
    [Google Scholar]
  46. MosnierA. CainiS. DaviaudI. NauleauE. BuiT.T. DebostE. BedouretB. AgiusG. van der WerfS. LinaB. CohenJ.M. Clinical characteristics are similar across type A and B influenza virus infections.PLoS One2015109e013618610.1371/journal.pone.013618626325069
    [Google Scholar]
  47. PoonL.L.M. SongT. RosenfeldR. LinX. RogersM.B. ZhouB. SebraR. HalpinR.A. GuanY. TwaddleA. DePasseJ.V. StockwellT.B. WentworthD.E. HolmesE.C. GreenbaumB. PeirisJ.S.M. CowlingB.J. GhedinE. Quantifying influenza virus diversity and transmission in humans.Nat. Genet.201648219520010.1038/ng.347926727660
    [Google Scholar]
  48. TurnerD WailooA NicholsonK CooperN SuttonA AbramsK Systematic review and economic decision modelling for the prevention and treatment of influenza A and B Winchester, England.Heal. Technol. Assess.2003735iiiv
    [Google Scholar]
  49. FullerT.L. GilbertM. MartinV. CappelleJ. HosseiniP. NjaboK.Y. Abdel AzizS. XiaoX. DaszakP. SmithT.B. Predicting hotspots for influenza virus reassortment.Emerg. Infect. Dis.201319458158810.3201/eid1904.12090323628436
    [Google Scholar]
  50. De ClercqE. Antiviral agents active against influenza A viruses.Nat. Rev. Drug Discov.20065121015102510.1038/nrd217517139286
    [Google Scholar]
  51. MesekoC. SanicasM. AshaK. SulaimanL. KumarB. Antiviral options and therapeutics against influenza: History, latest developments and future prospects.Front. Cell. Infect. Microbiol.202313126934410.3389/fcimb.2023.126934438094741
    [Google Scholar]
  52. MuthuriS.G. MylesP.R. VenkatesanS. Leonardi-BeeJ. Nguyen- Van-TamJ.S. Impact of neuraminidase inhibitor treatment on outcomes of public health importance during the 2009-2010 influenza A(H1N1) pandemic: A systematic review and meta-analysis in hospitalized patients.J. Infect. Dis.2013207455356310.1093/infdis/jis72623204175
    [Google Scholar]
  53. NicholsonK.G. WoodJ.M. ZambonM. Influenza.Lancet200336293971733174510.1016/S0140‑6736(03)14854‑414643124
    [Google Scholar]
  54. PellegriniF. BuonavogliaA. OmarA.H. DiakoudiG. LucenteM.S. OdigieA.E. SposatoA. AugelliR. CameroM. DecaroN. EliaG. BányaiK. MartellaV. LanaveG. A cold case of equine influenza disentangled with nanopore sequencing.Animals (Basel)2023137115310.3390/ani1307115337048408
    [Google Scholar]
  55. MatsudaK. HattoriS. KariyaR. KomizuY. KudoE. GotoH. TauraM. UeokaR. KimuraS. OkadaS. Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity.Biochem. Biophys. Res. Commun.2015457328829410.1016/j.bbrc.2014.12.10225576356
    [Google Scholar]
  56. LiuJ.W. LinS.H. WangL.C. ChiuH.Y. LeeJ.A. Comparison of antiviral agents for seasonal influenza outcomes in healthy adults and children: A systematic review and network meta-analysis.JAMA Netw. Open202148e211915110.1001/jamanetworkopen.2021.1915134387680
    [Google Scholar]
  57. DufrasneF. Baloxavir marboxil: An original new drug against influenza.Pharmaceuticals (Basel)20211512810.3390/ph1501002835056085
    [Google Scholar]
