Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic wounds are a class of chronic wounds that exhibit significant healing abnormalities due to dysregulated cytokines, growth factors, and unique cellular expressions, currently affecting an estimated 9.1-26.1 million people per year globally. Matrix metalloproteinases (MMPs), angiogenic factors, and inflammatory mediators remain the key determinants for managing diabetic wounds. Vascular endothelial growth factor (VEGF) is one of the most prominent types of growth factors induced during angiogenesis in general and cell proliferation pathways. Chronic hyperglycemia, neuropathy, and inflammation associated with diabetes disorders affect cellular responses, blood circulation, and immunological systems impair normal wound healing. This reduced effectiveness of current management strategies is reflected in the high number of delayed wounds among diabetic patients due to escalated oxidative stress and impaired signaling pathways, which prevent healing, calling for new therapies. MMPs are essential for tissue remodeling, but excess levels of MMPs predispose tissues to matrix degradation and interruption in cell signaling leading thereby prolonging inflammation seen in diabetic wounds. Efficient wound healing requires a balanced relationship regarding matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). New regenerative solutions, such as stem cells, platelet-rich plasma (PRP), gene therapies, and MMP inhibitors that can re-establish angiogenesis; decrease inflammation; and stimulate growth factor signaling, suggest promising strategies for improved diabetic wound healing. Hyperbaric oxygen therapy allows tissue regeneration and reduces the area of ulceration, bringing other benefits. In the future, therapeutics should focus on multifunctional and responsive strategies that include anti-inflammatory agents, cytokine modulators, and stem cell treatments that exhibit superior efficacy in comparison to conventional therapies when assessed clinically. Novel advanced combination strategies represent a realistic route to targeted therapies that meet clinical needs and have the potential capability for utilizing mechanistic insights, both creative in their implementation of recently developed techniques as well as applied on a broader scale through the evidence-based management across diabetic wounds offering better outcomes and quality of life amongst increasing diabetic commonalities.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998368222250509185511
2025-06-10
2026-02-22
Loading full text...

Full text loading...

/deliver/fulltext/cdr/22/1/CDR-22-1-07.html?itemId=/content/journals/cdr/10.2174/0115733998368222250509185511&mimeType=html&fmt=ahah

References

  1. RodriguesM. KosaricN. BonhamC.A. GurtnerG.C. Wound healing: A cellular perspective.Physiol. Rev.201999166570610.1152/physrev.00067.201730475656
    [Google Scholar]
  2. LazarusG.S. CooperD.M. KnightonD.R. MargolisD.J. PercoraroR.E. RodeheaverG. RobsonM.C. Definitions and guidelines for assessment of wounds and evaluation of healing.Wound Repair Regen.19942316517010.1046/j.1524‑475X.1994.20305.x17156107
    [Google Scholar]
  3. GonzalezA.C.O. CostaT.F. AndradeZ.A. MedradoA.R.A.P. Wound healing: A literature review.An. Bras. Dermatol.201691561462010.1590/abd1806‑4841.2016474127828635
    [Google Scholar]
  4. GuoS. DiPietroL.A. Factors affecting wound healing.J. Dent. Res.201089321922910.1177/002203450935912520139336
