Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Chalcone derivatives continue to captivate medicinal chemists due to their modest chemistry, facile synthetic method, and promising biological activities. They have become well-known in the therapeutic and pharmaceutical industries due to their diverse biological actions. These complexes offer different features and applications in a human biological system due to the flexibility of the reactions, including antimicrobial, antineoplastic, antimalarial, and other uses. As a result, chalcones have sparked much attention in malignancy research. Cancer is characterized by uncontrollably growing and spreading abnormal cells and aberrant cell behavior. These masses destroy surrounding normal tissue and can attack vital organs, leading to widespread disease. Cancer is frequently used as a warning sign for impending patient death. In the age of pharmaceutical chemistry, it is unavoidably a cause for concern and a growing weight on the populace. The pathophysiology of all malignancies is due to faulty genes that regulate the development, division, and death of cells. Various genetic and environmental variables combine to cause mutations in genes encoding essential cell-regulatory proteins, leading to the numerous alterations that characterize the evolution of cancers. Rather than directly targeting DNA synthesis, the new generation of anticancer medications target signals that promote or control the cell cycle, growth factors and their receptors, signal transduction pathways, and pathways impacting DNA repair and death. Drug hunters are focusing their attention on chalcone derivatives with varying chemical structures since they are essential in the search for anticancer drugs. Chalcone's anticancer action may be attributed to molecular changes such as drug efflux protein activities, activation of apoptosis, DNA and mitochondrial damage, inhibition of angiogenesis, tubulin inhibition, and kinase inhibition. Chalcones are used to diagnose cancer as well. The development of chalcone congeners as a prodrug or prime chemical to combat cancer necessitates a thorough investigation. This review gives an update on the different pharmacological activities of natural and synthesized chalcones in recent years. Furthermore, the structure-activity connections and processes are extensively documented, providing essential design and synthesis assistance in the future.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775278752240115110806
2024-01-31
2025-08-14
Loading full text...

Full text loading...

References

  1. KaratiD. MahadikK.R. Alkylating agents, the road less traversed, changing anticancer therapy.Anticancer Agents Med Chem20212281478149510.2174/1871520621666210811105344
    [Google Scholar]
  2. ZhaoC. RakeshK.P. RavidarL. FangW.Y. QinH.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review.Eur. J. Med. Chem.201916267973410.1016/j.ejmech.2018.11.01730496988
    [Google Scholar]
  3. FangW.Y. RavindarL. RakeshK.P. ManukumarH.M. ShantharamC.S. AlharbiN.S. QinH.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review.Eur. J. Med. Chem.201917311715310.1016/j.ejmech.2019.03.06330995567
    [Google Scholar]
  4. DongP. RakeshK.P. ManukumarH.M. MohammedY.H.E. KarthikC.S. SumathiS. MalluP. QinH.L. Innovative nano-carriers in anticancer drug delivery-a comprehensive review.Bioorg. Chem.20198532533610.1016/j.bioorg.2019.01.01930658232
    [Google Scholar]
  5. ZhangX. RakeshK.P. ShantharamC.S. ManukumarH.M. AsiriA.M. MarwaniH.M. QinH.L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs.Bioorg. Med. Chem.201826234035510.1016/j.bmc.2017.11.02629269253
    [Google Scholar]
  6. RakeshK.P. WangS.M. LengJ. RavindarL. AsiriA.M. MarwaniH.M. QinH.L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review.Anticancer. Agents Med. Chem.201818448850510.2174/187152061766617110314074929110622
