Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Rheumatoid arthritis is a chronic autoimmune condition marked by persistent inflammation and joint deterioration, affecting millions of people worldwide. The objective of many of the drugs being prescribed for treating RA patients is to reduce inflammation and halt the progression of the disease. Additionally, several of these therapeutic options have disadvantages, namely the potential for illness recurrence and unfavorable side effects with prolonged usage. Due to these inefficiencies, treating RA now requires an entirely novel approach. In recent times, there has been a shift in emphasis towards directly targeting transcription factors (TFs) due to their crucial involvement in the progression of RA, triggering essential pro-inflammatory adhesion molecules, enzymes, chemokines, and cytokines. Considering this, researchers are investigating synthetic and natural compounds as potential options to target essential TFs and associated signaling pathways. This review focuses on the potential natural compounds and synthetic drugs to target four significant TFs, namely, hypoxia-inducible factor 1α, nuclear factor erythroid 2-related factor 2, retinoic acid-related orphan receptor gamma t, and signal transducer and activator and transcription, highlighting their contributions to revolutionizing RA treatment, thus aiming for more effective and safer therapeutic options. This review also offers an overview of the current status of various natural compounds and synthetic drugs under consideration for targeting the signaling pathways that trigger the activation of TFs.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501372670250408074908
2025-04-16
2025-10-12
Loading full text...

Full text loading...

References

  1. LinY.J. AnzagheM. SchülkeS. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis.Cells20209488010.3390/cells904088032260219
    [Google Scholar]
  2. ChangM.R. RosenH. GriffinP.R. RORs in autoimmune disease.Curr. Top. Microbiol. Immunol.201437817118210.1007/978‑3‑319‑05879‑5_824728598
    [Google Scholar]
  3. ChenS.J. LinG.J. ChenJ.W. WangK.C. TienC.H. HuC.F. ChangC.N. HsuW.F. FanH.C. SytwuH.K. Immunopathogenic mechanisms and novel immune-modulated therapies in rheumatoid arthritis.Int. J. Mol. Sci.2019206133210.3390/ijms2006133230884802
    [Google Scholar]
  4. EfferthT. OeschF. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases.Med. Res. Rev.20214163023306110.1002/med.2184234288018
    [Google Scholar]
  5. HuangJ. FuX. ChenX. LiZ. HuangY. LiangC. Promising therapeutic targets for treatment of rheumatoid arthritis.Front. Immunol.20211268615510.3389/fimmu.2021.68615534305919
    [Google Scholar]
  6. DeshmukhR. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system.Mater. Today Commun.20233510587710.1016/j.mtcomm.2023.105877
    [Google Scholar]
  7. KumariP. JainS.K. SarafS. TiwariA. PandaP. VermaA. Emerging approaches for the treatment of rheumatoid arthritis: an outlook.Curr. Nanosci.202421228830810.2174/0115734137264937231214071646
    [Google Scholar]
  8. NaredlaB. SagarlaU. DP. Updates on novel treatments for rheumatoid arthritis.Res. J. Sci. Technol.202315422523210.52711/2349‑2988.2023.00039
    [Google Scholar]
  9. RaiV. PatelN. MammenS.R. ChaudharyS.M. ArshadS. MunazzamS.W. Futuristic novel therapeutic approaches in the treatment of rheumatoid arthritis.Cureus20231511e4973810.7759/cureus.4973838161868
    [Google Scholar]
  10. HamiltonJ.A. GM-CSF-dependent inflammatory pathways.Front. Immunol.201910205510.3389/fimmu.2019.0205531552022
    [Google Scholar]
  11. AchuthanA.A. LeeK.M.C. HamiltonJ.A. Targeting GM-CSF in inflammatory and autoimmune disorders.Semin. Immunol.20215410152310.1016/j.smim.2021.10152334776300
    [Google Scholar]
  12. KondoN. KurodaT. KobayashiD. Cytokine networks in the pathogenesis of rheumatoid arthritis.Int. J. Mol. Sci.202122201092210.3390/ijms22201092234681582
    [Google Scholar]
  13. PapavassiliouK.A. PapavassiliouA.G. Transcription factor drug targets.J. Cell. Biochem.2016117122693269610.1002/jcb.2560527191703
    [Google Scholar]
  14. SnijeshV.P. MatchadoM.S. SinghS. Classifying rheumatoid arthritis gene network signatures for identifying key regulatory molecules and their altered pathways by adopting network biology approach.Gene Rep.20181319921110.1016/j.genrep.2018.10.013
    [Google Scholar]
  15. SinghS. VennilaJ.J. SnijeshV.P. GeorgeG. SunnyC. Implying analytic measures for unravelling rheumatoid arthritis significant proteins through drug–target interaction.Interdiscip. Sci.20168212213110.1007/s12539‑015‑0108‑926286007
    [Google Scholar]
  16. SinghS. Jannet VennilaJ. KantR. Gene interaction map: A paradigm for identifying significant pathways responsible for rheumatoid arthritis.Netw. Model. Anal. Health Inform. Bioinform.2014316210.1007/s13721‑014‑0062‑1
    [Google Scholar]
  17. HuaS. DiasT.H. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis.Front. Pharmacol.2016718410.3389/fphar.2016.0018427445820
    [Google Scholar]
  18. LiH. WuQ.Y. TengX.H. LiZ.P. ZhuM.T. GuC.J. ChenB.J. XieQ.Q. LuoX.J. The pathogenesis and regulatory role of HIF-1 in rheumatoid arthritis.Cent. Eur. J. Immunol.202348433834510.5114/ceji.2023.13421738558567
    [Google Scholar]
  19. TangY.Y. WangD.C. WangY.Q. HuangA.F. XuW.D. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review.Front. Immunol.202313107397110.3389/fimmu.2022.1073971
    [Google Scholar]
  20. HuF. LiuH. XuL. LiY. LiuX. ShiL. SuY. QiuX. ZhangX. YangY. ZhangJ. LiZ. Hypoxia-inducible factor-1α perpetuates synovial fibroblast interactions with T cells and B cells in rheumatoid arthritis.Eur. J. Immunol.201646374275110.1002/eji.20154578426604208
    [Google Scholar]
  21. GuoX. ChenG. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis.Front. Immunol.202011166810.3389/fimmu.2020.0166832849577
    [Google Scholar]
  22. ZhaoX. YueY. ChengW. LiJ. HuY. qinL. ZhangP. Hypoxia-inducible factor: A potential therapeutic target for rheumatoid arthritis.Curr. Drug Targets201314670070710.2174/138945011131406001023531111
    [Google Scholar]
  23. HuY. ZhangT. ChenJ. ChengW. ChenJ. ZhengZ. LinJ. ZhuG. ZhangY. BaiX. WangY. SongB. WangQ. QinL. ZhangP. Downregulation of hypoxia-inducible factor-1α by RNA interference alleviates the development of collagen-induced arthritis in rats.Mol. Ther. Nucleic Acids2020191330134210.1016/j.omtn.2020.01.01432160704
    [Google Scholar]
  24. HuF. ShiL. MuR. ZhuJ. LiY. MaX. LiC. JiaR. YangD. LiY. LiZ. Hypoxia-inducible factor-1α and interleukin 33 form a regulatory circuit to perpetuate the inflammation in rheumatoid arthritis.PLoS One201388e7265010.1371/journal.pone.007265023967327
    [Google Scholar]
  25. KaiharaK. NakagawaS. AraiY. InoueH. TsuchidaS. FujiiY. KamadaY. KishidaT. MazdaO. TakahashiK. Sustained hypoxia suppresses joint destruction in a rat model of rheumatoid arthritis via negative feedback of hypoxia inducible factor-1α.Int. J. Mol. Sci.2021228389810.3390/ijms2208389833918929
    [Google Scholar]
  26. ElzakraN. KimY. HIF-1α metabolic pathways in human cancer.Adv. Exp. Med. Biol.2021128024326010.1007/978‑3‑030‑51652‑9_1733791987
    [Google Scholar]
  27. IgnatenkoG.A. BondarenkoN.N. TumanovaS.V. IgnatenkoT.S. KalugaA.A. ValigunY.S. Hypoxia-inducible factors: Details create a picture. Part I. HIF-1.Fundam. Klin. Med.2023839310610.23946/2500‑0764‑2023‑8‑3‑93‑106
    [Google Scholar]
  28. WarfelN.A. Defining the mechanisms underlying cyclin dependent kinase control of HIF-1α.Oncotarget202213145445510.18632/oncotarget.2820835251493
    [Google Scholar]
  29. HongZ. TieQ. ZhangL. Targeted inhibition of the GRK2/HIF-1α pathway is an effective strategy to alleviate synovial hypoxia and inflammation.Int. Immunopharmacol.2022113Pt A10927110.1016/j.intimp.2022.10927136461590
    [Google Scholar]
  30. LiuX. GuoR. HuoS. ChenH. SongQ. JiangG. YuY. HuangJ. XieS. GaoX. LuL. CaP-based anti-inflammatory HIF-1α siRNA-encapsulating nanoparticle for rheumatoid arthritis therapy.J. Control. Release202234331432510.1016/j.jconrel.2022.01.02935085700
    [Google Scholar]
  31. HongZ. WangH. ZhangT. XuL. ZhaiY. ZhangX. ZhangF. ZhangL. The HIF-1/ BNIP3 pathway mediates mitophagy to inhibit the pyroptosis of fibroblast-like synoviocytes in rheumatoid arthritis.Int. Immunopharmacol.202412711137810.1016/j.intimp.2023.11137838141408
    [Google Scholar]
  32. YangW. WeiX. JiaoY. BaiY. SamW.N. YanQ. SunX. LiG. MaJ. WeiW. TianD. ZhengF. STAT3/HIF-1α/fascin-1 axis promotes RA FLSs migration and invasion ability under hypoxia.Mol. Immunol.2022142839410.1016/j.molimm.2021.12.00434971867
    [Google Scholar]
  33. WestraJ. BrouwerE. BosR. PosthumusM.D. Doornbos-Van Der MeerB. KallenbergC.G.M. LimburgP.C. Regulation of cytokine-induced HIF-1α expression in rheumatoid synovial fibroblasts.Ann. N. Y. Acad. Sci.20071108134034810.1196/annals.1422.03517893997
    [Google Scholar]
  34. SalcedaS. CaroJ. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes.J. Biol. Chem.199727236226422264710.1074/jbc.272.36.226429278421
    [Google Scholar]
  35. HarbourJ.W. OnkenM.D. Chapter 5 - Cancer genetics.Clinical Ophthalmic Oncology with CD-ROM.Amsterdam, NetherlandsElsevier20073313310.1016/B978‑1‑4160‑3167‑3.50010‑3
    [Google Scholar]