    [Google Scholar]
  5. PradhanL. AndersenN. LoGerfoF. VevesA. Molecular targets for promoting wound healing in diabetes.Recent Pat. Endocr. Metab. Immune Drug Discov.20071111310.2174/187221407779814589
    [Google Scholar]
  6. PakyariM. FarrokhiA. MaharlooeiM.K. GhaharyA. Critical role of transforming growth factor beta in different phases of wound healing.Adv. Wound Care20132521522410.1089/wound.2012.040624527344
    [Google Scholar]
  7. WallaceH.A. BasehoreB.M. ZitoP.M. Wound Healing Phases.StatPearls.Treasure Island, FLStatPearls Publishing2024 http://www.ncbi.nlm.nih.gov/books/NBK470443/
    [Google Scholar]
  8. SinghS. YoungA. McNaughtC.E. The physiology of wound healing.Surgery201735947347710.1016/j.mpsur.2017.06.004
    [Google Scholar]
  9. LandénN.X. LiD. StåhleM. Transition from inflammation to proliferation: A critical step during wound healing.Cell. Mol. Life Sci.201673203861388510.1007/s00018‑016‑2268‑027180275
    [Google Scholar]
  10. LiJ. ChenJ. KirsnerR. Pathophysiology of acute wound healing.Clin. Dermatol.200725191810.1016/j.clindermatol.2006.09.00717276196
    [Google Scholar]
  11. WhitneyJ.D. Overview: Acute and chronic wounds.Nurs. Clin. North Am.200540219120510.1016/j.cnur.2004.09.00215924889
    [Google Scholar]
  12. Thomas HessC. Checklist for factors affecting wound healing.Adv. Skin Wound Care201124419210.1097/01.ASW.0000396300.04173.ec21422844
    [Google Scholar]
  13. Berlanga-AcostaJ. SchultzG.S. López-MolaE. Guillen-NietoG. García-SiverioM. Herrera-MartínezL. Glucose toxic effects on granulation tissue productive cells: the diabetics’ impaired healing.BioMed Res. Int.2013201311510.1155/2013/25604323484099
    [Google Scholar]
  14. American Diabetes Association Diagnosis and classification of diabetes mellitus.Diabetes Care201336Suppl 1Suppl. 1S67S7410.2337/dc13‑S06723264425
    [Google Scholar]
  15. PeppaM. StavroulakisP. RaptisS.A. Advanced glycoxidation products and impaired diabetic wound healing.Wound Repair Regen.200917446147210.1111/j.1524‑475X.2009.00518.x19614910
    [Google Scholar]
  16. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  17. KhatoonF. NarulaA.K. SehgalP. Efficacy of collagen based biomaterials in diabetic foot ulcer wound healing.Eur. Polym. J.202421711334510.1016/j.eurpolymj.2024.113345
    [Google Scholar]
  18. LuX. XieQ. PanX. ZhangR. ZhangX. PengG. ZhangY. ShenS. TongN. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy.Signal Transduct. Target. Ther.20249126210.1038/s41392‑024‑01951‑939353925
    [Google Scholar]
  19. MohsinF. JavaidS. TariqM. MustafaM. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions.Int. Immunopharmacol.202413911271310.1016/j.intimp.2024.11271339047451
    [Google Scholar]
  20. PradeepaR. MohanV. The changing scenario of the diabetes epidemic: Implications for India.Indian J. Med. Res.200211612113212674825
    [Google Scholar]
  21. OkonkwoU. DiPietroL. Diabetes and wound angiogenesis.Int. J. Mol. Sci.2017187141910.3390/ijms1807141928671607
    [Google Scholar]
  22. PatelS. SrivastavaS. SinghM.R. SinghD. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing.Biomed. Pharmacother.201911210861510.1016/j.biopha.2019.10861530784919
    [Google Scholar]
  23. BaltzisD. EleftheriadouI. VevesA. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: New insights.Adv. Ther.201431881783610.1007/s12325‑014‑0140‑x25069580
