Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Background

Radiation therapy is the most common modality to treat various types of cancers. The use of radiosensitizers as an adjuvant therapy to increase the sensitivity of tumors against radiation and to improve the efficiency of radiotherapy has risen over the past years. Metformin, the first-line drug in type two diabetes has attracted the researcher’s attention because of its anti-cancer and anti-proliferative properties and many studies have been conducted to investigate the radiosensitization effects of metformin in different types of malignancies.

Objective

This review aims to gather the existing evidence of radiosensitizing effects of metformin in animal and clinical studies.

Methods

Various databases like PubMed, Scopus, and Google Scholar were searched over a period of 35 years for this review.

Results

The results include 54 studies on the radiosensitization effect of metformin in and clinical conditions including breast, colorectal, prostate, lung, liver, and other cancers.

Conclusion

This review shows that metformin in animal and clinical studies appears to be a potential radiosensitizer for many types of cancers. However, further investigations are needed to determine whether metformin can be used as a radiosensitizer in adjuvant radiotherapy.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775300432240625045414
2024-07-09
2025-10-25
Loading full text...

Full text loading...

References

  1. PlatzmanR.L. What is ionizing radiation?Sci. Am.19592013748410.1038/scientificamerican0959‑7414433442
    [Google Scholar]
  2. BischoffP. AltmeyerA. DumontF. Radiosensitising agents for the radiotherapy of cancer: Advances in traditional and hypoxia targeted radiosensitisers.Expert Opin. Ther. Pat.200919564366210.1517/1354377090282417219441939
    [Google Scholar]
  3. NajafiM. RezaeyanA. HaddadiG.H. HosseinzadehM. MoradiM. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue.J. Med. Phys.201641318219110.4103/0971‑6203.18948227651565
    [Google Scholar]
  4. MartinO.A. MartinR.F. Cancer radiotherapy: Understanding the price of tumor eradication.Front. Cell Dev. Biol.2020826110.3389/fcell.2020.0026132391355
    [Google Scholar]
  5. FarhoodB. GoradelN.H. MortezaeeK. KhanlarkhaniN. SalehiE. NashtaeiM.S. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization.Clin Transl Oncol201921326827910.1007/s12094‑018‑1934‑0
    [Google Scholar]
  6. ShenoyM.A. SinghB.B. Chemical radiosensitizers in cancer therapy.Cancer Invest.199210653355110.3109/073579092090248161422891
    [Google Scholar]
  7. WardmanP. Chemical radiosensitizers for use in radiotherapy.Clin. Oncol.200719639741710.1016/j.clon.2007.03.01017478086
    [Google Scholar]
  8. LinamJ. YangL.X. Recent developments in radiosensitization.Anticancer Res.20153552479248525964520
    [Google Scholar]
  9. WangH. MuX. HeH. ZhangX.D. Cancer radiosensitizers.Trends Pharmacol. Sci.2018391244810.1016/j.tips.2017.11.00329224916
    [Google Scholar]
  10. GongL. ZhangY. LiuC. ZhangM. HanS. Application of radiosensitizers in cancer radiotherapy.Int. J. Nanomedicine2021161083110210.2147/IJN.S29043833603370
    [Google Scholar]
  11. FloreaA.M. BüsselbergD. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects.Cancers (Basel)2011311351137110.3390/cancers301135124212665