    [Google Scholar]
  7. RakeshK.P. ShantharamC.S. SridharaM.B. ManukumarH.M. QinH.L. Benzisoxazole: A privileged scaffold for medicinal chemistry.MedChemComm20178112023203910.1039/C7MD00449D30108720
    [Google Scholar]
  8. ZhaoC. RakeshK.P. MumtazS. MokuB. AsiriA.M. MarwaniH.M. ManukumarH.M. QinH.L. Arylnaphthalene lactone analogues: Synthesis and development as excellent biological candidates for future drug discovery.RSC Advances20188179487950210.1039/C7RA13754K35541842
    [Google Scholar]
  9. EcheverriaC. SantibañezJ.F. Donoso-TaudaO. EscobarC. Ramirez-TagleR. Structural antitumoral activity relationships of synthetic chalcones.Int. J. Mol. Sci.200910122123110.3390/ijms1001022119333443
    [Google Scholar]
  10. XuM. WuP. ShenF. JiJ. RakeshK.P. Chalcone derivatives and their antibacterial activities: Current development.Bioorg. Chem.20199110313310.1016/j.bioorg.2019.10313331374524
    [Google Scholar]
  11. WongE. The role of chalcones and flavanones in flavonoid biosynthesis.Phytochemistry19687101751175810.1016/S0031‑9422(00)86646‑7
    [Google Scholar]
  12. EvranosAksözB. ErtanR. Chemical and structural properties of chalcones I. FABAD.J. Pharm. Sci.201136223242
    [Google Scholar]
  13. IsrafD. KhaizurinT. SyahidaA. LajisN. KhozirahS. Cardamonin inhibits COX and iNOS expression via inhibition of p65NF-κB nuclear translocation and Iκ-B phosphorylation in RAW 264.7 macrophage cells.Mol. Immunol.200744567367910.1016/j.molimm.2006.04.02516777230
    [Google Scholar]
  14. KimD.W. Curtis-LongM.J. YukH.J. WangY. SongY.H. JeongS.H. ParkK.H. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC–ESI MS/MS and their xanthine oxidase inhibition.Food Chem.2014153202710.1016/j.foodchem.2013.12.02624491695
    [Google Scholar]
  15. YamamotoT. YoshimuraM. YamaguchiF. KouchiT. TsujiR. SaitoM. ObataA. KikuchiM. Anti-allergic activity of naringenin chalcone from a tomato skin extract.Biosci. Biotechnol. Biochem.20046881706171110.1271/bbb.68.170615322354
    [Google Scholar]
  16. AokiN. MukoM. OhtaE. OhtaS. C-geranylated chalcones from the stems of Angelica keiskei with superoxide-scavenging activity.J. Nat. Prod.20087171308131010.1021/np800187f18558745
    [Google Scholar]
  17. BirariR.B. GuptaS. MohanC.G. BhutaniK.K. Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: Experimental and computational studies.Phytomedicine2011188-979580110.1016/j.phymed.2011.01.00221315569
    [Google Scholar]
  18. ChenM. ChristensenS.B. BlomJ. LemmichE. NadelmannL. FichK. TheanderT.G. KharazmiA. Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania.Antimicrob. Agents Chemother.199337122550255610.1128/AAC.37.12.25508109916
    [Google Scholar]
  19. ChoS. KimS. JinZ. YangH. HanD. BaekN.I. JoJ. ChoC.W. ParkJ.H. ShimizuM. JinY.H. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects.Biochem. Biophys. Res. Commun.2011413463764210.1016/j.bbrc.2011.09.02621945440
    [Google Scholar]
  20. SatoY. HeJ.X. NagaiH. TaniT. AkaoT. Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine.Biol. Pharm. Bull.200730114514910.1248/bpb.30.14517202675
    [Google Scholar]
  21. DharR. KimsengR. ChokchaisiriR. HiransaiP. UtaipanT. SuksamrarnA. ChunglokW. 2′,4-Dihydroxy-3′,4′,6′-trimethoxychalcone from Chromolaena odorata possesses anti-inflammatory effects via inhibition of NF-κB and p38 MAPK in lipopolysaccharide-activated RAW 264.7 macrophages.Immunopharmacol. Immunotoxicol.2018401435110.1080/08923973.2017.140543729199487
    [Google Scholar]
  22. ZhouB. XingC. Diverse molecular targets for chalcones with varied bioactivities.Med. Chem.20155838840410.4172/2161‑0444.100029126798565
    [Google Scholar]
  23. SchwöbelJ.A.H. WondrouschD. KolevaY.K. MaddenJ.C. CroninM.T.D. SchüürmannG. Prediction of michael-type acceptor reactivity toward glutathione.Chem. Res. Toxicol.201023101576158510.1021/tx100172x20882991