  36. ZimnaA. KurpiszM. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies.BioMed Res. Int.2015201511310.1155/2015/54941226146622
    [Google Scholar]
  37. ZielloJ.E. JovinI.S. HuangY. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia.Yale J. Biol. Med.2007802516018160990
    [Google Scholar]
  38. KonistiS. KiriakidisS. PaleologE.M. Hypoxia—a key regulator of angiogenesis and inflammation in rheumatoid arthritis.Nat. Rev. Rheumatol.20128315316210.1038/nrrheum.2011.20522293762
    [Google Scholar]
  39. FanL. LiJ. YuZ. DangX. WangK. The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration.BioMed Res. Int.2014201411110.1155/2014/23935624895555
    [Google Scholar]
  40. SemenzaG.L. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis.Curr. Opin. Genet. Dev.19988558859410.1016/S0959‑437X(98)80016‑69794818
    [Google Scholar]
  41. HarrisA.L. Hypoxia — a key regulatory factor in tumour growth.Nat. Rev. Cancer200221384710.1038/nrc70411902584
    [Google Scholar]
  42. IkedaE. Cellular response to tissue hypoxia and its involvement in disease progression.Pathol. Int.2005551060361010.1111/j.1440‑1827.2005.01877.x16185289
    [Google Scholar]
  43. BenitaY. KikuchiH. SmithA.D. ZhangM.Q. ChungD.C. XavierR.J. An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia.Nucleic Acids Res.200937144587460210.1093/nar/gkp42519491311
    [Google Scholar]
  44. SemenzaG.L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy.Trends Pharmacol. Sci.201233420721410.1016/j.tips.2012.01.00522398146
    [Google Scholar]
  45. FredeS. StockmannC. FreitagP. FandreyJ. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB.Biochem. J.2006396351752710.1042/BJ2005183916533170
    [Google Scholar]
  46. ThorntonR.D. LaneP. BorghaeiR.C. PeaseE.A. CaroJ. MochanE. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts.Biochem. J.2000350130731210.1042/bj350030710926858
    [Google Scholar]
  47. BenitoM.J. MurphyE. MurphyE.P. van den BergW.B. FitzGeraldO. BresnihanB. Increased synovial tissue NF-κB1 expression at sites adjacent to the cartilage–pannus junction in rheumatoid arthritis.Arthritis Rheum.20045061781178710.1002/art.2026015188354
    [Google Scholar]
  48. SimmondsR.E. FoxwellB.M. Signalling, inflammation and arthritis: NF- B and its relevance to arthritis and inflammation.Rheumatology (Oxford)200847558459010.1093/rheumatology/kem29818234712
    [Google Scholar]
  49. TaylorC.T. Interdependent roles for hypoxia inducible factor and nuclear factor-κB in hypoxic inflammation.J. Physiol.2008586174055405910.1113/jphysiol.2008.15766918599532
    [Google Scholar]
  50. OliverK.M. TaylorC.T. CumminsE.P. Hypoxia. Regulation of NFκB signalling during inflammation: The role of hydroxylases.Arthritis Res. Ther.200911121510.1186/ar257519291263
    [Google Scholar]
  51. HeY.L. GongS.H. ChengX. BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia.Cell. Dea. Dis.2020131196610.1038/s41419‑022‑05418‑z36396625
    [Google Scholar]
  52. LinQ. LiS. JiangN. JinH. ShaoX. ZhuX. WuJ. ZhangM. ZhangZ. ShenJ. ZhouW. GuL. LuR. NiZ. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy.Autophagy202117102975299010.1080/15548627.2020.184897133345685
    [Google Scholar]
  53. LiJ. LinQ. ShaoX. LiS. ZhuX. WuJ. MouS. GuL. WangQ. ZhangM. ZhangK. LuJ. NiZ. HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome.Cell Death Dis.202314320010.1038/s41419‑023‑05587‑536928344
    [Google Scholar]
  54. WangL. SongY. ZhangP. ChenW. XiaoF. ZhouP. YangX. DaiH. Hypoxia-inducible factor prolyl hydroxylase inhibitor alleviates heatstroke-induced acute kidney injury by activating BNIP3 -mediated mitophagy.FASEB J.20243812e2372310.1096/fj.202400047R38865198
    [Google Scholar]
  55. ZhaoQ. SunX. ZhengC. XueC. JinY. ZhouN. SunS. The evolutionarily conserved hif-1/bnip3 pathway promotes mitophagy and mitochondrial fission in crustacean testes during hypoxia.Am. J. Physiol. Regul. Integr. Comp. Physiol.20233241R128R14210.1152/ajpregu.00212.202236468826
    [Google Scholar]
  56. DengR. WangY. BuY. WuH. BNIP3 mediates the different adaptive responses of fibroblast-like synovial cells to hypoxia in patients with osteoarthritis and rheumatoid arthritis.Mol. Med.20222816410.1186/s10020‑022‑00490‑935690741
    [Google Scholar]
  57. TakedaN. MaemuraK. ImaiY. HaradaT. KawanamiD. NojiriT. ManabeI. NagaiR. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1.Circ. Res.200495214615310.1161/01.RES.0000134920.10128.b415192019
    [Google Scholar]
  58. WengerR.H. StiehlD.P. CamenischG. Integration of oxygen signaling at the consensus HRE.Sci. STKE20052005306re1210.1126/stke.3062005re1216234508
    [Google Scholar]
  59. Ortiz-BarahonaA. VillarD. PescadorN. AmigoJ. del PesoL. Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction.Nucleic Acids Res.20103872332234510.1093/nar/gkp120520061373
    [Google Scholar]
  60. ChenJ. ChenJ. TanJ. LiJ. ChengW. KeL. WangQ. WangA. LinS. LiG. ZhangP. WangB. HIF-1α dependent RhoA as a novel therapeutic target to regulate rheumatoid arthritis fibroblast-like synoviocytes migration in vitro and in vivo .J. Orthop. Translat.202340495710.1016/j.jot.2023.05.00437346290
    [Google Scholar]
  61. XuW.D. HuangA.F. Hypoxia-induced synovial fibroblast activation in inflammatory arthritis and the role of notch-1 and notch-3 signaling: Comment on the article by chen et al. Arthritis Rheumatol.202173122349235010.1002/art.4190934180160
    [Google Scholar]
  62. ZhangY. ChenL. LiX. ChenJ. TanZ. Tetramethylpyrazine alleviates hypoxia-induced proliferation, migration, and inflammatory response of fibroblast-like synoviocytes via inhibiting the HIF-1α- circCDC42BPB pathway.Adv. Rheumatol.20246411910.1186/s42358‑024‑00355‑138449057
    [Google Scholar]
  63. ZiaastaniZ. Kalantari-KhandaniB. NiaziM.J. KazemipourA. Identification of critical genes and metabolic pathways in rheumatoid arthritis and osteoporosis toward drug repurposing.Comput. Biol. Med.202418010891210.1016/j.compbiomed.2024.10891239079412
    [Google Scholar]
  64. LiuH. HuangQ. ShiB. EksarkoP. TemkinV. PopeR.M. Regulation of Mcl-1 expression in rheumatoid arthritis synovial macrophages.Arthritis Rheum.200654103174318110.1002/art.2213217009247
    [Google Scholar]
  65. HöbelS. AppeldoornC.C.M. GaillardP.J. AignerA. Targeted CRM197-PEG-PEI/siRNA complexes for therapeutic RNAi in glioblastoma.Pharmaceuticals (Basel)20114121591160610.3390/ph412159127721338
    [Google Scholar]
  66. LiX. ZhangS. ZhangM. LiG. YangB. LuX. TengL. LiY. SunF. A multifunctional nano-delivery system against rheumatoid arthritis by combined phototherapy, hypoxia-activated chemotherapy, and RNA interference.Int. J. Nanomedicine2022176257627310.2147/IJN.S38225236531117
    [Google Scholar]
  67. GanP. SunM. WuH. KeJ. DongX. ChenF. A novel mechanism for inhibiting proliferation of rheumatoid arthritis fibroblast-like synoviocytes: Geniposide suppresses HIF-1α accumulation in the hypoxic microenvironment of synovium.Inflamm. Res.20227110-111375138810.1007/s00011‑022‑01636‑536109396
    [Google Scholar]
  68. WenJ. LyuP. StolzerI. XuJ. GießlA. LinZ. AndreevD. KachlerK. SongR. MengX. CaoS. GugginoG. CicciaF. GüntherC. SchettG. BozecA. Epithelial HIF2α expression induces intestinal barrier dysfunction and exacerbation of arthritis.Ann. Rheum. Dis.20228181119113010.1136/annrheumdis‑2021‑22203535710307
    [Google Scholar]
  69. LiangC. LiJ. LuC. XieD. LiuJ. ZhongC. WuX. DaiR. ZhangH. GuanD. GuoB. HeB. LiF. HeX. ZhangW. ZhangB.T. ZhangG. LuA. HIF1α inhibition facilitates Leflunomide-AHR-CRP signaling to attenuate bone erosion in CRP-aberrant rheumatoid arthritis.Nat. Commun.2019101457910.1038/s41467‑019‑12163‑z31594926
    [Google Scholar]
  70. ShankarJ. ThippegowdaP.B. KanumS.A. Inhibition of HIF-1α activity by BP-1 ameliorates adjuvant induced arthritis in rats.Biochem. Biophys. Res. Commun.2009387222322810.1016/j.bbrc.2009.01.08619664474
    [Google Scholar]
  71. MikhailE. SiccardiE. BawazirA. RajeshA. PrathyushS. Al WazaniD.M.K. SabeekM. JohnT. A validated method for the quantification of IOX-2, a potent prolyl hydroxylase inhibitor in equine urine and plasma using liquid chromatography–high-resolution mass spectrometry.Drug Test. Anal.20211361178119010.1002/dta.301033533201
    [Google Scholar]
  72. FallahJ. BraveM.H. WeinstockC. MehtaG.U. BradfordD. GittlemanH. BloomquistE.W. CharlabR. HamedS.S. MillerC.P. DorffS.E. ChambersW.A. MixterB.D. DininJ. PierceW.F. RicksT.K. TangS. DonoghueM. PazdurR. Amiri-KordestaniL. IbrahimA. BeaverJ.A. FDA approval summary: Belzutifan for von hippel-lindau disease–associated tumors.Clin. Cancer Res.202228224843484810.1158/1078‑0432.CCR‑22‑105435727604
    [Google Scholar]
  73. HuangX. GuoX. YanG. ZhangY. YaoY. QiaoY. WangD. ChenG. ZhangW. TangC. CaoF. Dapagliflozin attenuates contrast-induced acute kidney injury by regulating the HIF-1α/HE4/NF-κB pathway.J. Cardiovasc. Pharmacol.202279690491310.1097/FJC.000000000000126835383661
    [Google Scholar]
  74. GongY. YuZ. WangY. XiongY. ZhouY. LiaoC. LiY. LuoY. BaiY. ChenB. TangY. WuP. Effect of moxibustion on HIF-1 α and VEGF levels in patients with rheumatoid arthritis.Pain Res. Manag.201920191910.1155/2019/470524731885755
    [Google Scholar]