    [Google Scholar]
  12. Schaake-KoningC. van den BogaertW. DalesioO. FestenJ. HoogenhoutJ. van HoutteP. KirkpatrickA. KoolenM. MaatB. NijsA. RenaudA. RodrigusP. Schuster-UitterhoeveL. SculierJ-P. van ZandwijkN. BartelinkH. Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer.N. Engl. J. Med.1992326852453010.1056/NEJM1992022032608051310160
    [Google Scholar]
  13. YiJ. ZhuJ. ZhaoC. KangQ. ZhangX. SuoK. CaoN. HaoL. LuJ. Potential of natural products as radioprotectors and radiosensitizers: Opportunities and challenges.Food Funct.202112125204521810.1039/D1FO00525A34018510
    [Google Scholar]
  14. ChaeY.K. AryaA. MalecekM.K. ShinD.S. CarneiroB. ChandraS. KaplanJ. KalyanA. AltmanJ.K. PlataniasL. GilesF. Repurposing metformin for cancer treatment: Current clinical studies.Oncotarget2016726407674078010.18632/oncotarget.819427004404
    [Google Scholar]
  15. DauganM. Dufaÿ WojcickiA. d’HayerB. BoudyV. Metformin: An anti-diabetic drug to fight cancer.Pharmacol. Res.2016113Pt A67568510.1016/j.phrs.2016.10.00627720766
    [Google Scholar]
  16. RaoM. GaoC. GuoM. LawB.Y.K. XuY. Effects of metformin treatment on radiotherapy efficacy in patients with cancer and diabetes: A systematic review and meta-analysis.Cancer Manag. Res.2018104881489010.2147/CMAR.S17453530425579
    [Google Scholar]
  17. DrzewoskiJ. HanefeldM. The current and potential therapeutic use of metformin—the good old drug.Pharmaceuticals202114212210.3390/ph1402012233562458
    [Google Scholar]
  18. BaileyC.J. TurnerR.C. Metformin.N. Engl. J. Med.1996334957457910.1056/NEJM1996022933409068569826
    [Google Scholar]
  19. WernerE.A. BellJ. CCXIV.—The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively.J. Chem. Soc. Trans.192212101790179410.1039/CT9222101790
    [Google Scholar]
  20. GongL. GoswamiS. GiacominiK.M. AltmanR.B. KleinT.E. Metformin pathways.Pharmacogenet. Genomics2012221182082710.1097/FPC.0b013e3283559b2222722338
    [Google Scholar]
  21. UgwuezeC.V. OgambaO.J. YoungE.E. OnyenekweB.M. EzeokpoB.C. Metformin: A possible option in cancer chemotherapy.Anal Cell Pathol2020220718092310.1155/2020/7180923
    [Google Scholar]
  22. SamuelS. VargheseE. KubatkaP. TriggleC. BüsselbergD. Metformin: The answer to cancer in a flower? current knowledge and future prospects of metformin as an anti-cancer agent in breast cancer.Biomolecules201991284610.3390/biom912084631835318
    [Google Scholar]
  23. LeoneA. Di GennaroE. BruzzeseF. AvalloneA. BudillonA. New perspective for an old antidiabetic drug: Metformin as anticancer agent.Cancer Treat. Res.201415935537610.1007/978‑3‑642‑38007‑5_2124114491
    [Google Scholar]
  24. PernicovaI. KorbonitsM. Metformin—mode of action and clinical implications for diabetes and cancer.Nat. Rev. Endocrinol.201410314315610.1038/nrendo.2013.25624393785
    [Google Scholar]
  25. SongC.W. LeeH. DingsR.P.M. WilliamsB. PowersJ. SantosT.D. ChoiB.H. ParkH.J. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells.Sci. Rep.20122136210.1038/srep0036222500211
    [Google Scholar]
  26. ForetzM. GuigasB. BertrandL. PollakM. ViolletB. Metformin: From mechanisms of action to therapies.Cell Metab.201420695396610.1016/j.cmet.2014.09.01825456737
    [Google Scholar]