    [Google Scholar]
  24. E SusantiV.H. SetyowatiW A E. Synthesis and characterization of some bromochalcones derivatives.IOP Conf. Series Mater. Sci. Eng.20195781012002[IOP Publishing.].10.1088/1757‑899X/578/1/012002
    [Google Scholar]
  25. ReddyA.L.V.K. KathaleN.E. Synthesis, characterization and anti-inflammatory activity of chalcone derivatives linked with apocynin and 5-nitrofuran moiety.Asian J. Chem.201830231231610.14233/ajchem.2018.20950
    [Google Scholar]
  26. ÖzdemirA. AltıntopM.D. SeverB. GençerH.K. KapkaçH.A. AtlıÖ. BaysalM. A new series of pyrrole-based chalcones: Synthesis and evaluation of antimicrobial activity, cytotoxicity, and genotoxicity.Molecules20172212211210.3390/molecules2212211229189730
    [Google Scholar]
  27. WuX.F. NeumannH. SpannenbergA. SchulzT. JiaoH. BellerM. Development of a general palladium-catalyzed carbonylative Heck reaction of aryl halides.J. Am. Chem. Soc.201013241145961460210.1021/ja105992220866089
    [Google Scholar]
  28. WuX.F. NeumannH. BellerM. Palladium-catalyzed coupling reactions: Carbonylative Heck reactions to give chalcones.Angew. Chem. Int. Ed.201049315284528810.1002/anie.20100215520572234
    [Google Scholar]
  29. HaddachM. McCarthyJ.R. A new method for the synthesis of ketones: The palladium-catalyzed cross-coupling of acid chlorides with arylboronic acids.Tetrahedron Lett.199940163109311210.1016/S0040‑4039(99)00476‑1
    [Google Scholar]
  30. BraunR.U. AnsorgeM. MüllerT.J.J. Coupling-isomerization synthesis of chalcones.Chemistry200612359081909410.1002/chem.20060053016953503
    [Google Scholar]
  31. TakahashiS. KuroyamaY. SonogashiraK. HagiharaN. A convenient synthesis of ethynylarenes and diethynylarenes.Synthesis19801980862763010.1055/s‑1980‑29145
    [Google Scholar]
  32. ÖtvösS. HsiehC.T. WuY.C. LiJ.H. ChangF.R. FülöpF. Continuous-flow synthesis of deuterium-labelled antidiabetic chalcones: Studies towards the selective deuteration of the alkynone core.Molecules201621331832810.3390/molecules2103031826959006
    [Google Scholar]
  33. RuepingM. BootwichaT. BaarsH. SugionoE. Continuous-flow hydration–condensation reaction: Synthesis of α,β-unsaturated ketones from alkynes and aldehydes by using a heterogeneous solid acid catalyst.Beilstein J. Org. Chem.2011711680168710.3762/bjoc.7.19822238547
    [Google Scholar]
  34. MaegawaT. MizuiR. UrasakiM. FujimuraK. NakamuraA. MikiY. Direct synthesis of chalcones from anilides with phenyl vinyl ketones by oxidative coupling through C–H bond activation.ACS Omega2018355375538110.1021/acsomega.8b0059431458746
    [Google Scholar]
  35. XuL.W. LiL. XiaC.G. ZhaoP.Q. Efficient coupling reactions of arylalkynes and aldehydes leading to the synthesis of enones.Helv. Chim. Acta200487123080308410.1002/hlca.200490276
    [Google Scholar]
  36. FarooqS. NgainiZ. One-pot and two-pot synthesis of chalcone based mono and bis-pyrazolines.Tetrahedron Lett.202061415141610.1016/j.tetlet.2019.151416
    [Google Scholar]
  37. AhmadM.R. SastryV.G. BanoN. AnwarS. Synthesis of novel chalcone derivatives by conventional and microwave irradiation methods and their pharmacological activities.Arab. J. Chem.20119S1S931S93510.1016/j.arabjc.2011.09.002
    [Google Scholar]
  38. AdoleV.A. JagdaleB.S. PawarT.B. SaganeA.A. Ultrasound promoted stereoselective synthesis of 2, 3-dihydrobenzofuran appended chalcones at ambient temperature.S. Afr. J. Chem.202073354310.17159/0379‑4350/2020/v73a6
    [Google Scholar]
  39. RammohanA. ReddyJ.S. SravyaG. RaoC.N. ZyryanovG.V. Chalcone synthesis, properties and medicinal applications: a review.Environ. Chem. Lett.202018243345810.1007/s10311‑019‑00959‑w
    [Google Scholar]
  40. PoloE. Ibarra-ArellanoN. Prent-PeñalozaL. Morales-BayueloA. HenaoJ. GaldámezA. GutiérrezM. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors.Bioorg. Chem.20199010303410.1016/j.bioorg.2019.10303431280015