    [Google Scholar]
  24. WernerS. GroseR. Regulation of wound healing by growth factors and cytokines.Physiol. Rev.200383383587010.1152/physrev.2003.83.3.83512843410
    [Google Scholar]
  25. XiaoJ. LiJ. CaiL. ChakrabartiS. LiX. Cytokines and diabetes research.J Diabetes Res.2014201492061310.1155/2014/920613
    [Google Scholar]
  26. DoviJ.V. HeL.K. DiPietroL.A. Accelerated wound closure in neutrophil-depleted mice.J. Leukoc. Biol.200373444845510.1189/jlb.080240612660219
    [Google Scholar]
  27. PhamH.T. RichJ. VevesA. Using living skin equivalents for diabetic foot ulceration.Int. J. Low. Extrem. Wounds200211273210.1177/15347346020010010415871949
    [Google Scholar]
  28. NewsholmeP. HaberE.P. HirabaraS.M. RebelatoE.L.O. ProcopioJ. MorganD. Oliveira-EmilioH.C. CarpinelliA.R. CuriR. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity.J. Physiol.2007583192410.1113/jphysiol.2007.13587117584843
    [Google Scholar]
  29. FalangaV. Wound healing and its impairment in the diabetic foot.Lancet200536694981736174310.1016/S0140‑6736(05)67700‑816291068
    [Google Scholar]
  30. SinghD. SinghM.R. SarafS. SarafS. Development of delivery cargoes for debriding enzymes effective in wound healing.Trends Appl. Sci. Res.20116886387610.3923/tasr.2011.863.876
    [Google Scholar]
  31. SchürmannC. GorenI. LinkeA. PfeilschifterJ. FrankS. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: A potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing.Biochem. Biophys. Res. Commun.2014446119520010.1016/j.bbrc.2014.02.08524583133
    [Google Scholar]
  32. BremH. Tomic-CanicM. Cellular and molecular basis of wound healing in diabetes.J. Clin. Invest.200711751219122210.1172/JCI3216917476353
    [Google Scholar]
  33. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina20215710107210.3390/medicina5710107234684109
    [Google Scholar]
  34. BeckmanJ.A. CreagerM.A. LibbyP. Diabetes and atherosclerosis.JAMA2002287192570258110.1001/jama.287.19.257012020339
    [Google Scholar]
  35. BlakytnyR. JudeE.B. Altered molecular mechanisms of diabetic foot ulcers.Int. J. Low. Extrem. Wounds2009829510410.1177/153473460933715119443898
    [Google Scholar]
  36. FerrierT.M. Comparative study of arterial disease in amputated lower limbs from diabetics and non-diabetics (with special reference to feet arteries).Med. J. Aust.19671151110.5694/j.1326‑5377.1967.tb20983.x5182855
    [Google Scholar]
  37. Sailaja RaoP. KalvaS. YerramilliA. MamidiS. Free radicals and tissue damage: Role of antioxidants.Free Radic. Antioxid.2011142710.5530/ax.2011.4.2
    [Google Scholar]
  38. Pham-HuyL.A. HeH. Pham-HuycC. Free radicals, antioxidants in disease and health.Int. J. Biomed. Sci.200842899610.59566/IJBS.2008.408923675073
    [Google Scholar]
  39. Martins-GreenM. SaeedS. Role of oxidants and antioxidants in diabetic wound healing.Wound Healing, Tissue Repair, and Regeneration in Diabetes.Elsevier2020133810.1016/B978‑0‑12‑816413‑6.00002‑2
    [Google Scholar]
  40. LiY.R. TrushM. TrushM.A. Defining ROS in biology and medicine.React. Oxyg. Species (Apex)20161192110.20455/ros.2016.80329707643
    [Google Scholar]
  41. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid Med Cell Longev.20172017841676310.1155/2017/8416763
    [Google Scholar]
  42. DavidJ.A. RifkinW.J. RabbaniP.S. CeradiniD.J. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type ii diabetes mellitus.J. Diabetes Res.2017201711510.1155/2017/482672428913364