  27. NaH.J. ParkJ.S. PyoJ.H. LeeS.H. JeonH.J. KimY.S. YooM.A. Mechanism of metformin: Inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell.Mech. Ageing Dev.2013134938139010.1016/j.mad.2013.07.00323891756
    [Google Scholar]
  28. MarinelloP.C. da SilvaT.N.X. PanisC. NevesA.F. MachadoK.L. BorgesF.H. GuarnierF.A. BernardesS.S. de-Freitas-JuniorJ.C.M. Morgado-DíazJ.A. LuizR.C. CecchiniR. CecchiniA.L. Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction.Tumour Biol.20163745337534610.1007/s13277‑015‑4395‑x26561471
    [Google Scholar]
  29. MuaddiH. ChowdhuryS. VellankiR. ZamiaraP. KoritzinskyM. Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin.Radiother. Oncol.2013108344645010.1016/j.radonc.2013.06.01423891087
    [Google Scholar]
  30. ShawR.J. LamiaK.A. VasquezD. KooS.H. BardeesyN. DePinhoR.A. MontminyM. CantleyL.C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.Science200531057541642164610.1126/science.112078116308421
    [Google Scholar]
  31. ForetzM. ViolletB. Regulation of hepatic metabolism by AMPK.J. Hepatol.201154482782910.1016/j.jhep.2010.09.01421163246
    [Google Scholar]
  32. Markowicz-PiaseckaM. HuttunenK.M. MateusiakL. Mikiciuk-OlasikE. SikoraJ. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics.Curr. Pharm. Des.201723172532255027908266
    [Google Scholar]
  33. NasriH. Rafieian-KopaeiM. Metformin: Current knowledge.J. Res. Med. Sci.201419765866425364368
    [Google Scholar]
  34. DowlingR.J.O. ZakikhaniM. FantusI.G. PollakM. SonenbergN. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells.Cancer Res.20076722108041081210.1158/0008‑5472.CAN‑07‑231018006825
    [Google Scholar]
  35. KalenderA. SelvarajA. KimS.Y. GulatiP. BrûléS. ViolletB. KempB.E. BardeesyN. DennisP. SchlagerJ.J. MaretteA. KozmaS.C. ThomasG. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner.Cell Metab.201011539040110.1016/j.cmet.2010.03.01420444419
    [Google Scholar]
  36. ZhouJ. WulfkuhleJ. ZhangH. GuP. YangY. DengJ. MargolickJ.B. LiottaL.A. PetricoinE.III ZhangY. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance.Proc. Natl. Acad. Sci. USA200710441161581616310.1073/pnas.070259610417911267
    [Google Scholar]
  37. KoritzinskyM. Metformin: A novel biological modifier of tumor response to radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.201593245446410.1016/j.ijrobp.2015.06.00326383681
    [Google Scholar]
  38. VousdenK.H. LaneD.P. p53 in health and disease.Nat. Rev. Mol. Cell Biol.20078427528310.1038/nrm214717380161
    [Google Scholar]
  39. ShilohY. ZivY. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more.Nat. Rev. Mol. Cell Biol.201314419721010.1038/nrm3546
    [Google Scholar]
  40. JonesR.G. PlasD.R. KubekS. BuzzaiM. MuJ. XuY. BirnbaumM.J. ThompsonC.B. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.Mol. Cell200518328329310.1016/j.molcel.2005.03.02715866171
    [Google Scholar]
  41. LiP. ZhaoM. ParrisA.B. FengX. YangX. p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells.Biochem. Biophys. Res. Commun.201546441267127410.1016/j.bbrc.2015.07.11726225749
    [Google Scholar]
  42. JeongY.K. KimM.S. LeeJ.Y. KimE.H. HaH. Metformin radiosensitizes p53-deficient colorectal cancer cells through induction of G2/M arrest and inhibition of DNA repair proteins.PLoS One20151011e014359610.1371/journal.pone.014359626599019
    [Google Scholar]