    [Google Scholar]
  41. LiJ.T. YangW.Z. WangS.X. LiS.H. LiT.S. Improved synthesis of chalcones under ultrasound irradiation.Ultrason. Sonochem.20029523723910.1016/S1350‑4177(02)00079‑212371199
    [Google Scholar]
  42. ArbiserJ.L. BonnerM.Y. GilbertL.C. Targeting the duality of cancer.NPJ Precis. Oncol.2017112310.1038/s41698‑017‑0026‑x28825045
    [Google Scholar]
  43. XuW. JingL. WangQ. LinC.C. ChenX. DiaoJ. LiuY. SunX. Bax-PGAM5L-Drp1 complex is required for intrinsic apoptosis execution.Oncotarget2015630300173003410.18632/oncotarget.501326356820
    [Google Scholar]
  44. HassanM. WatariH. AbuAlmaatyA. OhbaY. SakuragiN. Apoptosis and molecular targeting therapy in cancer.BioMed Res. Int.2014201412310.1155/2014/150845
    [Google Scholar]
  45. LopezJ. TaitS.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within.Br. J. Cancer2015112695796210.1038/bjc.2015.8525742467
    [Google Scholar]
  46. MahapatraD.K. BhartiS.K. AsatiV. Anti-cancer chalcones: Structural and molecular target perspectives.Eur. J. Med. Chem.2015986911410.1016/j.ejmech.2015.05.00426005917
    [Google Scholar]
  47. DasM. MannaK. Chalcone scaffold in anticancer armamentarium: A molecular insight.J. Toxicol.2016201611410.1155/2016/765104726880913
    [Google Scholar]
  48. StorzP. Reactive oxygen species in tumor progression.Front. Biosci.2005101-31881189610.2741/166715769673
    [Google Scholar]
  49. SzatrowskiT.P. NathanC.F. Production of large amounts of hydrogen peroxide by human tumor cells.Cancer Res.19915137947981846317
    [Google Scholar]
  50. BabiorB.M. NADPH oxidase: An update.Blood19999351464147610.1182/blood.V93.5.146410029572
    [Google Scholar]
  51. TannockI.F. LeeC. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs.Br. J. Cancer200184110010510.1054/bjoc.2000.153811139321
    [Google Scholar]
  52. StorzP. Mitochondrial ROS – radical detoxification, mediated by protein kinase D.Trends Cell Biol.2007171131810.1016/j.tcb.2006.11.00317126550
    [Google Scholar]
  53. TrachoothamD. AlexandreJ. HuangP. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?Nat. Rev. Drug Discov.20098757959110.1038/nrd280319478820
    [Google Scholar]
  54. StorzP. DöpplerH. CoplandJ.A. SimpsonK.J. TokerA. FOXO3a promotes tumor cell invasion through the induction of matrix metalloproteinases.Mol. Cell. Biol.200929184906491710.1128/MCB.00077‑0919564415
    [Google Scholar]
  55. LiouG.Y. StorzP. Reactive oxygen species in cancer.Free Radic. Res.201044547949610.3109/1071576100366755420370557
    [Google Scholar]
  56. JasimH.A. NaharL. JasimM.A. MooreS.A. RitchieK.J. SarkerS.D. Chalcones: Synthetic chemistry follows where nature leads.Biomolecules2021118120310.3390/biom1108120334439870
    [Google Scholar]
  57. HigginsL.G. CavinC. ItohK. YamamotoM. HayesJ.D. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein.Toxicol. Appl. Pharmacol.2008226332833710.1016/j.taap.2007.09.01818028974
    [Google Scholar]
  58. EgbujorM.C. SahaS. ButtariB. ProfumoE. SasoL. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: a therapeutic road map for oxidative stress.Expert Rev. Clin. Pharmacol.202114446548010.1080/17512433.2021.190157833691555
    [Google Scholar]
  59. OrlikovaB. SchnekenburgerM. ZlohM. GolaisF. DiederichM. TasdemirD. Natural chalcones as dual inhibitors of HDACs and NF-κB.Oncol. Rep.201228379780510.3892/or.2012.187022710558
    [Google Scholar]
  60. KurucT. KelloM. PetrovaK. KudlickovaZ. KubatkaP. MojzisJ. The newly synthesized chalcone L1 is involved in the cell growth inhibition, induction of apoptosis and suppression of epithelial-to-mesenchymal transition of HeLa cells.Molecules2021265135610.3390/molecules2605135633802621
    [Google Scholar]
  61. BortolottoL.F.B. BarbosaF.R. SilvaG. BitencourtT.A. BeleboniR.O. BaekS.J. MarinsM. FachinA.L. Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest.Biomed. Pharmacother.20178542543310.1016/j.biopha.2016.11.04727903423