    [Google Scholar]
  43. SoaresM.A. CohenO.D. LowY.C. SartorR.A. EllisonT. AnilU. AnzaiL. ChangJ.B. SaadehP.B. RabbaniP.S. CeradiniD.J. Restoration of Nrf2 signaling normalizes the regenerative niche.Diabetes201665363364610.2337/db15‑045326647385
    [Google Scholar]
  44. NakagomiS. SuzukiY. NamikawaK. Kiryu-SeoS. KiyamaH. Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation.J. Neurosci.200323125187519610.1523/JNEUROSCI.23‑12‑05187.200312832543
    [Google Scholar]
  45. BadrG. HozzeinW.N. BadrB.M. Al GhamdiA. Saad EldienH.M. GarraudO. Bee venom accelerates wound healing in diabetic mice by suppressing activating transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-mediated oxidative stress and recruiting bone marrow-derived endothelial progenitor cells.J. Cell. Physiol.2016231102159217110.1002/jcp.2532826825453
    [Google Scholar]
  46. GoldinA. BeckmanJ.A. SchmidtA.M. CreagerM.A. Advanced glycation end products: sparking the development of diabetic vascular injury.Circulation2006114659760510.1161/CIRCULATIONAHA.106.62185416894049
    [Google Scholar]
  47. NiuY. MiaoM. DongW. DongJ. CaoX. LuS. Effects of advanced glycation end products and its receptor on oxidative stress in diabetic wounds.Zhonghua Shao Shang Za Zhi Zhonghua Shaoshang Zazhi Chin J Burns,2012283235
    [Google Scholar]
  48. PangL. LianX. LiuH. ZhangY. LiQ. CaiY. MaH. YuX. Understanding diabetic neuropathy: Focus on oxidative stress.Oxid. Med. Cell. Longev.2020202011310.1155/2020/952463532832011
    [Google Scholar]
  49. HoE.C.M. LamK.S.L. ChenY.S. YipJ.C.W. ArvindakshanM. YamagishiS.I. YagihashiS. OatesP.J. ElleryC.A. ChungS.S.M. ChungS.K. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage.Diabetes20065571946195310.2337/db05‑149716804062
    [Google Scholar]
  50. SrivastavaS.K. YadavU.C.S. ReddyA.B.M. SaxenaA. TammaliR. ShoebM. AnsariN.H. BhatnagarA. PetrashM.J. SrivastavaS. RamanaK.V. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders.Chem. Biol. Interact.20111911-333033810.1016/j.cbi.2011.02.02321354119
    [Google Scholar]
  51. SayeskiP.P. KudlowJ.E. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-α gene transcription.J. Biol. Chem.199627125152371524310.1074/jbc.271.25.152378663078
    [Google Scholar]
  52. Kolm-LittyV. SauerU. NerlichA. LehmannR. SchleicherE.D. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells.J. Clin. Invest.1998101116016910.1172/JCI1198759421478
    [Google Scholar]
  53. HosseiniA. AbdollahiM. Diabetic neuropathy and oxidative stress: Therapeutic perspectives.Oxid. Med. Cell. Longev.2013201311510.1155/2013/16803923738033
    [Google Scholar]
  54. KunkemoellerB. BancroftT. XingH. MorrisA.H. LucianoA.K. WuJ. Fernandez-HernandoC. KyriakidesT.R. Elevated Thrombospondin 2 contributes to delayed wound healing in diabetes.Diabetes201968102016202310.2337/db18‑100131391172
    [Google Scholar]
  55. FreeleyM. KelleherD. LongA. Regulation of protein kinase C function by phosphorylation on conserved and non-conserved sites.Cell. Signal.201123575376210.1016/j.cellsig.2010.10.01320946954
    [Google Scholar]
  56. Rask-MadsenC. KingG.L. Vascular complications of diabetes: Mechanisms of injury and protective factors.Cell Metab.2013171203310.1016/j.cmet.2012.11.01223312281
    [Google Scholar]
  57. KizubI.V. KlymenkoK.I. SolovievA.I. Protein kinase C in enhanced vascular tone in diabetes mellitus.Int. J. Cardiol.2014174223024210.1016/j.ijcard.2014.04.11724794552