  43. Adam FerroS.G. Evaluation of diabetic patients with breast cancer treated with metformin during adjuvant radiotherapy.Int. J. Breast Cancer20132013659723
    [Google Scholar]
  44. NiraulaS. DowlingR.J.O. EnnisM. ChangM.C. DoneS.J. HoodN. EscallonJ. LeongW.L. McCreadyD.R. ReedijkM. StambolicV. GoodwinP.J. Metformin in early breast cancer: A prospective window of opportunity neoadjuvant study.Breast Cancer Res. Treat.2012135382183010.1007/s10549‑012‑2223‑122933030
    [Google Scholar]
  45. ZannellaV.E. Dal PraA. MuaddiH. McKeeT.D. StapletonS. SykesJ. GlicksmanR. ChaibS. ZamiaraP. MilosevicM. WoutersB.G. BristowR.G. KoritzinskyM. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response.Clin. Cancer Res.201319246741675010.1158/1078‑0432.CCR‑13‑178724141625
    [Google Scholar]
  46. ChenL. LiaoF. JiangZ. ZhangC. WangZ. LuoP. JiangQ. WuJ. WangQ. LuoM. LiX. LengY. MaL. ShenG. ChenZ. WangY. TanX. GanY. LiuD. LiuY. ShiC. Metformin mitigates gastrointestinal radiotoxicity and radiosensitises P53 mutation colorectal tumours via optimising autophagy.Br. J. Pharmacol.2020177173991400610.1111/bph.1514932472692
    [Google Scholar]
  47. de MeyS. JiangH. CorbetC. WangH. DufaitI. LawK. BastienE. VerovskiV. GevaertT. FeronO. De RidderM. Antidiabetic biguanides radiosensitize hypoxic colorectal cancer cells through a decrease in oxygen consumption.Front. Pharmacol.20189107310.3389/fphar.2018.0107330337872
    [Google Scholar]
  48. FernandesJ.M. JandreyE.H.F. KoyamaF.C. LeiteK.R.M. CamargoA.A. CostaÉ.T. PerezR.O. AsprinoP.F. Metformin as an alternative radiosensitizing agent to 5-fluorouracil during neoadjuvant treatment for rectal cancer.Dis. Colon Rectum202063791892610.1097/DCR.000000000000162632229782
    [Google Scholar]
  49. ZhangT. ZhangL. ZhangT. FanJ. WuK. GuanZ. WangX. LiL. HsiehJ.T. HeD. GuoP. Metformin sensitizes prostate cancer cells to radiation through EGFR/p-DNA-PKCS in vitro and in vivo.Radiat. Res.2014181664164910.1667/RR13561.124844651
    [Google Scholar]
  50. TsakiridisE.E. BroadfieldL. MarcinkoK. BiziotisO.D. AliA. MekhaeilB. AhmadiE. SinghK. MesciA. ZacharidisP.G. AnagnostopoulosA.E. BergT. MutiP. SteinbergG.R. TsakiridisT. Combined metformin-salicylate treatment provides improved anti-tumor activity and enhanced radiotherapy response in prostate cancer; drug synergy at clinically relevant doses.Transl. Oncol.2021141110120910.1016/j.tranon.2021.10120934479029
    [Google Scholar]
  51. GonnissenA. IsebaertS. McKeeC. MuschelR. HaustermansK. The effect of metformin and GANT61 combinations on the radiosensitivity of prostate cancer cells.Int. J. Mol. Sci.201718239910.3390/ijms1802039928208838
    [Google Scholar]
  52. StorozhukY. HopmansS.N. SanliT. BarronC. TsianiE. CutzJ-C. PondG. WrightJ. SinghG. TsakiridisT. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK.Br. J. Cancer2013108102021203210.1038/bjc.2013.18723632475
    [Google Scholar]
  53. SunX. DongM. GaoY. WangY. DuL. LiuY. WangQ. JiK. HeN. WangJ. ZhangM. GuY. SongH. ZhaiH. FengL. XuC. LiuQ. Metformin increases the radiosensitivity of non-small cell lung cancer cells by destabilizing NRF2.Biochem. Pharmacol.202219911498110.1016/j.bcp.2022.11498135227644
    [Google Scholar]