    [Google Scholar]
  62. QiZ. LiuM. LiuY. ZhangM. YangG. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.PLoS One201499e10620610.1371/journal.pone.010620625180593
    [Google Scholar]
  63. HseuY.C. LeeM.S. WuC.R. ChoH.J. LinK.Y. LaiG.H. WangS.Y. KuoY.H. Senthil KumarK.J. YangH.L. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway.J. Agric. Food Chem.20126092385239710.1021/jf205053r22324429
    [Google Scholar]
  64. koH. KimY.J. ParkJ.S. AmorE.C. LeeJ.W. YangH.O. Abstract 780: Dimethyl cardamonin induces G1-phase cell cycle arrest, apoptosis, and autophagy in HCT116 cells.Cancer Res.201070S878010.1158/1538‑7445.AM10‑780
    [Google Scholar]
  65. MaggioliniM. StattiG. VivacquaA. GabrieleS. RagoV. LoizzoM. MenichiniF. AmdòS. Estrogenic and antiproliferative activities of isoliquiritigenin in MCF7 breast cancer cells.J. Steroid Biochem. Mol. Biol.2002824-531532210.1016/S0960‑0760(02)00230‑312589938
    [Google Scholar]
  66. MuchtaridiM. SyahidahH. SubarnasA. YusufM. BryantS. LangerT. Molecular docking and 3D-pharmacophore modeling to study the interactions of chalcone derivatives with estrogen receptor alpha.Pharmaceuticals20171048110.3390/ph1004008129035298
    [Google Scholar]
  67. BoumendjelA. RonotX. BoutonnatJ. Chalcones derivatives acting as cell cycle blockers: Potential anti-cancer drugs?Current Drug Targets2009104363371
    [Google Scholar]
  68. AhmedM.F. SantaliE.Y. El-HaggarR. Novel piperazine–chalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation.J. Enzyme Inhib. Med. Chem.202136130831910.1080/14756366.2020.186160633349069
    [Google Scholar]
  69. AbosalimH.M. NaelM.A. El-MoselhyT.F. Design, synthesis and molecular docking of chalcone derivatives as potential anticancer agents.ChemistrySelect20216488889510.1002/slct.202004088
    [Google Scholar]
  70. NgameniB. CedricK. MbavengA.T. ErdoğanM. SimoI. KueteV. DaştanA. Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives.Bioorg. Med. Chem. Lett.20213512782710.1016/j.bmcl.2021.12782733508467
    [Google Scholar]
  71. AhnS. OhJ. KimB. YooM. LimY. ChoS.K. KohD. Corrigendum to “Effects of a health-belief-model-based osteoporosis- and fall-prevention program on women at early old age” [Applied Nursing Research 59 (2021) 151430].Biol. Chem.20226615145210.1016/j.apnr.2021.15145234373142
    [Google Scholar]
  72. IbrahimS.R.M. MohamedG.A. Naturally occurring naphthalenes: Chemistry, biosynthesis, structural elucidation, and biological activities.Phytochem. Rev.201615227929510.1007/s11101‑015‑9413‑5
    [Google Scholar]
  73. MedardeM. MayaA.B.S. Pérez-MeleroC. Naphthalene combretastatin analogues: Synthesis, cytotoxicity and antitubulin activity.J. Enzyme Inhib. Med. Chem.200419652154010.1080/1475636041233128047315662956
    [Google Scholar]
  74. PatilP. ZangadeS. Synthesis and comparative study of cytotoxicity and anticancer activity of Chalconoid-Co(II) metal complexes with 2-hydroxychalcones analogue containing naphthalene moiety.J. Indian Chem. Soc.202299110027410.1016/j.jics.2021.100274
    [Google Scholar]
  75. KühlerT.C. SwansonM. ShcherbuchinV. LarssonH. MellgårdB. SjöströmJ.E. Structure-activity relationship of 2-[[(2-pyridyl)methyl]thio]-1H- benzimidazoles as anti Helicobacter pylori agents in vitro and evaluation of their in vivo efficacy.J. Med. Chem.199841111777178810.1021/jm970165r9599229
    [Google Scholar]
  76. DennyW.A. RewcastleG.W. BaguleyB.C. Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II.J. Med. Chem.199033281481910.1021/jm00164a0542153829
    [Google Scholar]
  77. KumarV.K. PuliV. PrasadK.R.S. SridharG. Synthesis and biological evaluation of chalcone linked structural Modified benzothizaole-imidazopyridine derivatives as anticancer agents.Chemical Data Collections20213310069610.1016/j.cdc.2021.100696