  75. CaiL. XiongP.F. LiT. LiC. WuZ.X. HongY.L. WangJ.T. ZhangM.Y. YangX.Q. XuQ.Q. ShiH. LuoQ.C. LiR. LiuM.M. Discovery of novel diaryl substituted isoquinolin-1(2H)-one derivatives as hypoxia-inducible factor-1 signaling inhibitors for the treatment of rheumatoid arthritis.Eur. J. Med. Chem.202427111641710.1016/j.ejmech.2024.11641738688063
    [Google Scholar]
  76. LiuQ. LuoQ. FanQ. LiY. LuA. GuanD. Screening of the key response component groups and mechanism verification of Huangqi-Guizhi-Wuwu-Decoction in treating rheumatoid arthritis based on a novel computational pharmacological model.BMC. Compl. Med. Ther.2024241410.1186/s12906‑023‑04315‑y38166916
    [Google Scholar]
  77. GuoX. ZhangJ. FengZ. JiJ. ShenX. HouX. MeiZ. The antiangiogenic effect of total saponins of Panax japonicus C.A. Meyer in rheumatoid arthritis is mediated by targeting the HIF-1α/VEGF/ANG-1 axis.J. Ethnopharmacol.202433311842210.1016/j.jep.2024.118422
    [Google Scholar]
  78. ZhangF. ZhangY. ZhouJ. CaiY. LiZ. SunJ. XieZ. HaoG. Metabolic effects of quercetin on inflammatory and autoimmune responses in rheumatoid arthritis are mediated through the inhibition of JAK1/STAT3/HIF-1α signaling.Mol. Med.202430117010.1186/s10020‑024‑00929‑139390367
    [Google Scholar]
  79. LiZ. ChenM. WangZ. FanQ. LinZ. TaoX. WuJ. LiuZ. LinR. ZhaoC. Berberine inhibits RA-FLS cell proliferation and adhesion by regulating RAS/MAPK/FOXO/HIF-1 signal pathway in the treatment of rheumatoid arthritis.Bone Joint Res.20231229110210.1302/2046‑3758.122.BJR‑2022‑0269.R136718649
    [Google Scholar]
  80. BaX. HuangY. ShenP. HuangY. WangH. HanL. LinW.J. YanH.J. XuL.J. QinK. ChenZ. TuS.H. WTD attenuating rheumatoid arthritis via suppressing angiogenesis and modulating the PI3K/AKT/mTOR/HIF-1α pathway.Front. Pharmacol.20211269680210.3389/fphar.2021.69680234646130
    [Google Scholar]
  81. LiG. QinY. DuP. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling.Life Sci.2015136677210.1016/j.lfs.2015.06.01926141990
    [Google Scholar]
  82. LeeY.Z. GuoH.C. ZhaoG.H. YangC.W. ChangH.Y. YangR.B. ChenL. LeeS-J. Tylophorine-based compounds are therapeutic in rheumatoid arthritis by targeting the caprin-1 ribonucleoprotein complex and inhibiting expression of associated c-Myc and HIF-1α.Pharmacol. Res.202015210458110.1016/j.phrs.2019.104581
    [Google Scholar]
  83. ZhangM. WuD. XuJ. LiuL. JiaoW. YuJ. ChenG. Suppression of NLRP3 inflammasome by dihydroarteannuin via the HIF-1α and JAK3/STAT3 signaling pathway contributes to attenuation of collagen-induced arthritis in mice.Front. Pharmacol.20221388488110.3389/fphar.2022.884881
    [Google Scholar]
  84. LeiZ. OuyangL. GongY. WangZ. YuB. Effect of eriodictyol on collagen-induced arthritis in rats by Akt/HIF-1α pathway.Drug Des. Devel. Ther.2020141633163910.2147/DDDT.S23966232425508
    [Google Scholar]
  85. WangY. Li W. ZhangT. Resveratrol alleviates MSU-induced gouty arthritis in rats through inhibition of HIF-1α- and NLRP3-derived IL-1β secretion in macrophages.Cell. Mol. Biol.2023697283410.14715/cmb/2023.69.7.537715438
    [Google Scholar]
  86. WangJ.Y. WangZ. LiM.Y. ZhangZ. MiC. ZuoH.X. XingY. WuY.L. LianL.H. XuG.H. PiaoL.X. MaJ. JinX. Dictamnine promotes apoptosis and inhibits epithelial-mesenchymal transition, migration, invasion and proliferation by downregulating the HIF-1α and Slug signaling pathways.Chem. Biol. Interact.201829613414410.1016/j.cbi.2018.09.01430266538
    [Google Scholar]
  87. HuynhN. BeutlerJ.A. ShulkesA. BaldwinG.S. HeH. Glaucarubinone inhibits colorectal cancer growth by suppression of hypoxia-inducible factor 1α and β-catenin via a p-21 activated kinase 1-dependent pathway.Biochim. Biophys. Acta Mol. Cell Res.20151853115716510.1016/j.bbamcr.2014.10.01325409929
    [Google Scholar]
  88. ChoiY.J. ShinH.W. ChunY.S. LeutouA.S. SonB.W. ParkJ.W. Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1.Oncotarget2016738621076212210.18632/oncotarget.1152927613833
    [Google Scholar]
  89. ParkK. LeeH.E. LeeS.H. LeeD. LeeT. LeeY.M. Molecular and functional evaluation of a novel HIF inhibitor, benzopyranyl 1,2,3-triazole compound.Oncotarget2017857801781310.18632/oncotarget.1395527999195
    [Google Scholar]
  90. BanH.S. KimB.K. LeeH. KimH.M. HarmalkarD. NamM. ParkS.K. LeeK. ParkJ.T. KimI. LeeK. HwangG.S. WonM. The novel hypoxia-inducible factor-1α inhibitor IDF-11774 regulates cancer metabolism, thereby suppressing tumor growth.Cell Death Dis.201786e284310.1038/cddis.2017.23528569777
    [Google Scholar]
  91. JonaschE. DonskovF. IliopoulosO. RathmellW.K. NarayanV.K. MaughanB.L. OudardS. ElseT. MaranchieJ.K. WelshS.J. ThamakeS. ParkE.K. PeriniR.F. LinehanW.M. SrinivasanR. Belzutifan for renal cell carcinoma in von hippel–lindau disease.N. Engl. J. Med.2021385222036204610.1056/NEJMoa210342534818478
    [Google Scholar]
  92. LiY. ZhangM.Z. ZhangS.J. SunX. ZhouC. LiJ. LiuJ. FengJ. LuS-Y. Pei-JunL. WangJ-C. HIF-1α inhibitor YC-1 suppresses triple-negative breast cancer growth and angiogenesis by targeting PlGF/VEGFR1-induced macrophage polarization.Biomed. Pharmacother.202316111442310.1016/j.biopha.2023.114423
    [Google Scholar]
  93. ShuG. MiX. CaiJ. ZhangX. YinW. YangX. LiY. ChenL. DengX. Brucine, an alkaloid from seeds of Strychnos nux-vomica Linn., represses hepatocellular carcinoma cell migration and metastasis: The role of hypoxia inducible factor 1 pathway.Toxicol. Lett.201322229110110.1016/j.toxlet.2013.07.02423933019
    [Google Scholar]
  94. HuangJ. ChenZ.H. RenC.M. WangD.X. YuanS.X. WuQ.X. ChenQ.Z. ZengY.H. ShaoY. LiY. WuK. YuY. SunW.J. HeB.C. Antiproliferation effect of evodiamine in human colon cancer cells is associated with IGF-1/HIF-1α downregulation.Oncol. Rep.20153463203321110.3892/or.2015.430926503233
    [Google Scholar]
  95. MiC. MaJ. WangK.S. ZuoH.X. WangZ. LiM.Y. PiaoL.X. XuG.H. LiX. QuanZ.S. JinX. Imperatorin suppresses proliferation and angiogenesis of human colon cancer cell by targeting HIF-1α via the mTOR/p70S6K/4E-BP1 and MAPK pathways.J. Ethnopharmacol.2017203273810.1016/j.jep.2017.03.03328341244
    [Google Scholar]
  96. ParhiraS. ZhuG.Y. ChenM. BaiL.P. JiangZ.H. Cardenolides from Calotropis gigantea as potent inhibitors of hypoxia-inducible factor-1 transcriptional activity.J. Ethnopharmacol.201619493093610.1016/j.jep.2016.10.07027793783
    [Google Scholar]
  97. MandaG. MilanesiE. GencS. NiculiteC.M. NeagoeI.V. TastanB. DragneaE.M. CuadradoA. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis.Free Radic. Biol. Med.202219017920110.1016/j.freeradbiomed.2022.08.01235964840
    [Google Scholar]
  98. ChenJ. ZhuG. SunY. WuY. WuB. ZhengW. MaX. ZhengY. 7-deacetyl-gedunin suppresses proliferation of Human rheumatoid arthritis synovial fibroblast through activation of Nrf2/ARE signaling.Int. Immunopharmacol.202210710855710.1016/j.intimp.2022.10855735247778
    [Google Scholar]
  99. DuY. WangQ. TianN. LuM. ZhangX.L. DaiS.M. Knockdown of nrf2 exacerbates TNF-α-induced proliferation and invasion of rheumatoid arthritis fibroblast-like synoviocytes through activating JNK pathway.J. Immunol. Res.2020202011210.1155/2020/667046433426091
    [Google Scholar]
  100. HealyZ.R. LeeN.H. GaoX. GoldringM.B. TalalayP. KenslerT.W. KonstantopoulosK. Divergent responses of chondrocytes and endothelial cells to shear stress: Cross-talk among COX-2, the phase 2 response, and apoptosis.Proc. Natl. Acad. Sci. USA200510239140101401510.1073/pnas.050662010216172382
    [Google Scholar]
  101. CuadradoA. RojoA.I. WellsG. HayesJ.D. CousinS.P. RumseyW.L. AttucksO.C. FranklinS. LevonenA.L. KenslerT.W. Dinkova-KostovaA.T. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases.Nat. Rev. Drug Discov.201918429531710.1038/s41573‑018‑0008‑x30610225
    [Google Scholar]
  102. CuadradoA. MandaG. HassanA. AlcarazM.J. BarbasC. DaiberA. GhezziP. LeónR. LópezM.G. OlivaB. PajaresM. RojoA.I. Robledinos-AntónN. ValverdeA.M. GuneyE. SchmidtH.H.H.W. Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach.Pharmacol. Rev.201870234838310.1124/pr.117.01475329507103
    [Google Scholar]
  103. ItohK. WakabayashiN. KatohY. IshiiT. IgarashiK. EngelJ.D. YamamotoM. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.Genes Dev.1999131768610.1101/gad.13.1.769887101
    [Google Scholar]
  104. EgglerA.L. LiuG. PezzutoJ.M. van BreemenR.B. MesecarA.D. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2.Proc. Natl. Acad. Sci. USA200510229100701007510.1073/pnas.050240210216006525
    [Google Scholar]
  105. VenugopalR. JaiswalA.K. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes.Oncogene199817243145315610.1038/sj.onc.12022379872330
    [Google Scholar]
  106. ShawP. ChattopadhyayA. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms.J. Cell. Physiol.202023543119313010.1002/jcp.2921931549397
    [Google Scholar]
  107. BellezzaI. GiambancoI. MinelliA. DonatoR. Nrf2-Keap1 signaling in oxidative and reductive stress.Biochim. Biophys. Acta Mol. Cell Res.20181865572173310.1016/j.bbamcr.2018.02.01029499228
    [Google Scholar]
  108. ItohK. ChibaT. TakahashiS. IshiiT. IgarashiK. KatohY. OyakeT. HayashiN. SatohK. HatayamaI. YamamotoM. NabeshimaY. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.Biochem. Biophys. Res. Commun.1997236231332210.1006/bbrc.1997.69439240432
    [Google Scholar]
  109. ZhouH. WangY. YouQ. JiangZ. Recent progress in the development of small molecule Nrf2 activators: A patent review.Exp. Opin. Ther. Pat.201730320922510.1080/13543776.2020.171536531922884