  54. TojoM. MiyatoH. KoinumaK. HorieH. TsukuiH. KimuraY. KanekoY. OhzawaH. YamaguchiH. YoshimuraK. LeforA.K. SataN. KitayamaJ. Metformin combined with local irradiation provokes abscopal effects in a murine rectal cancer model.Sci. Rep.2022121729010.1038/s41598‑022‑11236‑235508498
    [Google Scholar]
  55. MurleyJ.S. MillerR.C. SenlikR.R. RademakerA.W. GrdinaD.J. Altered expression of a metformin-mediated radiation response in SA-NH and FSa tumor cells treated under in vitro and in vivo growth conditions.Int. J. Radiat. Biol.201793766567510.1080/09553002.2017.130459228281393
    [Google Scholar]
  56. KimH. KimD. KimW. KimE. JangW.I. KimM.S. The efficacy of radiation is enhanced by metformin and hyperthermia alone or combined against FSaII lC3H mice.Radiat. Res.2022198219019910.1667/RADE‑21‑00231.135930015
    [Google Scholar]
  57. YangY. PanW. ZhangS. CaoY. ChengH. ChenJ. Metformin can enhance the radiosensitivity of cholangiocarcinoma through AMPK-FOXO3a axis.Int. J. Clin. Exp. Med.2016971353913550
    [Google Scholar]
  58. SkinnerH.D. CraneC.H. GarrettC.R. EngC. ChangG.J. SkibberJ.M. Rodriguez-BigasM.A. KellyP. SandulacheV.C. DelclosM.E. KrishnanS. DasP. Metformin use and improved response to therapy in rectal cancer.Cancer Med.2013219910710.1002/cam4.5424133632
    [Google Scholar]
  59. OhB.Y. ParkY.A. HuhJ.W. ChoY.B. YunS.H. LeeW.Y. ParkH.C. ChoiD.H. ParkY.S. KimH.C. Metformin enhances the response to radiotherapy in diabetic patients with rectal cancer.J. Cancer Res. Clin. Oncol.201614261377138510.1007/s00432‑016‑2148‑x27011019
    [Google Scholar]
  60. GashK.J. ChambersA.C. CottonD.E. WilliamsA.C. ThomasM.G. Potentiating the effects of radiotherapy in rectal cancer: The role of aspirin, statins and metformin as adjuncts to therapy.Br. J. Cancer2017117221021910.1038/bjc.2017.17528641310
    [Google Scholar]
  61. Dal PraA. ZannellaV. GlicksmanR. SykesJ. MuaddiH. JoshuaA.M. WoutersB.G. MilosevicM. KoritzinskyM. BristowR.G. Metformin and prostate cancer radiation therapy: Improved outcomes due to enhanced tumor oxygenation.Int. J. Radiat. Oncol. Biol. Phys.2013872S17010.1016/j.ijrobp.2013.06.440
    [Google Scholar]
  62. SprattD.E. ZhangC. ZumstegZ.S. PeiX. ZhangZ. ZelefskyM.J. Metformin and prostate cancer: Reduced development of castration-resistant disease and prostate cancer mortality.Eur. Urol.201363470971610.1016/j.eururo.2012.12.00423287698
    [Google Scholar]
  63. TairaA.V. MerrickG.S. GalbreathR.W. MorrisM. ButlerW.M. AdamovichE. Metformin is not associated with improved biochemical free survival or cause-specific survival in men with prostate cancer treated with permanent interstitial brachytherapy.J. Contemp. Brachytherapy20143325426110.5114/jcb.2014.4575725337126
    [Google Scholar]
  64. ZaorskyN.G. ShaikhT. RuthK. ShardaP. HayesS.B. SobczakM.L. Prostate cancer patients with unmanaged diabetes or receiving insulin experience inferior outcomes and toxicities after treatment with radiation therapy.Clin Genitourin Cancer2017152326335.e310.1016/j.clgc.2016.08.020
    [Google Scholar]
  65. AhmedI. FerroA. CohlerA. LangenfeldJ. SurakantiS.G. AisnerJ. ZouW. HafftyB.G. JabbourS.K. Impact of metformin use on survival in locally-advanced, inoperable non-small cell lung cancer treated with definitive chemoradiation.J. Thorac. Dis.20157334635525922712
    [Google Scholar]