    [Google Scholar]
  78. AlamM.J. AlamO. PerwezA. RizviM.A. NaimM.J. NaiduV. ImranM. GhoneimM.M. AlshehriS. ShakeelF. Design, synthesis, molecular docking, and biological evaluation of pyrazole hybrid chalcone conjugates as potential anticancer agents and tubulin polymerization inhibitors.Pharmaceuticals202215328010.3390/ph1503028035337078
    [Google Scholar]
  79. ShinS.Y. JungE. LimY. LeeH.J. RheeJ.H. YooM. AhnS. KohD. Synthesis, crystal structure, hirshfeld surface analysis and docking studies of a novel flavone–chalcone hybrid compound demonstrating anticancer effects by generating ros through glutathione depletion.Crystals202212110810.3390/cryst12010108
    [Google Scholar]
  80. LiK. ZhaoS. LongJ. SuJ. WuL. TaoJ. ZhouJ. ZhangJ. ChenX. PengC. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products.Cancer Cell Int.20202013610.1186/s12935‑020‑1114‑532021565
    [Google Scholar]
  81. ZhaoX. DongW. GaoY. ShinD.S. YeQ. SuL. JiangF. ZhaoB. MiaoJ. Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo. Sci. Rep.201771391910.1038/s41598‑017‑04411‑328634389
    [Google Scholar]
  82. MaciejewskaN. OlszewskiM. JuraszJ. SerockiM. DzierzynskaM. CekalaK. WieczerzakE. BaginskiM. Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer.Sci. Rep.2022121370310.1038/s41598‑022‑07691‑635260633
    [Google Scholar]
  83. VenkateswararaoE. SharmaV.K. LeeK.C. SharmaN. ParkS.H. KimY. JungS.H. A SAR study on a series of synthetic lipophilic chalcones as Inhibitor of transcription factor NF-κB.Eur. J. Med. Chem.20125437938610.1016/j.ejmech.2012.05.01922677029
    [Google Scholar]
  84. WinterE. GozziG.J. Chiaradia-DelatorreL.D. Daflon-YunesN. TerreuxR. GauthierC. MascarelloA. LealP.C. CadenaS.M. YunesR.A. NunesR.J. Creczynski-PasaT.B. Di PietroA. Quinoxaline-substituted chalcones as new inhibitors of breast cancer resistance protein ABCG2: Polyspecificity at B-ring position.Drug Des. Devel. Ther.2014860961924920885
    [Google Scholar]
  85. MizunoC.S. PaulS. SuhN. RimandoA.M. Synthesis and biological evaluation of retinoid-chalcones as inhibitors of colon cancer cell growth.Bioorg. Med. Chem. Lett.201020247385738710.1016/j.bmcl.2010.10.03821041085
    [Google Scholar]
  86. PougetC. LauthierF. SimonA. FagnereC. BaslyJ.P. DelageC. ChuliaA.J. Flavonoids: structural requirements for antiproliferative activity on breast cancer cells.Bioorg. Med. Chem. Lett.200111243095309710.1016/S0960‑894X(01)00617‑511720850
    [Google Scholar]
  87. KetabforooshS.H.M.E. KheirollahiA. SafaviM. EsmatiN. ArdestaniS.K. EmamiS. FiroozpourL. ShafieeA. ForoumadiA. Synthesis and anti-cancer activity evaluation of new dimethoxylated chalcone and flavanone analogs.Arch. Pharm.20143471185386010.1002/ardp.20140021525201534
    [Google Scholar]
  88. SharmaV. ChaudharyA. AroraS. SaxenaA.K. IsharM.P.S. β-Ionone derived chalcones as potent antiproliferative agents.Eur. J. Med. Chem.20136931031510.1016/j.ejmech.2013.08.01724056146
    [Google Scholar]
  89. SolomonV.R. LeeH. Anti-breast cancer activity of heteroaryl chalcone derivatives.Biomed. Pharmacother.201266321322010.1016/j.biopha.2011.11.01322440895
    [Google Scholar]
  90. DuckiS. ForrestR. HadfieldJ.A. KendallA. LawrenceN.J. McGownA.T. RennisonD. Potent antimitotic and cell growth inhibitory properties of substituted chalcones.Bioorg. Med. Chem. Lett.1998891051105610.1016/S0960‑894X(98)00162‑09871706
    [Google Scholar]
  91. KatsoriA.M. Hadjipavlou-LitinaD. Chalcones in cancer: Understanding their role in terms of QSAR.Curr. Med. Chem.20091691062108110.2174/09298670978758179819275612
    [Google Scholar]
  92. BoisF. BeneyC. BoumendjelA. MariotteA.M. ConseilG. Di PietroA. Halogenated chalcones with high-affinity binding to P-glycoprotein: Potential modulators of multidrug resistance.J. Med. Chem.199841214161416410.1021/jm98101949767651
    [Google Scholar]