    [Google Scholar]
  110. MalhotraD. Portales-CasamarE. SinghA. SrivastavaS. ArenillasD. HappelC. ShyrC. WakabayashiN. KenslerT.W. WassermanW.W. BiswalS. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis.Nucleic Acids Res.201038175718573410.1093/nar/gkq21220460467
    [Google Scholar]
  111. ChorleyB.N. CampbellM.R. WangX. KaracaM. SambandanD. BanguraF. XueP. PiJ. KleebergerS.R. BellD.A. Identification of novel NRF2-regulated genes by ChIP-Seq: Influence on retinoid X receptor alpha.Nucleic Acids Res.201240157416742910.1093/nar/gks40922581777
    [Google Scholar]
  112. HirotsuY. KatsuokaF. FunayamaR. NagashimaT. NishidaY. NakayamaK. Douglas EngelJ. YamamotoM. Nrf2–MafG heterodimers contribute globally to antioxidant and metabolic networks.Nucleic Acids Res.20124020102281023910.1093/nar/gks82722965115
    [Google Scholar]
  113. ZhangA. SuzukiT. AdachiS. YoshidaE. SakaguchiS. YamamotoM. Nrf2 activation improves experimental rheumatoid arthritis.Free Radic. Biol. Med.202320727929510.1016/j.freeradbiomed.2023.07.01637494986
    [Google Scholar]
  114. BonoS. FeligioniM. CorboM. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy.Mol. Neurodegener.20211617110.1186/s13024‑021‑00479‑834663413
    [Google Scholar]
  115. Jiménez-VillegasJ. FerraiuoloL. MeadR.J. ShawP.J. CuadradoA. RojoA.I. NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS.Free Radic. Biol. Med.202117312514110.1016/j.freeradbiomed.2021.07.02234314817
    [Google Scholar]
  116. WangD. WuJ. LeS. WangH. LuoJ. LiR. ChenX. SongY. WuL. YeP. DuX. HuangX. Oltipraz, the activator of nuclear factor erythroid 2-related factor 2 (Nrf2), protects against the formation of BAPN-induced aneurysms and dissection of the thoracic aorta in mice by inhibiting activation of the ROS-mediated NLRP3 inflammasome.Eur. J. Pharmacol.202293617536110.1016/j.ejphar.2022.17536136336010
    [Google Scholar]
  117. YanN. XuZ. QuC. ZhangJ. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway.Int. Immunopharmacol.20219810784410.1016/j.intimp.2021.107844
    [Google Scholar]
  118. SunQ. YeF. LiangH. Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease.Sign. Transd. Targ. Ther.2021621210.1038/s41392‑021‑00628‑x34052830
    [Google Scholar]
  119. KimS. Indu ViswanathA.N. ParkJ.H. LeeH.E. ParkA.Y. ChoiJ.W. KimH.J. LondheA.M. JangB.K. LeeJ. HwangH. LimS.M. PaeA.N. ParkK.D. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model.Neuropharmacology202016710798910.1016/j.neuropharm.2020.10798932032607
    [Google Scholar]
  120. HammouteneA. LaouiremS. AlbuquerqueM. A new NRF2 activator for the treatment of human metabolic dysfunction-associated fatty liver disease.JHEP. Rep.202351010084510.1016/j.jhepr.2023.10084537663119
    [Google Scholar]
  121. LeeG. ParkJ.S. LeeE.J. AhnJ.H. KimH.S. Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia.Phytomedicine201955505710.1016/j.phymed.2018.06.03230668443
    [Google Scholar]
  122. ZhaiK. DuanH. KhanG.J. XuH. HanF. CaoW. GaoG. ShanL. WeiZ.J. Salicin from Alangium chinense ameliorates rheumatoid arthritis by modulating the Nrf2-HO-1-ROS pathways.J. Agric. Food Chem.201866246073608210.1021/acs.jafc.8b0224129852739
    [Google Scholar]
  123. KimJ.W. LiM.H. JangJ.H. NaH.K. SongN.Y. LeeC. JohnsonJ.A. SurhY.J. 15-Deoxy-Δ12,14-prostaglandin J2 rescues PC12 cells from H2O2-induced apoptosis through Nrf2- mediated upregulation of heme oxygenase-1: Potential roles of Akt and ERK1/2.Biochem. Pharmacol.200876111577158910.1016/j.bcp.2008.08.00718775681
    [Google Scholar]
  124. ZhaoJ. TangP. ZhouZ. XuG. LiQ. LiK. ZhengY. Nrf2 signaling activation by a small molecule activator compound 16 inhibits hydrogen peroxide-induced oxidative injury and death in osteoblasts.Cell Death Discov.20228135310.1038/s41420‑022‑01146‑735941127
    [Google Scholar]
  125. GoessC. TerrillonS. MayoM. BousquetP. WallaceC. HartM. MathieuS. TwomeyR. Donnelly-RobertsD. NamovicM. JungP. HuM. RichardsonP. EsbenshadeT. CuffC.A. NRF2 activator A-1396076 ameliorates inflammation in autoimmune disease models by inhibiting antigen dependent T cell activation.J. Transl. Autoimmun.2021410007910.1016/j.jtauto.2020.10007933490940
    [Google Scholar]
  126. LiC. ZhangS. LiL. HuQ. JiS. Ursodeoxycholic acid protects against arsenic induced hepatotoxicity by the Nrf2 signaling pathway.Front. Pharmacol.20201159449610.3389/fphar.2020.59449633178028
    [Google Scholar]
  127. ChenY. EvankovichJ.W. LearT.B. TuncerF. KennerdellJ.R. CamarcoD.P. ShishidoM.S. LiuY. ChenB.B. A small molecule NRF2 activator BC-1901S ameliorates inflammation through DCAF1/NRF2 axis.Redox Biol.20203210148510.1016/j.redox.2020.10148532171724
    [Google Scholar]
  128. WeiS.L. YangY. SiW.Y. ZhouY. LiT. DuT. ZhangP. LiX.L. DuanR.N. DuanR.S. YangC.L. Methylglyoxal suppresses microglia inflammatory response through NRF2-IκBζ pathway.Redox Biol.20236510284310.1016/j.redox.2023.10284337573838
    [Google Scholar]
  129. YangC. WangT. ZhaoY. MengX. DingW. WangQ. LiuC. DengH. Flavonoid 4,4′-dimethoxychalcone induced ferroptosis in cancer cells by synergistically activating Keap1/Nrf2/HMOX1 pathway and inhibiting FECH.Free Radic. Biol. Med.2022188142310.1016/j.freeradbiomed.2022.06.01035697292
    [Google Scholar]
  130. DangR. WangM. LiX. WangH. LiuL. WuQ. ZhaoJ. JiP. ZhongL. LicinioJ. XieP. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway.J. Neuroinflammat.20221914110.1186/s12974‑022‑02400‑635130906
    [Google Scholar]
  131. HabtemariamS. The Nrf2/HO-1 axis as targets for flavanones: neuroprotection by pinocembrin, naringenin, and eriodictyol.Oxid. Med. Cell. Longev.2019201911510.1155/2019/472492031814878
    [Google Scholar]
  132. ChengJ. XuT. XunC. GuoH. CaoR. GaoS. ShengW. Carnosic acid protects against ferroptosis in PC12 cells exposed to erastin through activation of Nrf2 pathway.Life Sci.202126611890510.1016/j.lfs.2020.11890533333051
    [Google Scholar]
  133. GaoJ. MaC. XiaD. ChenN. ZhangJ. XuF. LiF. HeY. GongQ. Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-κB/ferroptosis pathway.Br. J. Pharmacol.2023180330832910.1111/bph.1596136166825
    [Google Scholar]
  134. XieL. ZhouC. WuY. FuX. ZhangG. HanX. XieS. ChenG. XuH. DengB. LiuB. ZhouY. LiA. Wenqingyin suppresses ferroptosis in the pathogenesis of sepsis-induced liver injury by activating the Nrf2-mediated signaling pathway.Phytomedicine202311415474810.1016/j.phymed.2023.15474836933519
    [Google Scholar]
  135. LiH. WengQ. GongS. ZhangW. WangJ. HuangY. LiY. GuoJ. LanT. Kaempferol prevents acetaminophen-induced liver injury by suppressing hepatocyte ferroptosis via Nrf2 pathway activation.Food Funct.20231441884189610.1039/D2FO02716J36723004
    [Google Scholar]
  136. YuH. YanS. JinM. WeiY. ZhaoL. ChengJ. DingL. FengH. Aescin can alleviate NAFLD through Keap1-Nrf2 by activating antioxidant and autophagy.Phytomedicine202311315474610.1016/j.phymed.2023.15474636905866
    [Google Scholar]
  137. WangH. JiaX. ZhangM. ChengC. LiangX. WangX. XieF. WangJ. YuY. HeY. DongQ. WangY. XuA. Isoliquiritigenin inhibits virus replication and virus-mediated inflammation via NRF2 signaling.Phytomedicine202311415478610.1016/j.phymed.2023.15478637002973
    [Google Scholar]
  138. ZhangQ. DangY.Y. LuoX. FuJ.J. ZouZ.C. JiaX.J. ZhengG.D. LiC.W. Kazinol B protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced cardiac injury by modulating the AKT/AMPK/Nrf2 signalling pathway.Pharm. Biol.202361136237110.1080/13880209.2023.217324736740871
    [Google Scholar]
  139. WangY. ChenZ. LuoJ. ZhangJ. SangA. ChengZ. LiX. Salidroside postconditioning attenuates ferroptosis-mediated lung ischemia-reperfusion injury by activating the Nrf2/SLC7A11 signaling axis.Int. Immunopharmacol.202311510973110.1016/j.intimp.2023.10973136907990
    [Google Scholar]
  140. LiY. ChenL. ZhengD. LiuJ.X. LiuC. QiS.H. HuP.C. YangX.F. MinJ.W. Echinocystic acid alleviated hypoxic-ischemic brain damage in neonatal mice by activating the PI3K/Akt/Nrf2 signaling pathway.Front. Pharmacol.202314110326510.3389/fphar.2023.110326536843928
    [Google Scholar]
  141. PrakashA.N. PrasadN. PuppalaE.R. PandaS.R. JainS. RavichandiranV. SinghM. NaiduV.G.M. Loganic acid protects against ulcerative colitis by inhibiting TLR4/NF-κB mediated inflammation and activating the SIRT1/Nrf2 anti-oxidant responses in vitro and in vivo .Int. Immunopharmacol.202312211058510.1016/j.intimp.2023.11058537421777
    [Google Scholar]
  142. WuC. DuanF. YangR. DaiY. ChenX. LiS. 15, 16-Dihydrotanshinone I protects against ischemic stroke by inhibiting ferroptosis via the activation of nuclear factor erythroid 2-related factor 2.Phytomedicine202311415479010.1016/j.phymed.2023.15479037028247
    [Google Scholar]
  143. MalemudC.J. The role of the JAK/STAT signal pathway in rheumatoid arthritis.Ther. Adv. Musculoskelet. Dis.2018105-611712710.1177/1759720X1877622429942363
    [Google Scholar]
  144. SimonL.S. TaylorP.C. ChoyE.H. SebbaA. QuebeA. KnoppK.L. PorrecaF. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis.Semin. Arthritis Rheum.202151127828410.1016/j.semarthrit.2020.10.00833412435
    [Google Scholar]
  145. IvashkivL.B. HuX. The JAK/STAT pathway in rheumatoid arthritis: Pathogenic or protective?Arthrit. Rheum.20034882092209610.1002/art.1109512905460
    [Google Scholar]