  58. KuoY.C. LaiC.C. WangY.H. ChenC.H. WangC.Y. Clinical efficacy and safety of baloxavir marboxil in the treatment of influenza: A systematic review and meta-analysis of randomized controlled trials.J. Microbiol. Immunol. Infect.202154586587510.1016/j.jmii.2021.04.00234020891
    [Google Scholar]
  59. FangQ. WangD. Advanced researches on the inhibition of influenza virus by Favipiravir and Baloxavir.Biosaf. Heal.202022647010.1016/j.bsheal.2020.04.004
    [Google Scholar]
  60. FurutaY. KomenoT. NakamuraT. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201793744946310.2183/pjab.93.02728769016
    [Google Scholar]
  61. ZhirnovO ChernyshovaA. Favipiravir: The hidden threat of mutagenic action.202198210.36233/0372‑9311‑114
    [Google Scholar]
  62. PizzornoA. PadeyB. TerrierO. Rosa-CalatravaM. Drug repurposing approaches for the treatment of influenza viral infection: Reviving old drugs to fight against a long-lived enemy.Front. Immunol.20191053110.3389/fimmu.2019.0053130941148
    [Google Scholar]
  63. JenningsM.R. ParksR.J. Curcumin as an antiviral agent.Viruses20201211124210.3390/v1211124233142686
    [Google Scholar]
  64. TerrierO. DillyS. PizzornoA. ChalupskaD. HumpolickovaJ. BouřaE. BerenbaumF. QuideauS. LinaB. FèveB. AdnetF. SabbahM. Rosa-CalatravaM. MaréchalV. HenriJ. Slama-SchwokA. Antiviral properties of the NSAID drug naproxen targeting the nucleoprotein of SARS-CoV-2 coronavirus.Molecules2021269259310.3390/molecules2609259333946802
    [Google Scholar]
  65. YangF. PangB. LaiK.K. CheungN.N. DaiJ. ZhangW. ZhangJ. ChanK.H. ChenH. SzeK.H. ZhangH. HaoQ. YangD. YuenK.Y. KaoR.Y. Discovery of a novel specific inhibitor targeting influenza A virus nucleoprotein with pleiotropic inhibitory effects on various steps of the viral life cycle.J. Virol.2021959e01432-2010.1128/JVI.01432‑2033627391
    [Google Scholar]
  66. PerwitasariO. YanX. O’DonnellJ. JohnsonS. TrippR.A. Repurposing kinase inhibitors as antiviral agents to control influenza a virus replication.Assay Drug Dev. Technol.2015131063864910.1089/adt.2015.0003.drrr26192013
    [Google Scholar]
  67. SchorS. EinavS. Repurposing of kinase inhibitors as broad-spectrum antiviral drugs.DNA Cell Biol.2018372636910.1089/dna.2017.403329148875
    [Google Scholar]
  68. MeinekeR. RimmelzwaanG.F. ElbaheshH. Influenza virus infections and cellular kinases.Viruses201911217110.3390/v1102017130791550
    [Google Scholar]
  69. ZhangJ. HuY. HauR. MusharrafiehR. MaC. ZhouX. ChenY. WangJ. Identification of NMS-873, an allosteric and specific p97 inhibitor, as a broad antiviral against both influenza A and B viruses.Eur. J. Pharm. Sci.2019133869410.1016/j.ejps.2019.03.02030930289
    [Google Scholar]
  70. BaiY. JonesJ.C. WongS.S. ZaninM. Antivirals targeting the surface glycoproteins of influenza virus: Mechanisms of action and resistance.Viruses202113462410.3390/v1304062433917376
    [Google Scholar]
  71. PizzornoA. TerrierO. Nicolas de LamballerieC. JulienT. PadeyB. TraversierA. RocheM. HamelinM.E. RhéaumeC. CrozeS. EscuretV. PoissyJ. LinaB. Legras-LachuerC. TextorisJ. BoivinG. Rosa-CalatravaM. Repurposing of drugs as novel influenza inhibitors from clinical gene expression infection signatures.Front. Immunol.2019106010.3389/fimmu.2019.0006030761132