  66. StangK. AliteF. AdamsW. AltoosB. SmallC. MelianE. EmamiB. HarkenriderM. Impact of concurrent coincident use of metformin during lung stereotactic body radiation therapy.Cureus2021133e1415710.7759/cureus.1415733927955
    [Google Scholar]
  67. WinkK.C.J. BelderbosJ.S.A. DielemanE.M.T. RossiM. RaschC.R.N. DamhuisR.A.M. HoubenR.M.A. TroostE.G.C. Improved progression free survival for patients with diabetes and locally advanced non-small cell lung cancer (NSCLC) using metformin during concurrent chemoradiotherapy.Radiother. Oncol.2016118345345910.1016/j.radonc.2016.01.01226861738
    [Google Scholar]
  68. SkinnerH.D. SandulacheV.C. OwT.J. MeynR.E. YordyJ.S. BeadleB.M. FitzgeraldA.L. GiriU. AngK.K. MyersJ.N. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence.Clin. Cancer Res.201218129030010.1158/1078‑0432.CCR‑11‑226022090360
    [Google Scholar]
  69. SprattD.E. BeadleB.M. ZumstegZ.S. RiveraA. SkinnerH.D. OsborneJ.R. GardenA.S. LeeN.Y. The influence of diabetes mellitus and metformin on distant metastases in oropharyngeal cancer: A multicenter study.Int. J. Radiat. Oncol. Biol. Phys.201694352353110.1016/j.ijrobp.2015.11.00726867881
    [Google Scholar]
  70. ChangP.H. YehK.Y. WangC.H. ChenE.Y.C. YangS.W. ChouW.C. HsiehJ.C.H. Impact of metformin on patients with advanced head and neck cancer undergoing concurrent chemoradiotherapy.Head Neck20173981573157710.1002/hed.2479328449193
    [Google Scholar]
  71. JangW.I. KimM-S. LimJ.S. YooH.J. SeoY.S. HanC.J. ParkS.C. KayC.S. KimM. JangH.S. LeeD.S. ChangA.R. ParkH.J. Survival advantage associated with metformin usage in hepatocellular carcinoma patients receiving radiotherapy: A propensity score matching analysis.Anticancer Res.20153595047505426254406
    [Google Scholar]
  72. ElsayedM. WagstaffW. BehbahaniK. VillalobosA. BercuZ. MajdalanyB.S. AkceM. SchusterD.M. MaoH. KokabiN. Improved tumor response in patients on metformin undergoing yttrium-90 radioembolization segmentectomy for hepatocellular carcinoma.Cardiovasc. Intervent. Radiol.202144121937194410.1007/s00270‑021‑02916‑z34312687
    [Google Scholar]
  73. SkinnerH.D. McCurdyM.R. EcheverriaA.E. LinS.H. WelshJ.W. O’ReillyM.S. HofstetterW.L. AjaniJ.A. KomakiR. CoxJ.D. SandulacheV.C. MyersJ.N. GuerreroT.M. Metformin use and improved response to therapy in esophageal adenocarcinoma.Acta Oncol.20135251002100910.3109/0284186X.2012.71809622950385
    [Google Scholar]
  74. Van De VoordeL. JanssenL. LarueR. HoubenR. BuijsenJ. SosefM. VannesteB. SchraepenM.C. BerbéeM. LambinP. Can metformin improve ‘the tomorrow’ of patients treated for oesophageal cancer?Eur. J. Surg. Oncol.201541101333133910.1016/j.ejso.2015.05.01226091848
    [Google Scholar]
  75. SpieringsL.E.A.M.M. LagardeS.M. van OijenM.G.H. GisbertzS.S. WilminkJ.W. HulshofM.C.C.M. MeijerS.L. AndereggM.C. van Berge HenegouwenM.I. van LaarhovenH.W.M. Metformin use during treatment of potentially curable esophageal cancer patients is not associated with better outcomes.Ann. Surg. Oncol.201522S3Suppl. 376677110.1245/s10434‑015‑4850‑326350367
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775300432240625045414
Loading
/content/journals/cdrr/10.2174/0125899775300432240625045414
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): animal; clinical; in-vivo; ionizing radiation; Metformin; radio-sensitization; radiotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test