  146. MouraR.A. FonsecaJ.E. JAK inhibitors and modulation of B cell immune responses in rheumatoid arthritis.Front. Med. (Lausanne)2021760772510.3389/fmed.2020.60772533614673
    [Google Scholar]
  147. ZareF. Dehghan-ManshadiM. MirshafieyA. The signal transducer and activator of transcription factors lodge in immunopathogenesis of rheumatoid arthritis.Reumatismo201667412713710.4081/reumatismo.2015.85127215178
    [Google Scholar]
  148. NiuG.J. XuJ.D. YuanW.J. SunJ.J. YangM.C. HeZ.H. ZhaoX.F. WangJ.X. Protein inhibitor of activated STAT (PIAS) negatively regulates the JAK/STAT pathway by inhibiting STAT phosphorylation and translocation.Front. Immunol.20189239210.3389/fimmu.2018.0239230416501
    [Google Scholar]
  149. LiauN.P.D. LaktyushinA. LucetI.S. MurphyJ.M. YaoS. WhitlockE. CallaghanK. NicolaN.A. KershawN.J. BabonJ.J. The molecular basis of JAK/STAT inhibition by SOCS1.Nat. Commun.201891155810.1038/s41467‑018‑04013‑129674694
    [Google Scholar]
  150. SeifF. KhoshmirsafaM. AazamiH. MohsenzadeganM. SedighiG. BaharM. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells.Cell Commun. Signal.20171512310.1186/s12964‑017‑0177‑y28637459
    [Google Scholar]
  151. HuX. LiJ. FuM. ZhaoX. WangW. The JAK/STAT signaling pathway: From bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑134824210
    [Google Scholar]
  152. Rose-JohnS. Interleukin-6 family cytokines.Cold Spring Harb. Perspect. Biol.2018102a02841510.1101/cshperspect.a02841528620096
    [Google Scholar]
  153. HodgeJ.A. KawabataT.T. KrishnaswamiS. ClarkJ.D. TelliezJ.B. DowtyM.E. MenonS. LambaM. ZwillichS. The mechanism of action of tofacitinib - an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis.Clin. Exp. Rheumatol.201634231832826966791
    [Google Scholar]
  154. BalendranT. LimK. HamiltonJ.A. AchuthanA.A. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis.Front. Immunol.202314119693110.3389/fimmu.2023.119693137457726
    [Google Scholar]
  155. HubbardS.R. MillerW.T. Receptor tyrosine kinases: Mechanisms of activation and signaling.Curr. Opin. Cell Biol.200719211712310.1016/j.ceb.2007.02.01017306972
    [Google Scholar]
  156. OuyangW. RutzS. CrellinN.K. ValdezP.A. HymowitzS.G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease.Annu. Rev. Immunol.20112917110910.1146/annurev‑immunol‑031210‑10131221166540
    [Google Scholar]
  157. ŚwierkotJ. NowakB. CzarnyA. ZaczyńskaE. SokolikR. MadejM. KormanL. SebastianA. WojtalaP. LubińskiŁ. WilandP. The activity of JAK/STAT and NF-κB in patients with rheumatoid arthritis.Adv. Clin. Exp. Med.201625470971710.17219/acem/6103427629845
    [Google Scholar]
  158. SharmaV. PopeB.J. SantiagoN.V. BolandM.T. SunD. ReynoldsR.J. SzalaiA.J. BridgesS.L.Jr RamanC. Decreased levels of STAT1 and interferon-γ–induced STAT1 phosphorylation in rheumatoid arthritis CD4 and CD8 T cells.ACR Open Rheumatol.20213427728310.1002/acr2.1124433779079
    [Google Scholar]
  159. PaikJ.J. Casciola-RosenL. ShinJ.Y. AlbaydaJ. TiniakouE. LeungD.G. Gutierrez-AlamilloL. PerinJ. FloreaL. AntonescuC. LeungS.G. PurwinG. KoenigA. Christopher-StineL. Study of tofacitinib in refractory dermatomyositis: an open-label pilot study of ten patients.Arthritis Rheumatol.202173585886510.1002/art.4160233258553
    [Google Scholar]
  160. KongdangP. JaithamR. ThonghoiS. KuensaenC. PraditW. OngchaiS. Ethanolic extract of Kaempferia parviflora interrupts the mechanisms-associated rheumatoid arthritis in SW982 culture model via p38/STAT1 and STAT3 pathways.Phytomedicine20195915275510.1016/j.phymed.2018.11.01531005814
    [Google Scholar]
  161. KuulialaK. KuulialaA. KoivuniemiR. KautiainenH. RepoH. Leirisalo-RepoM. STAT6 and STAT1 pathway activation in circulating lymphocytes and monocytes as predictor of treatment response in rheumatoid arthritis.PLoS One20161112e016797510.1371/journal.pone.016797527942004
    [Google Scholar]
  162. CuiS.J. ZhangT. FuY. LiuY. GanY.H. ZhouY.H. YangR.L. WangX.D. DPSCs attenuate experimental progressive TMJ arthritis by inhibiting the STAT1 pathway.J. Dent. Res.202099444645510.1177/002203452090171031977264
    [Google Scholar]
  163. ArakiY. Tsuzuki WadaT. AizakiY. SatoK. YokotaK. FujimotoK. KimY.T. OdaH. KurokawaR. MimuraT. Histone methylation and STAT-3 differentially regulate interleukin-6–induced matrix metalloproteinase gene activation in rheumatoid arthritis synovial fibroblasts.Arthritis Rheumatol.20166851111112310.1002/art.3956326713842
    [Google Scholar]
  164. MaioliG. CaporaliR. FavalliE.G. Lessons learned from the preclinical discovery and development of sarilumab for the treatment of rheumatoid arthritis.Expert Opin. Drug Discov.202217879981310.1080/17460441.2022.209385235757853
    [Google Scholar]
  165. HoH.H. IvashkivL.B. Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation.J. Biol. Chem.200628120141111411810.1074/jbc.M51179720016571725
    [Google Scholar]
  166. CiobanuD.A. PoenariuI.S. CrîngușL.I. VrejuF.A. Turcu-StiolicaA. TicaA.A. PadureanuV. DumitrascuR.M. Banicioiu-CoveiS. DinescuS.C. BoldeanuL. SiloșiI. UngureanuA.M. BoldeanuM.V. OsiacE. BarbulescuA.L. JAK/STAT pathway in pathology of rheumatoid arthritis (Review).Exp. Ther. Med.20202043498350310.3892/etm.2020.898232905201
    [Google Scholar]
  167. YamazakiS. TanakaY. ArakiH. KohdaA. SanematsuF. ArasakiT. DuanX. MiuraF. KatagiriT. ShindoR. NakanoH. ItoT. FukuiY. EndoS. SumimotoH. The AP-1 transcription factor JunB is required for Th17 cell differentiation.Sci. Rep.2017711740210.1038/s41598‑017‑17597‑329234109
    [Google Scholar]
  168. ShengW. YangF. ZhouY. YangH. LowP.Y. KemenyD.M. TanP. MohA. KaplanM.H. ZhangY. FuX.Y. STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation.Cell Res.201424121387140210.1038/cr.2014.15425412660
    [Google Scholar]
  169. FengG. BajpaiG. MaP. KoenigA. BredemeyerA. LokshinaI. LaiL. FörsterI. LeuschnerF. KreiselD. LavineK.J. CCL17 aggravates myocardial injury by suppressing recruitment of regulatory T cells.Circulation20221451076578210.1161/CIRCULATIONAHA.121.05588835113652
    [Google Scholar]
  170. MonaghanK.L. AesophD. AmmerA.G. ZhengW. RahimpourS. FarrisB.Y. SpinnerC.A. LiP. LinJ.X. YuZ.X. LazarevicV. HuG. LeonardW.J. WanE.C.K. Tetramerization of STAT5 promotes autoimmune-mediated neuroinflammation.Proc. Natl. Acad. Sci. USA202111852e211625611810.1073/pnas.211625611834934004
    [Google Scholar]
  171. AchuthanA. CookA.D. LeeM.C. SalehR. KhiewH.W. ChangM.W.N. LouisC. FleetwoodA.J. LaceyD.C. ChristensenA.D. FryeA.T. LamP.Y. KusanoH. NomuraK. SteinerN. FörsterI. NuttS.L. OlshanskyM. TurnerS.J. HamiltonJ.A. Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation.J. Clin. Invest.201612693453346610.1172/JCI8782827525438
    [Google Scholar]
  172. KourG. ChoudharyR. AnjumS. BhagatA. BajajB.K. AhmedZ. Phytochemicals targeting JAK/STAT pathway in the treatment of rheumatoid arthritis: Is there a future?Biochem. Pharmacol.202219711492910.1016/j.bcp.2022.11492935065024
    [Google Scholar]
  173. HondaS. HarigaiM. The safety of baricitinib in patients with rheumatoid arthritis.Expert Opin. Drug Saf.202019554555110.1080/14740338.2020.174326332174196
    [Google Scholar]
  174. JamillouxY. El JammalT. VuittonL. Gerfaud-ValentinM. KereverS. SèveP. JAK inhibitors for the treatment of autoimmune and inflammatory diseases.Autoimmun. Rev.2019181110239010.1016/j.autrev.2019.10239031520803
    [Google Scholar]
  175. XuJ. JiaoW. WuD.B. YuJ.H. LiuL.J. ZhangM.Y. ChenG.X. Yishen Tongbi decoction attenuates inflammation and bone destruction in rheumatoid arthritis by regulating JAK/STAT3/SOCS3 pathway.Front. Immunol.202415138180210.3389/fimmu.2024.138180238966637
    [Google Scholar]
  176. ShenY. BaoR. YeX. LiH. SunY. RenQ. DuJ. YeT. ZhangQ. ZhaoQ. HanT. QinL. ZhangQ. Morinda officinalis iridoid glycosides, as an inhibitor of GSK-3β, alleviates rheumatoid arthritis through inhibition of NF-κB and JAK2/STAT3 pathway.Front. Pharmacol.202415143527410.3389/fphar.2024.1435274
    [Google Scholar]
  177. ZengL. YuG. YangK. HeQ. HaoW. XiangW. LongZ. ChenH. TangX. SunL. Exploring the mechanism of Celastrol in the treatment of rheumatoid arthritis based on systems pharmacology and multi-omics.Sci. Rep.2024141160410.1038/s41598‑023‑48248‑538238321
    [Google Scholar]
  178. YinY. WuS. Ascorbic acid alleviates rheumatoid arthritis by inhibiting the production of autoantibodies.Cell Commun. Signal.202422137310.1186/s12964‑024‑01756‑x39049070
    [Google Scholar]
  179. WangY. YanH. ZhaoL. HeX.L. BaoT.R.G. SunX.D. YangY.C. ZhuS.Y. GaoX.X. WangA.H. JiaJ.M. An integrated network pharmacology approach reveals that Darutigenol reduces inflammation and cartilage degradation in a mouse collagen-induced arthritis model by inhibiting the JAK-STAT3 pathway.J. Ethnopharmacol.202331411657410.1016/j.jep.2023.11657437160212
    [Google Scholar]
  180. ChenB.C. HeH.Y. NiuK. Network pharmacology-based approach uncovers the JAK/STAT signaling mechanism underlying paederia scandens extract treatment of rheumatoid arthritis.Am. J. Transl. Res.20221485295530736105044
    [Google Scholar]
  181. WuN. YuanT. YinZ. YuanX. SunJ. WuZ. ZhangQ. RedshawC. YangS. DaiX. Network pharmacology and molecular docking study of the chinese miao medicine sidaxue in the treatment of rheumatoid arthritis.Drug Des. Devel. Ther.20221643546610.2147/DDDT.S33094735221674
    [Google Scholar]