  93. BoisF. BoumendjelA. MariotteA.M. ConseilG. Di PetroA. Synthesis and biological activity of 4-alkoxy chalcones: potential hydrophobic modulators of p-glycoprotein-mediated multidrug resistance.Bioorg. Med. Chem.19997122691269510.1016/S0968‑0896(99)00218‑710658573
    [Google Scholar]
  94. PatiH.N. HoltH.L.Jr LeBlancR. DicksonJ. StewartM. BrownT. LeeM. Synthesis and cytotoxic properties of nitro- and aminochalcones.Med. Chem. Res.2005141192510.1007/s00044‑004‑0122‑7
    [Google Scholar]
  95. XiaY. YangZ.Y. XiaP. BastowK.F. NakanishiY. LeeK.H. Antitumor agents. Part 202: Novel 2′-amino chalcones: Design, synthesis and biological evaluation.Bioorg. Med. Chem. Lett.200010869970110.1016/S0960‑894X(00)00072‑X10782667
    [Google Scholar]
  96. DimmockJ.R. JhaA. ZelloG.A. AllenT.M. SantosC.L. BalzariniJ. De ClercqE. ManavathuE.K. StablesJ.P. Cytotoxic 4′-aminochalcones and related compounds.Pharmazie200358422723212749401
    [Google Scholar]
  97. LiuX. GoM.L. Antiproliferative properties of piperidinylchalcones.Bioorg. Med. Chem.200614115316310.1016/j.bmc.2005.08.00616185876
    [Google Scholar]
  98. IvanovaY. MomekovG. PetrovO. KaraivanovaM. KalchevaV. Cytotoxic Mannich bases of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones.Eur. J. Med. Chem.20074211-121382138710.1016/j.ejmech.2007.02.01917459529
    [Google Scholar]
  99. LiuX. GoM.L. Antiproliferative activity of chalcones with basic functionalities.Bioorg. Med. Chem.200715227021703410.1016/j.bmc.2007.07.04217804245
    [Google Scholar]
  100. De VincenzoR. FerliniC. DistefanoM. GagginiC. RivaA. BombardelliE. MorazzoniP. ValentiP. BellutiF. RanellettiF.O. MancusoS. ScambiaG. In vitro evaluation of newly developed chalcone analogues in human cancer cells.Cancer Chemother. Pharmacol.200046430531210.1007/s00280000016011052628
    [Google Scholar]
  101. MishraL. SinhaR. ItokawaH. BastowK.F. TachibanaY. NakanishiY. KilgorecN. LeeK-H. Anti-HIV and cytotoxic activities of Ru(II)/Ru(III) polypyridyl complexes containing 2,6- (20-benzimidazolyl)-pyridine/chalcone as co-ligand.Bioorg. Med. Chem.200191667167110.1016/S0968‑0896(01)00074‑811425566
    [Google Scholar]
  102. KumarD. KumarN.M. AkamatsuK. KusakaE. HaradaH. ItoT. Synthesis and biological evaluation of indolyl chalcones as antitumor agents.Bioorg. Med. Chem. Lett.201020133916391910.1016/j.bmcl.2010.05.01620627724
    [Google Scholar]
  103. BoumendjelA. McLeer-FlorinA. ChampelovierP. AllegroD. MuhammadD. SouardF. DerouaziM. PeyrotV. ToussaintB. BoutonnatJ. A novel chalcone derivative which acts as a microtubule depolymerising agent and an inhibitor of P-gp and BCRP in in-vitro and in-vivoglioblastoma models.BMC Cancer20099124210.1186/1471‑2407‑9‑24219619277
    [Google Scholar]
  104. SashidharaK.V. KumarA. KumarM. SarkarJ. SinhaS. Synthesis and in vitro evaluation of novel coumarin–chalcone hybrids as potential anticancer agents.Bioorg. Med. Chem. Lett.201020247205721110.1016/j.bmcl.2010.10.11621071221
    [Google Scholar]
  105. ValenteS. BanaE. ViryE. BagrelD. KirschG. Synthesis and biological evaluation of novel coumarin-based inhibitors of Cdc25 phosphatases.Bioorg. Med. Chem. Lett.201020195827583010.1016/j.bmcl.2010.07.13020800482
    [Google Scholar]
  106. TrivediJ.C. BariwalJ.B. UpadhyayK.D. NaliaparaY.T. JoshiS.K. PannecouqueC.C. De ClercqE. ShahA.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity.Tetrahedron Lett.200748488472847410.1016/j.tetlet.2007.09.175
    [Google Scholar]
  107. DuckiS. Antimitotic chalcones and related compounds as inhibitors of tubulin assembly.Anticancer. Agents Med. Chem.20099333634710.2174/187152061090903033619275525
    [Google Scholar]
  108. ViaL.D. GiaO. ChiarelottoG. FerlinM.G. DNA-targeting pyrroloquinoline-linked butenone and chalcones: Synthesis and biological evaluation.Eur. J. Med. Chem.20094472854286110.1016/j.ejmech.2008.12.01119155103
    [Google Scholar]