    [Google Scholar]
  72. HaffizullaJ. HartmanA. HoppersM. ResnickH. SamudralaS. GinocchioC. BardinM. RossignolJ.F. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial.Lancet Infect. Dis.201414760961810.1016/S1473‑3099(14)70717‑024852376
    [Google Scholar]
  73. BeigelJ.H. BaoY. BeelerJ. ManosuthiW. SlandzickiA. DarS.M. PanutoJ. BeasleyR.L. Perez-PatrigeonS. SuwanpimolkulG. LossoM.H. McClureN. BozzoloD.R. MyersC. HolleyH.P.Jr HoopesJ. LaneH.C. HughesM.D. DaveyR.T. WinnieM. DinhD.V. SeethalaR. GarciaH. PouzarJ. SeepM. RifferE. BartB. DarS. HoppersM. PanutoJ. RoweH. SlandzickiA. WolfeC. DesantisD. BayntonB. BeasleyR.L. MarkowitzN. StearnsZ.A. ChoJ. GoisseM. WolfT.A. KayJ. DharanN. FitzgibbonsW. WoodruffM. BellT. LenzmeierT. SchooleyR. ElieM-C. WinokurP. FinbergR. HurtC. TebasP. SattlerF.R. AmpajwalaM. BattsD. BlochM. MooreR. DwyerD. Romo-GarciaJ. PatrigeonS.P. ZuluetaA.P.R. ManosuthiW. ChetchotisakdP. RuxrungthamK. AvihingsanonA. SuwanpimolkulG. RatanasuwanW. LupoS. TrapeL. LossoM.H. MaciasL.M. LopardoG. BarcelonaL. MykietukA. AlzogarayM.F. Oseltamivir, amantadine, and ribavirin combination antiviral therapy versus oseltamivir monotherapy for the treatment of influenza: A multicentre, double-blind, randomised phase 2 trial.Lancet Infect. Dis.201717121255126510.1016/S1473‑3099(17)30476‑028958678
    [Google Scholar]
  74. XuL. JiangW. JiaH. ZhengL. XingJ. LiuA. DuG. Discovery of multitarget-directed ligands against influenza a virus from compound yizhihao through a predictive system for compound-protein interactions.Front. Cell. Infect. Microbiol.2020101610.3389/fcimb.2020.0001632117796
    [Google Scholar]
  75. WieczorekK. SzutkowskaB. KierzekE. Anti-influenza strategies based on nanoparticle applications.Pathogens2020912102010.3390/pathogens912102033287259
    [Google Scholar]
  76. ChanY. NgS.W. MehtaM. AnandK. Kumar SinghS. GuptaG. ChellappanD.K. DuaK. Advanced drug delivery systems can assist in managing influenza virus infection: A hypothesis.Med. Hypotheses202014411029810.1016/j.mehy.2020.11029833254489
    [Google Scholar]
  77. AriasA. ThorneL. GoodfellowI. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.eLife20143e0367910.7554/eLife.0367925333492
    [Google Scholar]
  78. BaiC.Q. MuJ.S. KargboD. SongY.B. NiuW.K. NieW.M. KanuA. LiuW.W. WangY.P. DafaeF. YanT. HuY. DengY.Q. LuH.J. YangF. ZhangX.G. SunY. CaoY.X. SuH.X. SunY. LiuW.S. WangC.Y. QianJ. LiuL. WangH. TongY.G. LiuZ.Y. ChenY.S. WangH.Q. KargboB. GaoG.F. JiangJ.F. Clinical and virological characteristics of Ebola virus disease patients treated with favipiravir (T-705)—Sierra Leone, 2014.Clin. Infect. Dis.201663101288129410.1093/cid/ciw57127553371
    [Google Scholar]
  79. LiT. ChanM. LeeN. Clinical implications of antiviral resistance in influenza.Viruses2015794929494410.3390/v709285026389935
    [Google Scholar]
  80. MerrittT. HopeK. ButlerM. DurrheimD. GuptaL. NajjarZ. ConatyS. BoonwaatL. FletcherS. Effect of antiviral prophylaxis on influenza outbreaks in aged care facilities in three local health districts in New South Wales, Australia, 2014.Western Pac. Surveill. Response J.201671142010.5365/wpsar.2015.6.3.00527757249