  182. WangS. DuQ. SunJ. GengS. ZhangY. Investigation of the mechanism of isobavachalcone in treating rheumatoid arthritis through a combination strategy of network pharmacology and experimental verification.J. Ethnopharmacol.202229411534210.1016/j.jep.2022.11534235525528
    [Google Scholar]
  183. SunY. BaoY. YuH. ChenQ. LuF. ZhaiS. ZhangC. LiF. WangC. YuanC. Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa.Int. Immunopharmacol.20208310638410.1016/j.intimp.2020.10638432199350
    [Google Scholar]
  184. BaoY. SunY.W. JiJ. GanL. ZhangC.F. WangC.Z. YuanC.S. Genkwanin ameliorates adjuvant-induced arthritis in rats through inhibiting JAK/STAT and NF-κB signaling pathways.Phytomedicine20196315303610.1016/j.phymed.2019.15303631401534
    [Google Scholar]
  185. LeeY.H. SongG.G. Relative efficacy and safety of tofacitinib, baricitinib, upadacitinib, and filgotinib in comparison to adalimumab in patients with active rheumatoid arthritis.Z. Rheumatol.202079878579610.1007/s00393‑020‑00750‑132055928
    [Google Scholar]
  186. KimE.S. KeamS.J. Filgotinib in rheumatoid arthritis: A profile of its use.Clin. Drug Investig.202141874174910.1007/s40261‑021‑01055‑034304373
    [Google Scholar]
  187. EzzedineK. PeevaE. YamaguchiY. CoxL.A. BanerjeeA. HanG. HamzaviI. GanesanA.K. PicardoM. ThaçiD. HarrisJ.E. BaeJ.M. TsukamotoK. SinclairR. PandyaA.G. SloanA. YuD. GandhiK. VincentM.S. KingB. Efficacy and safety of oral ritlecitinib for the treatment of active nonsegmental vitiligo: A randomized phase 2b clinical trial.J. Am. Acad. Dermatol.202388239540310.1016/j.jaad.2022.11.00536370907
    [Google Scholar]
  188. SongY. YoonD.H. YangH. CaoJ. JiD. KohY. JingH. EomH. KwakJ. LeeW. LeeJ. ShinH. JinJ. WangM. YangZ. KimW.S. ZhuJ. Phase I dose escalation and expansion study of golidocitinib, a highly selective JAK1 inhibitor, in relapsed or refractory peripheral T-cell lymphomas.Ann. Oncol.202334111055106310.1016/j.annonc.2023.08.01337673210
    [Google Scholar]
  189. LiuH. SantosL.L. SmithS.H. Modulation of disease-associated pathways in hidradenitis suppurativa by the janus kinase 1 inhibitor povorcitinib: transcriptomic and proteomic analyses of two phase 2 studies.Int. J. Mol. Sci.2023248718510.3390/ijms2408718537108348
    [Google Scholar]
  190. GongX. ChenX. KuligowskiM.E. LiuX. LiuX. CiminoE. McGeeR. YeleswaramS. Pharmacokinetics of ruxolitinib in patients with atopic dermatitis treated with ruxolitinib cream: data from phase II and III studies.Am. J. Clin. Dermatol.202122455556610.1007/s40257‑021‑00610‑x33982267
    [Google Scholar]
  191. ZeidanA.M. CookR.J. BordoniR. BerensonJ.R. EdenfieldW.J. MohanS. ZhouG. AsatianiE. SrinivasN. SavonaM.R. A phase 1/2 study of the oral janus kinase 1 inhibitors INCB052793 and itacitinib alone or in combination with standard therapies for advanced hematologic malignancies.Clin. Lymphoma Myeloma Leuk.202222752353410.1016/j.clml.2022.01.01235260349
    [Google Scholar]
  192. CatlettI.M. HuY. GaoL. BanerjeeS. GordonK. KruegerJ.G. Molecular and clinical effects of selective tyrosine kinase 2 inhibition with deucravacitinib in psoriasis.J. Allergy Clin. Immunol.2022149620102020.e810.1016/j.jaci.2021.11.00134767869
    [Google Scholar]
  193. TefferiA. PardananiA. GangatN. Momelotinib (JAK1/JAK2/ACVR1 inhibitor): Mechanism of action, clinical trial reports, and therapeutic prospects beyond myelofibrosis.Haematologica2023108112919293210.3324/haematol.2022.28261236861402
    [Google Scholar]
  194. SenggunpraiL. KukongviriyapanV. PrawanA. KukongviriyapanU. Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cells via suppression of JAK/STAT signaling pathway.Phytother. Res.201428684184810.1002/ptr.506124038588
    [Google Scholar]
  195. BeheraA.K. SwamyM.M. NateshN. KunduT.K. Garcinol and its role in chronic diseases.Adv. Exp. Med. Biol.201692843545210.1007/978‑3‑319‑41334‑1_1827671827
    [Google Scholar]
  196. AgarwalC. TyagiA. KaurM. AgarwalR. Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells.Carcinogenesis20072871463147010.1093/carcin/bgm04217341659
    [Google Scholar]
  197. KowalczykA. BodalskaA. MiranowiczM. Karłowicz-BodalskaK. Insights into novel anticancer applications for apigenin.Adv. Clin. Exp. Med.20172671143114610.17219/acem/4197829211364
    [Google Scholar]
  198. AhmedS.A. ParamaD. DaimariE. GirisaS. BanikK. HarshaC. DuttaU. KunnumakkaraA.B. Rationalizing the therapeutic potential of apigenin against cancer.Life Sci.202126711881410.1016/j.lfs.2020.11881433333052
    [Google Scholar]
  199. CaiY. FangX. HeC. LiP. XiaoF. WangY. ChenM. Cucurbitacins: A systematic review of the phytochemistry and anticancer activity.Am. J. Chin. Med.20154371331135010.1142/S0192415X1550075526503558
    [Google Scholar]
  200. ZhangM. LiN. CaiR. GuJ. XieF. WeiH. LuC. WuD. Rosmarinic acid protects mice from imiquimod induced psoriasis-like skin lesions by inhibiting the IL -23/Th17 axis via regulating Jak2/Stat3 signaling pathway.Phytother. Res.20213584526453710.1002/ptr.715534008239
    [Google Scholar]
  201. XuM. LiX. SongL. Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway.Pharm. Biol.202058165566310.1080/13880209.2020.177931832649845
    [Google Scholar]
  202. ZhangJ. YangS. GuanH. ZhouJ. GaoY. Xanthatin synergizes with cisplatin to suppress homologous recombination through JAK2/STAT4/BARD1 axis in human NSCLC cells.J. Cell. Mol. Med.20212531688169910.1111/jcmm.1627133439503
    [Google Scholar]
  203. ChenC. FanN. XuC. A synthetic derivative of bioactive constituents from Isatis indigotica ameliorates hypersensitivity and arthritis by inhibiting JAK2-STAT3 pathway in mice.Int. Immunopharmacol.2023124Pt A11088410.1016/j.intimp.2023.11088437660593
    [Google Scholar]
  204. EcoeurF. WeissJ. KaupmannK. HintermannS. OrainD. GuntermannC. Antagonizing retinoic acid-related-orphan receptor gamma activity blocks the T helper 17/interleukin-17 pathway leading to attenuated pro-inflammatory human keratinocyte and skin responses.Front. Immunol.20191057710.3389/fimmu.2019.0057730972071
    [Google Scholar]
  205. IsonoF. Fujita-SatoS. ItoS. Inhibiting RORγt/Th17 axis for autoimmune disorders.Drug Discov. Today20141981205121110.1016/j.drudis.2014.04.01224792721
    [Google Scholar]
  206. LubbertsE. JoostenL.A.B. van de LooF.A.J. SchwarzenbergerP. KollsJ. van den BergW.B. Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction.Inflamm. Res.200251210210410.1007/BF0268401011930902
    [Google Scholar]
  207. KoendersM.I. LubbertsE. Oppers-WalgreenB. van den BersselaarL. HelsenM.M. Di PadovaF.E. BootsA.M.H. GramH. JoostenL.A.B. van den BergW.B. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1.Am. J. Pathol.2005167114114910.1016/S0002‑9440(10)62961‑615972960
    [Google Scholar]
  208. HirotaK. YoshitomiH. HashimotoM. MaedaS. TeradairaS. SugimotoN. YamaguchiT. NomuraT. ItoH. NakamuraT. SakaguchiN. SakaguchiS. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model.J. Exp. Med.2007204122803281210.1084/jem.2007139718025126
    [Google Scholar]
  209. KawashiriS.Y. KawakamiA. IwamotoN. FujikawaK. AramakiT. TamaiM. ArimaK. KamachiM. YamasakiS. NakamuraH. TsurumotoT. KonoM. ShindoH. IdaH. OriguchiT. EguchiK. Proinflammatory cytokines synergistically enhance the production of chemokine ligand 20 (CCL20) from rheumatoid fibroblast-like synovial cells in vitro and serum CCL20 is reduced in vivo by biologic disease- modifying antirheumatic drugs.J. Rheumatol.200936112397240210.3899/jrheum.09013219797510
    [Google Scholar]
  210. CarlbergC. Hooft van HuijsduijnenR. StapleJ.K. DeLamarterJ.F. Becker-AndréM. RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers.Mol. Endocrinol.1994867577707935491
    [Google Scholar]
  211. HiroseT. SmithR.J. JettenA.M. ROR gamma: The third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle.Biochem. Biophys. Res. Commun.199420531976198310.1006/bbrc.1994.29027811290
    [Google Scholar]
  212. IvanovI.I. McKenzieB.S. ZhouL. TadokoroC.E. LepelleyA. LafailleJ.J. CuaD.J. LittmanD.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells.Cell200612661121113310.1016/j.cell.2006.07.03516990136
    [Google Scholar]
  213. ZouH. YangN. ZhangX. ChenH.W. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases.Biochem. Pharmacol.202219611472510.1016/j.bcp.2021.11472534384758
    [Google Scholar]
  214. MathurA.N. ChangH.C. ZisoulisD.G. StriteskyG.L. YuQ. O’MalleyJ.T. KapurR. LevyD.E. KansasG.S. KaplanM.H. Stat3 and Stat4 direct development of IL-17-secreting Th cells.J. Immunol.200717884901490710.4049/jimmunol.178.8.490117404271
    [Google Scholar]
  215. NurievaR. YangX.O. MartinezG. ZhangY. PanopoulosA.D. MaL. SchlunsK. TianQ. WatowichS.S. JettenA.M. DongC. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells.Nature2007448715248048310.1038/nature0596917581589
    [Google Scholar]
  216. YangX.O. PanopoulosA.D. NurievaR. ChangS.H. WangD. WatowichS.S. DongC. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells.J. Biol. Chem.2007282139358936310.1074/jbc.C60032120017277312
    [Google Scholar]
  217. ManelN. UnutmazD. LittmanD.R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt.Nat. Immunol.20089664164910.1038/ni.161018454151
    [Google Scholar]
  218. LeeY.K. TurnerH. MaynardC.L. OliverJ.R. ChenD. ElsonC.O. WeaverC.T. Late developmental plasticity in the T helper 17 lineage.Immunity20093019210710.1016/j.immuni.2008.11.00519119024