  109. KotraV. GanapatyS. AdapaS.R. Synthesis of a new series of quinolinyl chalcones as anticancer and anti-inflammatory agents.Indian J. Chem.201049B11091116
    [Google Scholar]
  110. ShiH.B. ZhangS.J. GeQ.F. GuoD.W. CaiC.M. HuW.X. Synthesis and anticancer evaluation of thiazolyl–chalcones.Bioorg. Med. Chem. Lett.201020226555655910.1016/j.bmcl.2010.09.04120888764
    [Google Scholar]
  111. RomagnoliR. BaraldiP.G. CarrionM.D. CaraC.L. Cruz-LopezO. PretiD. TolomeoM. GrimaudoS. CristinaA.D. ZontaN. BalzariniJ. BrancaleA. SarkarT. HamelE. Design, synthesis, and biological evaluation of thiophene analogues of chalcones.Bioorg. Med. Chem.200816105367537610.1016/j.bmc.2008.04.02618440234
    [Google Scholar]
  112. DamazioR.G. ZanattaA.P. CazarolliL.H. MascarelloA. ChiaradiaL.D. NunesR.J. YunesR.A. SilvaF.R.M.B. Nitrochalcones: Potential in vivo insulin secretagogues.Biochimie20099111-121493149810.1016/j.biochi.2009.09.00219747522
    [Google Scholar]
  113. OstootF.H.A. SalahZ.S. KhanumS.A. Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates.J. Indian Chem. Soc.20211818391875
    [Google Scholar]
  114. SalehiB. QuispeC. ChamkhiI. El OmariN. BalahbibA. Sharifi-RadJ. BouyahyaA. AkramM. IqbalM. DoceaA.O. CaruntuC. Leyva-GómezG. DeyA. MartorellM. CalinaD. LópezV. LesF. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence.Front. Pharmacol.20211159265410.3389/fphar.2020.59265433536909
    [Google Scholar]
  115. ChoiH.S. KimM.K. ChoiY.K. ShinY.C. ChoS.G. KoS.G. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation.BMC Complement. Altern. Med.201616112210.1186/s12906‑016‑1103‑327121110
    [Google Scholar]
  116. RozmerZ. PerjésiP. Naturally occurring chalcones and their biological activities.Phytochem. Rev.20161518712010.1007/s11101‑014‑9387‑8
    [Google Scholar]
  117. MemonA.H. IsmailZ. AishaA.F.A. Al-SuedeF.S.R. HamilM.S.R. HashimS. SaeedM.A.A. LaghariM. Abdul MajidA.M.S. Isolation, characterization, crystal structure elucidation, and anticancer study of dimethyl cardamonin, isolated from SyzygiumcampanulatumKorth.Evid. Based Complement. Alternat. Med.2014201411110.1155/2014/47017925530783
    [Google Scholar]
  118. AbuN. AkhtarM.N. YeapS.K. LimK.L. HoW.Y. AbdullahM.P. HoC.L. OmarA.R. IsmailJ. AlitheenN.B. Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro. BMC Complement. Altern. Med.20161618610.1186/s12906‑016‑1046‑826922065
    [Google Scholar]
  119. KuoY.F. SuY.Z. TsengY.H. WangS.Y. WangH.M. ChuehP.J. Flavokawain B, a novel chalcone from Alpinia pricei Hayata with potent apoptotic activity: Involvement of ROS and GADD153 upstream of mitochondria-dependent apoptosis in HCT116 cells.Free Radic. Biol. Med.201049221422610.1016/j.freeradbiomed.2010.04.00520398749
    [Google Scholar]
  120. OuyangY. LiJ. ChenX. FuX. SunS. WuQ. Chalcone derivatives: role in anticancer therapy.Biomolecules202111689410.3390/biom1106089434208562
    [Google Scholar]
  121. GomesM. MuratovE. PereiraM. PeixotoJ. RossetoL. CravoP. AndradeC. NevesB. Chalcone derivatives: Promising starting points for drug design.Molecules2017228121010.3390/molecules2208121028757583
    [Google Scholar]
  122. LetafatB. ShakeriR. EmamiS. NoushiniS. MohammadhosseiniN. ShirkavandN. ArdestaniS.K. Iran.J. Basic Med.2013161155116
    [Google Scholar]
  123. NepaliK. SharmaS. SharmaM. BediP.M.S. DharK.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids.Eur. J. Med. Chem.20147742248710.1016/j.ejmech.2014.03.01824685980
    [Google Scholar]
  124. GiordanoS. PetrelliA. From single- to multi-target drugs in cancer therapy: When aspecificity becomes an advantage.Curr. Med. Chem.200815542243210.2174/09298670878350321218288997
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775278752240115110806
Loading
/content/journals/cdrr/10.2174/0125899775278752240115110806
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test