    [Google Scholar]
  81. BreseeJS FioreAE FryA GubarevaLV ShayDK UyekiTM Antiviral agents for the treatment and chemoprophylaxis of influenza: Recommendations of the advisory committee on immunization practices (ACIP).MMWR Recomm. Rep.201160112421248682
    [Google Scholar]
  82. LevyJ.A. Pathogenesis of human immunodeficiency virus infection.Microbiol. Rev.199357118328910.1128/mr.57.1.183‑289.19938464405
    [Google Scholar]
  83. HaseltineW.A. Wong-StaalF. The molecular biology of the AIDS virus.Sci. Am.19882594526210.1038/scientificamerican1088‑523072673
    [Google Scholar]
  84. Justiz VaillantA.A. GulickP.G. HIV disease current practice.StatPearls.Treasure Island, FLStat Pearls Publishing202230521281
    [Google Scholar]
  85. FreedE.O. HIV-1 gag proteins: Diverse functions in the virus life cycle.Virology1998251111510.1006/viro.1998.93989813197
    [Google Scholar]
  86. BerkowitzR.D. GoffS.P. Analysis of binding elements in the human immunodeficiency virus type 1 genomic RNA and nucleocapsid protein.Virology1994202123324610.1006/viro.1994.13398009834
    [Google Scholar]
  87. BerkowitzR.D. OhagenA. HöglundS. GoffS.P. Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo.J. Virol.199569106445645610.1128/jvi.69.10.6445‑6456.19957666546
    [Google Scholar]
  88. BabalolaB.A. SharmaL. OlowokereO. MalikM. FolajimiO. Advancing drug discovery: Thiadiazole derivatives as multifaceted agents in medicinal chemistry and pharmacologyBioorg. Med. Chem.202411211787610.1016/j.bmc.2024.11787639163743
    [Google Scholar]
  89. ChahroudiA. BosingerS.E. VanderfordT.H. PaiardiniM. SilvestriG. Natural SIV hosts: Showing AIDS the door.Science201233560731188119310.1126/science.121755022403383
    [Google Scholar]
  90. BabalolaB.A. MalikM. SharmaL. OlowokereO. FolajimiO. Exploring the therapeutic potential of phenothiazine derivatives in medicinal chemistry.Resul. Chemi.8202410156510.1016/j.rechem.2024.101565
    [Google Scholar]
  91. PiersonT. McArthurJ. SilicianoR.F. Reservoirs for HIV-1: Mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy.Annu. Rev. Immunol.200018166570810.1146/annurev.immunol.18.1.66510837072
    [Google Scholar]
  92. XuW LiH WangQ HuaC ZhangH LiW JiangS LuL Advancements in developing strategies for sterilizing and functional HIV cures.BioMed. Res. Int.20172017609613410.1155/2017/6096134
    [Google Scholar]
  93. U.S Food & drug administration FDA approves first injectable treatment for hiv pre-exposure prevention.Patent NCT06101342,2022
  94. KozalM. AbergJ. PialouxG. CahnP. ThompsonM. MolinaJ.M. GrinsztejnB. DiazR. CastagnaA. KumarP. LatiffG. DeJesusE. GummelM. GartlandM. PierceA. AckermanP. LlamosoC. LatailladeM. Fostemsavir in adults with multidrug-resistant HIV-1 infection.N. Engl. J. Med.2020382131232124310.1056/NEJMoa190249332212519
    [Google Scholar]