    [Google Scholar]
  219. DiveuC. McGeachyM.J. BonifaceK. StumhoferJ.S. SatheM. Joyce-ShaikhB. ChenY. TatoC.M. McClanahanT.K. de Waal MalefytR. HunterC.A. CuaD.J. KasteleinR.A. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells.J. Immunol.200918295748575610.4049/jimmunol.080116219380822
    [Google Scholar]
  220. RatajewskiM. Walczak-DrzewieckaA. SałkowskaA. DastychJ. Upstream stimulating factors regulate the expression of RORγT in human lymphocytes.J. Immunol.201218963034304210.4049/jimmunol.120051922891280
    [Google Scholar]
  221. YuX. RollinsD. RuhnK.A. StubblefieldJ.J. GreenC.B. KashiwadaM. RothmanP.B. TakahashiJ.S. HooperL.V. TH17 cell differentiation is regulated by the circadian clock.Science2013342615972773010.1126/science.124388424202171
    [Google Scholar]
  222. SunN. XieQ. DangY. WangY. Agonist lock touched and untouched retinoic acid receptor-related orphan receptor-γt (RORγt) inverse agonists: classification based on the molecular mechanisms of action.J. Med. Chem.20216415105191053610.1021/acs.jmedchem.0c0217834264059
    [Google Scholar]
  223. JettenA.M. KurebayashiS. UedaE. The ROR nuclear orphan receptor subfamily: Critical regulators of multiple biological processes.Prog. Nucleic Acid Res. Mol. Biol.20016920524710.1016/S0079‑6603(01)69048‑211550795
    [Google Scholar]
  224. SoltL.A. GriffinP.R. BurrisT.P. Ligand regulation of retinoic acid receptor-related orphan receptors: Implications for development of novel therapeutics.Curr. Opin. Lipidol.201021320421110.1097/MOL.0b013e328338ca1820463469
    [Google Scholar]
  225. ZhangY. LuoX. WuD. XuY. ROR nuclear receptors: Structures, related diseases, and drug discovery.Acta Pharmacol. Sin.2015361718710.1038/aps.2014.12025500868
    [Google Scholar]
  226. JettenA.M. Retinoid-related orphan receptors (RORs): Critical roles in development, immunity, circadian rhythm, and cellular metabolism.Nucl. Recept. Signal.200971nrs.0700310.1621/nrs.0700319381306
    [Google Scholar]
  227. DzhagalovI. ZhangN. HeY.W. The roles of orphan nuclear receptors in the development and function of the immune system.Cell. Mol. Immunol.20041640140716293208
    [Google Scholar]
  228. KallenJ. SchlaeppiJ.M. BitschF. DelhonI. FournierB. Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A.J. Biol. Chem.200427914140331403810.1074/jbc.M40030220014722075
    [Google Scholar]
  229. KallenJ.A. SchlaeppiJ.M. BitschF. GeisseS. GeiserM. DelhonI. FournierB. X-ray structure of the hRORalpha LBD at 1.63 A: Structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha.Structure200210121697170710.1016/S0969‑2126(02)00912‑712467577
    [Google Scholar]
  230. Becker-AndréM. WiesenbergI. Schaeren-WiemersN. AndréE. MissbachM. SauratJ.H. CarlbergC. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily.J. Biol. Chem.199426946285312853410.1016/S0021‑9258(19)61934‑47961794
    [Google Scholar]
  231. SorooshP. WuJ. XueX. SongJ. SuttonS.W. SabladM. YuJ. NelenM.I. LiuX. CastroG. LunaR. CrawfordS. BanieH. DandridgeR.A. DengX. BittnerA. KueiC. TootoonchiM. RozenkrantsN. HermanK. GaoJ. YangX.V. SachenK. NgoK. Fung-LeungW.P. NguyenS. de Leon-TabaldoA. BlevittJ. ZhangY. CummingsM.D. RaoT. ManiN.S. LiuC. McKinnonM. MillaM.E. FourieA.M. SunS. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation.Proc. Natl. Acad. Sci. USA201411133121631216810.1073/pnas.132280711125092323
    [Google Scholar]
  232. SantoriF.R. HuangP. van de PavertS.A. DouglassE.F.Jr LeaverD.J. HaubrichB.A. KeberR. LorbekG. KonijnT. RosalesB.N. RozmanD. HorvatS. RahierA. MebiusR.E. RastinejadF. NesW.D. LittmanD.R. Identification of natural RORγ ligands that regulate the development of lymphoid cells.Cell Metab.201521228629810.1016/j.cmet.2015.01.00425651181
    [Google Scholar]
  233. YangJ. SundrudM.S. SkepnerJ. YamagataT. Targeting Th17 cells in autoimmune diseases.Trends Pharmacol. Sci.2014351049350010.1016/j.tips.2014.07.00625131183
    [Google Scholar]
  234. FauberB.P. MagnusonS. Modulators of the nuclear receptor retinoic acid receptor-related orphan receptor-γ (RORγ or RORc).J. Med. Chem.201457145871589210.1021/jm401901d24502334
    [Google Scholar]
  235. SoltL.A. KumarN. NuhantP. WangY. LauerJ.L. LiuJ. IstrateM.A. KameneckaT.M. RoushW.R. VidovićD. SchürerS.C. XuJ. WagonerG. DrewP.D. GriffinP.R. BurrisT.P. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand.Nature2011472734449149410.1038/nature1007521499262
    [Google Scholar]
  236. ImuraC. UeyamaA. SasakiY. ShimizuM. FurueY. TaiN. TsujiiK. KatayamaK. OkunoT. ShichijoM. YasuiK. YamamotoM. A novel RORγt inhibitor is a potential therapeutic agent for the topical treatment of psoriasis with low risk of thymic aberrations.J. Dermatol. Sci.201993317618510.1016/j.jdermsci.2019.03.00230905492
    [Google Scholar]
  237. KumarN. LydaB. ChangM.R. LauerJ.L. SoltL.A. BurrisT.P. KameneckaT.M. GriffinP.R. Identification of SR2211: A potent synthetic RORγ-selective modulator.ACS Chem. Biol.20127467267710.1021/cb200496y22292739
    [Google Scholar]
  238. XueX. SorooshP. De Leon-TabaldoA. Luna-RomanR. SabladM. RozenkrantsN. YuJ. CastroG. BanieH. Fung-LeungW.P. Santamaria-BabiL. SchlueterT. AlbersM. LeonardK. BudelskyA.L. FourieA.M. Pharmacologic modulation of RORγt translates to efficacy in preclinical and translational models of psoriasis and inflammatory arthritis.Sci. Rep.2016613797710.1038/srep3797727905482
    [Google Scholar]
  239. KangE.G. WuS. GuptaA. A phase I randomized controlled trial to evaluate safety and clinical effect of topically applied GSK2981278 ointment in a psoriasis plaque test.Br. J. Dermatol.201817861427142910.1111/bjd.1613129150844
    [Google Scholar]
  240. HuangY. YuM. SunN. TangT. YuF. SongX. XieQ. FuW. ShaoL. WangY. Discovery of carbazole carboxamides as novel RORγt inverse agonists.Eur. J. Med. Chem.201814846547610.1016/j.ejmech.2018.02.05029477887
    [Google Scholar]
  241. LeeJ. BaekS. LeeJ. LeeJ. LeeD.G. ParkM.K. ChoM.L. ParkS.H. KwokS.K. Digoxin ameliorates autoimmune arthritis via suppression of Th17 differentiation.Int. Immunopharmacol.201526110311110.1016/j.intimp.2015.03.01725819229
    [Google Scholar]
  242. ZouH. YangY. ChenH.W. Natural compounds ursolic acid and digoxin exhibit inhibitory activities to cancer cells in RORγ-dependent and -independent manner.Front. Pharmacol.202314114674110.3389/fphar.2023.114674137180705
    [Google Scholar]
  243. TakaishiM. IshizakiM. SuzukiK. IsobeT. ShimozatoT. SanoS. Oral administration of a novel RORγt antagonist attenuates psoriasis-like skin lesion of two independent mouse models through neutralization of IL-17.J. Dermatol. Sci.2017851121910.1016/j.jdermsci.2016.10.00127726924
    [Google Scholar]
  244. Dal PràM. CartaD. SzabadkaiG. SumanM. Frión-HerreraY. PaccagnellaN. CastellaniG. De MartinS. FerlinM.G. Targeting RORs nuclear receptors by novel synthetic steroidal inverse agonists for autoimmune disorders.Bioorg. Med. Chem.20182681686170410.1016/j.bmc.2018.02.01829477813
    [Google Scholar]
  245. HangS. PaikD. YaoL. KimE. TrinathJ. LuJ. HaS. NelsonB.N. KellyS.P. WuL. ZhengY. LongmanR.S. RastinejadF. DevlinA.S. KroutM.R. FischbachM.A. LittmanD.R. HuhJ.R. Bile acid metabolites control TH17 and Treg cell differentiation.Nature2019576778514314810.1038/s41586‑019‑1785‑z31776512
    [Google Scholar]
  246. ShibataA. UgaK. SatoT. SagaraM. IgakiK. NakamuraY. OchidaA. KonoM. ShiraiJ. YamamotoS. YamasakiM. TsuchimoriN. Pharmacological inhibitory profile of TAK-828F, a potent and selective orally available RORγt inverse agonist.Biochem. Pharmacol.2018150354510.1016/j.bcp.2018.01.02329369782
    [Google Scholar]
  247. GegeC. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases – where are we presently?Expert Opin. Drug Discov.202116121517153510.1080/17460441.2021.194883334192992
    [Google Scholar]
  248. AhmadS.F. NadeemA. AnsariM.A. BakheetS.A. AlomarH.A. Al-MazrouaH.A. IbrahimK.E. AlshamraniA.A. Al-HamamahM.A. AlfardanA.S. AttiaS.M. CXCR3 antagonist NBI-74330 mitigates joint inflammation in collagen-induced arthritis model in DBA/1J mice.Int. Immunopharmacol.202311811009910.1016/j.intimp.2023.11009937018975
    [Google Scholar]
  249. CalabreseL. MalvasoD. AntonelliF. ManninoM. PerisK. ChiricozziA. Investigational systemic drugs for moderate to severe plaque psoriasis: What’s new?Expert Opin. Investig. Drugs202332322924310.1080/13543784.2023.218468436852779
    [Google Scholar]
  250. GegeC. RORγt inhibitors as potential back-ups for the phase II candidate VTP-43742 from Vitae Pharmaceuticals: Patent evaluation of WO2016061160 and US20160122345.Exp. Opin. Ther. Pat.20172711810.1080/13543776.2017.126235027852111
    [Google Scholar]
  251. ChoiH. HuangF. FlackM. The Effect of BI 730357 (retinoic acid-related orphan receptor gamma t antagonist, bevurogant) on the pharmacokinetics of a transporter probe cocktail, including digoxin, furosemide, metformin, and rosuvastatin: an open-label, non-randomized, 2-period Fi.Clin. Pharmacol. Drug Dev.202313219720710.1002/cpdd.134437960990
    [Google Scholar]
  252. PolasekT.M. LeelasenaI. BetscheiderI. MaroltM. KohlhofH. VittD. FliegertF. MuehlerA.R. Safety, tolerability, and pharmacokinetics of IMU-935, a novel inverse agonist of retinoic acid receptor–related orphan nuclear receptor γt: results from a double-blind, placebo-controlled, first-in-human phase 1 study.Clin. Pharmacol. Drug Dev.202312552553410.1002/cpdd.124336938862