  95. LatailladeM. LalezariJ.P. KozalM. AbergJ.A. PialouxG. CahnP. ThompsonM. MolinaJ.M. MorenoS. GrinsztejnB. DiazR.S. CastagnaA. KumarP.N. LatiffG.H. De JesusE. WangM. ChabriaS. GartlandM. PierceA. AckermanP. LlamosoC. Safety and efficacy of the HIV-1 attachment inhibitor prodrug fostemsavir in heavily treatment-experienced individuals: week 96 results of the phase 3 brighte study.Lancet HIV2020711e740e75110.1016/S2352‑3018(20)30240‑X33128903
    [Google Scholar]
  96. AckermanP. ThompsonM. MolinaJ.M. AbergJ. CassettiI. KozalM. CastagnaA. MartinsM. RamgopalM. SprinzE. Treviño-PérezS. Streinu-CercelA. LatiffG.H. PialouxG. KumarP.N. WangM. ChabriaS. PierceA. LlamosoC. LatailladeM. Long-term efficacy and safety of fostemsavir among subgroups of heavily treatment- experienced adults with HIV-1.AIDS20213571061107210.1097/QAD.000000000000285133946085
    [Google Scholar]
  97. TurkovaA. WhiteE. MujuruH.A. KekitiinwaA.R. KityoC.M. ViolariA. LugemwaA. CresseyT.R. MusokeP. VariavaE. CottonM.F. ArcharyM. PuthanakitT. BehuhumaO. KobbeR. WelchS.B. Bwakura-DangarembiziM. AmugeP. KaudhaE. Barlow-MoshaL. MakumbiS. RamsagarN. NgampiyaskulC. MusoroG. AtwineL. LibertyA. MusiimeV. BbuyeD. AhimbisibweG.M. ChalermpantmetagulS. AliS. SarfatiT. WynneB. ShakeshaftC. ColbersA. KleinN. BernaysS. SaïdiY. CoelhoA. GrosseleT. CompagnucciA. GiaquintoC. RojoP. FordD. GibbD.M. Dolutegravir as first-or second-line treatment for HIV-1 infection in children.N. Engl. J. Med.2021385272531254310.1056/NEJMoa210879334965338
    [Google Scholar]
  98. Nickoloff-BybelE.A. FestaL. MeucciO. GaskillP.J. Co-receptor signaling in the pathogenesis of neuroHIV.Retrovirology20211812410.1186/s12977‑021‑00569‑x34429135
    [Google Scholar]
  99. MarinM. DuY. GiroudC. KimJ.H. QuiM. FuH. MelikyanG.B. High-throughput HIV–Cell fusion assay for discovery of virus entry inhibitors.Assay Drug Dev. Technol.201513315516610.1089/adt.2015.63925871547
    [Google Scholar]
  100. OvereemN.J. van der VriesE. HuskensJ. A dynamic, supramolecular view on the multivalent interaction between influenza virus and host cell.Small20211713200721410.1002/smll.20200721433682339
    [Google Scholar]
  101. CunhaR.F. SimõesS. CarvalheiroM. PereiraJ.M.A. CostaQ. AscensoA. Novel antiretroviral therapeutic strategies for HIV.Molecules20212617530510.3390/molecules2617530534500737
    [Google Scholar]
  102. JudithS. Leronlimab FDA Approval Status.2021Available from: https://www.drugs.com/history/leronlimab.html (Accessed on: Jan 17 2022).
  103. IvanovS. LaguninA. FilimonovD. TarasovaO. Network-based analysis of OMICs data to understand HIV–host interaction.Front. Microbiol.202011131410.3389/fmicb.2020.0131432625189
    [Google Scholar]
  104. BoltzD.A. AldridgeJ.R.Jr WebsterR.G. GovorkovaE.A. Drugs in development for influenza.Drugs201070111349136210.2165/11537960‑000000000‑0000020614944
    [Google Scholar]
  105. CollinsS. Pipeline report 2021: HIV drugs in development, published by HIV i-Base.2021Available from: https://i-base.info/htb/41142
/content/journals/cdt/10.2174/0113894501336800250220051811
Loading
/content/journals/cdt/10.2174/0113894501336800250220051811
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antiviral agents; HIV; influenza virus; pathophysiology; SARS-CoV-2; therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test