    [Google Scholar]
  253. ZhouX. ChenH. WeiF. ZhaoQ. SuQ. LeiY. YinM. TianX. LiuZ. YuB. BaiC. HeX. HuangZ. The inhibitory effects of pentacyclic triterpenes from loquat leaf against Th17 differentiation.Immunol. Invest.202049663264710.1080/08820139.2019.169859931795780
    [Google Scholar]
  254. ZhaoC.L. SarwarM.S. YeJ.H. KuC.F. LiW.F. LuoG.Y. ZhangJ.J. XuJ. HuangZ.F. TsangS.W. PanL.T. ZhangH.J. Isolation, evaluation of bioactivity and structure determination of amethinol A, a prototypic amethane diterpene from Isodon amethystoides bearing a six/five/seven-membered carbon-ring system.Acta Crystallogr. C Struct. Chem.201874563564010.1107/S205322961800574029726475
    [Google Scholar]
  255. ArnoldJ.S. BraunsteinE.M. OhyamaT. GrovesA.K. AdamsJ.C. BrownM.C. MorrowB.E. Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients.Hum. Mol. Genet.200615101629163910.1093/hmg/ddl08416600992
    [Google Scholar]
  256. WangW. LiX. DingX. XiongS. HuZ. LuX. ZhangK. ZhangH. HuQ. LaiK.S. ChenZ. YangJ. SongH. WangY. WeiL. XiaZ. ZhouB. HeY. PuJ. LiuX. KeR. WuT. HuangC. BaldiniA. ZhangM. ZhangZ. Lymphatic endothelial transcription factor Tbx1 promotes an immunosuppressive microenvironment to facilitate post-myocardial infarction repair.Immunity2023561023422357.e1010.1016/j.immuni.2023.07.01937625409
    [Google Scholar]
  257. ChaeS.C. ShimS.C. ChungH.T. Association of TBX21 polymorphisms in a Korean population with rheumatoid arthritis.Exp. Mol. Med.2009411334110.3858/emm.2009.41.1.00519287198
    [Google Scholar]
  258. LiJ. LiJ. YouY. ChenS. The role of upstream stimulatory factor 1 in the transcriptional regulation of the human TBX21 promoter mediated by the T-1514C polymorphism associated with systemic lupus erythematosus.Immunogenetics201264536137010.1007/s00251‑011‑0597‑622258560
    [Google Scholar]
  259. WangJ. FathmanJ.W. Lugo-VillarinoG. ScimoneL. von AndrianU. DorfmanD.M. GlimcherL.H. Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells.J. Clin. Invest.2006116241442110.1172/JCI2663116410834
    [Google Scholar]
  260. SardarS. KerrA. VaartjesD. MoltvedE.R. KarosieneE. GuptaR. AnderssonÅ. The oncoprotein TBX3 is controlling severity in experimental arthritis.Arthritis Res. Ther.20192111610.1186/s13075‑018‑1797‑330630509
    [Google Scholar]
  261. KarouzakisE. TrenkmannM. GayR.E. MichelB.A. GayS. NeidhartM. Epigenome analysis reveals TBX5 as a novel transcription factor involved in the activation of rheumatoid arthritis synovial fibroblasts.J. Immunol.2014193104945495110.4049/jimmunol.140006625320281
    [Google Scholar]
  262. FanF. PodarK. The role of AP-1 transcription factors in plasma cell biology and multiple myeloma pathophysiology.Cancers (Basel)20211310232610.3390/cancers1310232634066181
    [Google Scholar]
  263. LiF. TianJ. ZhangL. HeH. SongD. A multi-omics approach to reveal critical mechanisms of activator protein 1 (AP-1).Biomed. Pharmacother.202417811722510.1016/j.biopha.2024.11722539084078
    [Google Scholar]
  264. ZhengG. LvY. HanZ. GuoH. AP-1 Network Shared in Pathways of Rheumatoid Arthritis Subtyped Liver-kidney Deficiency Characterize the Pathology.2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Singapore, 5-8 Dec 2023, pp. 3493-3498.10.1109/BIBM58861.2023
    [Google Scholar]
  265. HuberR. StuhlmüllerB. KunischE. KinneR.W. Discrepancy between jun/fos proto-oncogene mRNA and protein expression in the rheumatoid arthritis synovial membrane.Arthrit. Res. Ther.20207Suppl 1P10610.1186/ar1627
    [Google Scholar]
  266. PatraP. GaoY.Q. Structural and dynamical aspect of DNA motif sequence specific binding of AP-1 transcription factor.J. Chem. Phys.20241601111510310.1063/5.019650838506297
    [Google Scholar]
  267. MaytumA. ObierN. CauchyP. BoniferC. Regulation of developmentally controlled enhancer activity by extrinsic signals in normal and malignant cells: AP-1 at the centre.Front. Epigenet. Epigenom.20242146595810.3389/freae.2024.146595839506987
    [Google Scholar]
  268. ParkJ.K. JangY.J. OhB.R. ShinJ. BaeD. HaN. ChoiY. YounG.S. ParkJ. LeeE.Y. LeeE.B. SongY.W. Therapeutic potential of CKD-506, a novel selective histone deacetylase 6 inhibitor, in a murine model of rheumatoid arthritis.Arthritis Res. Ther.202022117610.1186/s13075‑020‑02258‑032711562
    [Google Scholar]
  269. LinghuK.G. XiongS.H. ZhaoG.D. ZhangT. XiongW. ZhaoM. ShenX.C. XuW. BianZ. WangY. YuH. Sigesbeckia orientalis L. extract alleviated the collagen type II–induced arthritis through inhibiting multi-target–mediated synovial hyperplasia and inflammation.Front. Pharmacol.20201154791310.3389/fphar.2020.54791332982752
    [Google Scholar]
  270. SharifM. JohnP. BhattiA. Identification of Potential HUB Genes and Associated Transcription Factors in Rheumatoid Arthritis.2023 20th International Bhurban Conference on Applied Sciences and Technology (IBCAST)Bhurban, Murree, Pakistan, 2023, pp. 761-767. 10.1109/IBCAST59916.2023.10713045
    [Google Scholar]
  271. ZhangC. HongX. YuH. XuH. QiuX. CaiW. HocherB. DaiW. TangD. LiuD. DaiY. Gene regulatory network study of rheumatoid arthritis in single-cell chromatin landscapes of peripheral blood mononuclear cells.Mod. Rheumatol.202333473975010.1093/mr/roac07235796437
    [Google Scholar]
  272. XiaoL. YangZ. LinS. Identification of hub genes and transcription factors in patients with rheumatoid arthritis complicated with atherosclerosis.Sci. Rep.2022121467710.1038/s41598‑022‑08274‑135304503
    [Google Scholar]
  273. AhmedE.A. AlzahraniA.M. SOXC transcription factors as diagnostic biomarkers and therapeutic targets for arthritis.Int. J. Mol. Sci.2023244421510.3390/ijms2404421536835620
    [Google Scholar]
  274. HuZ. ZhaoT.V. HuangT. OhtsukiS. JinK. GoronzyI.N. WuB. AbdelM.P. BettencourtJ.W. BerryG.J. GoronzyJ.J. WeyandC.M. The transcription factor RFX5 coordinates antigen-presenting function and resistance to nutrient stress in synovial macrophages.Nat. Metab.20224675977410.1038/s42255‑022‑00585‑x35739396
    [Google Scholar]
  275. GenreF. Pulito-CuetoV. CorralesA. PortillaV. Lera-GómezL. Atienza-MateoB. GualilloO. BlancoR. Ferraz-AmaroI. CastañedaS. López-MejíasR. González-GayM.A. Remuzgo-MartínezS. AB0069 association of nuclear factor of activated T cells cytoplasmic 1 (NFATC1) expression with cardiovascular risk in patients with early rheumatoid arthritis.Ann. Rheum. Dis.202281116710.1136/annrheumdis‑2022‑eular.1970
    [Google Scholar]
  276. DingH. MeiX. LiL. FangP. GuoT. ZhaoJ. RUNX1 ameliorates rheumatoid arthritis progression through epigenetic inhibition of LRRC15.Mol. Cells202346423124410.14348/molcells.2023.213636625319
    [Google Scholar]
  277. WangN.N. ZhangY. JiangF. ZhuD.L. DiC.X. HuS.Y. ChenX.F. ZhiL.Q. RongY. KeX. DuanY.Y. DongS.S. YangT.L. YangZ. GuoY. Enhancer variants on chromosome 2p14 regulating SPRED2 and ACTR2 act as a signal amplifier to protect against rheumatoid arthritis.Am. J. Hum. Genet.2023110462563710.1016/j.ajhg.2023.02.01236924774
    [Google Scholar]
  278. AinsworthR.I. HammakerD. NygaardG. AnsaloneC. MachadoC. ZhangK. ZhengL. CarrilloL. WildbergA. KuhsA. SvenssonM.N.D. BoyleD.L. FiresteinG.S. WangW. Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function.Nat. Commun.2022131622110.1038/s41467‑022‑33785‑w36266270
    [Google Scholar]
  279. LambertS.A. JolmaA. CampitelliL.F. DasP.K. YinY. AlbuM. ChenX. TaipaleJ. HughesT.R. WeirauchM.T. The human transcription factors.Cell2018172465066510.1016/j.cell.2018.01.02929425488
    [Google Scholar]
  280. PlatanitisE. DeckerT. Regulatory networks involving STATs, IRFs, and NF-κB in inflammation.Front. Immunol.20189254210.3389/fimmu.2018.0254230483250
    [Google Scholar]
  281. JungJ.E. KimH.S. LeeC.S. ShinY.J. KimY.N. KangG.H. KimT.Y. JuhnnY.S. KimS.J. ParkJ.W. YeS.K. ChungM.H. STAT3 inhibits the degradation of HIF-1α by pVHL-mediated ubiquitination.Exp. Mol. Med.200840547948510.3858/emm.2008.40.5.47918985005
    [Google Scholar]
  282. BondiC.D. RushB.M. HartmanH.L. WangJ. Al-BatainehM.M. HugheyR.P. TanR.J. Suppression of NRF2 activity by HIF-1α promotes fibrosis after ischemic acute kidney injury.Antioxidants2022119181010.3390/antiox1109181036139884
    [Google Scholar]
  283. ParkS.J. KimH. KimS.H. JoeE. JouI. Epigenetic downregulation of STAT6 increases HIF-1α expression via mTOR/S6K/S6, leading to enhanced hypoxic viability of glioma cells.Acta Neuropathol. Commun.20197114910.1186/s40478‑019‑0798‑z31530290
    [Google Scholar]
  284. GaoW. McCormickJ. ConnollyM. BaloghE. VealeD.J. FearonU. Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis.Ann. Rheum. Dis.20157461275128310.1136/annrheumdis‑2013‑20410524525913
    [Google Scholar]
  285. NalbantA. EskierD. Genes associated with T helper 17 cell differentiation and function.Front. Biosci. (Elite Ed.)20168342743510.2741/e77727100349
    [Google Scholar]
  286. MogensenT.H. IRF and STAT transcription factors - from basic biology to roles in infection, protective immunity, and primary immunodeficiencies.Front. Immunol.20199304710.3389/fimmu.2018.0304730671054
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501372670250408074908
Loading
/content/journals/cdt/10.2174/0113894501372670250408074908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test