    [Google Scholar]
  58. KhamaisiM. KatagiriS. KeenanH. ParkK. MaedaY. LiQ. QiW. ThomouT. EschukD. TellecheaA. VevesA. HuangC. OrgillD.P. WagersA. KingG.L. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.J. Clin. Invest.2016126383785310.1172/JCI8278826808499
    [Google Scholar]
  59. ClaytonW.Jr ElasyT.A. A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients.Clin. Diabetes2009272525810.2337/diaclin.27.2.52
    [Google Scholar]
  60. DengL. DuC. SongP. ChenT. RuiS. ArmstrongD.G. DengW. The role of oxidative stress and antioxidants in diabetic wound healing.Oxid Med Cell Longev.20212021885275910.1155/2021/8852759
    [Google Scholar]
  61. SongJ. HuL. LiuB. JiangN. HuangH. LuoJ. WangL. ZengJ. HuangF. HuangM. CaiL. TangL. ChenS. ChenY. WuA. ZhengS. ChenQ. The emerging role of immune cells and targeted therapeutic strategies in diabetic wounds healing.J. Inflamm. Res.2022154119413810.2147/JIR.S37193935898820
    [Google Scholar]
  62. XiuF. StanojcicM. DiaoL. JeschkeM.G. Stress hyperglycemia, insulin treatment, and innate immune cells.Int. J. Endocrinol.201420141910.1155/2014/48640324899891
    [Google Scholar]
  63. FerranteC.J. LeibovichS.J. Regulation of macrophage polarization and wound healing.Adv. Wound Care (New Rochelle)201211101610.1089/wound.2011.030724527272
    [Google Scholar]
  64. Basu MallikS. JayashreeB.S. ShenoyR.R. Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds.J. Diabetes Complications201832552453010.1016/j.jdiacomp.2018.01.01529530315
    [Google Scholar]
  65. LinS. WangQ. HuangX. FengJ. WangY. ShaoT. DengX. CaoY. ChenX. ZhouM. ZhaoC. Wounds under diabetic milieu: The role of immune cellar components and signaling pathways.Biomed. Pharmacother.202315711405210.1016/j.biopha.2022.11405236462313
    [Google Scholar]
  66. MiaoM. NiuY. XieT. YuanB. QingC. LuS. Diabetes-impaired wound healing and altered macrophage activation: A possible pathophysiologic correlation.Wound Repair Regen.201220220321310.1111/j.1524‑475X.2012.00772.x22380690
    [Google Scholar]
  67. WuX. HeW. MuX. LiuY. DengJ. LiuY. NieX. Macrophage polarization in diabetic wound healing.Burns Trauma202210tkac05110.1093/burnst/tkac05136601058
    [Google Scholar]
  68. MirzaR. KohT.J. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice.Cytokine201156225626410.1016/j.cyto.2011.06.01621803601
    [Google Scholar]
  69. ZhouD. HuangC. LinZ. ZhanS. KongL. FangC. LiJ. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways.Cell. Signal.201426219219710.1016/j.cellsig.2013.11.00424219909
    [Google Scholar]
  70. WuM.Y. LuJ.H. Autophagy and macrophage functions: Inflammatory response and phagocytosis.Cells2019917010.3390/cells901007031892110
    [Google Scholar]
  71. WolfS.J. MelvinW.J. GallagherK. Macrophage-mediated inflammation in diabetic wound repair.Semin. Cell Dev. Biol.202111911111810.1016/j.semcdb.2021.06.01334183242
    [Google Scholar]
  72. WangJ. Neutrophils in tissue injury and repair.Cell Tissue Res.2018371353153910.1007/s00441‑017‑2785‑729383445
    [Google Scholar]
  73. BrinkmannV. ReichardU. GoosmannC. FaulerB. UhlemannY. WeissD.S. WeinrauchY. ZychlinskyA. Neutrophil extracellular traps kill bacteria.Science200430356631532153510.1126/science.109238515001782
    [Google Scholar]
  74. PapayannopoulosV. MetzlerK.D. HakkimA. ZychlinskyA. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps.J. Cell Biol.2010191367769110.1083/jcb.20100605220974816
    [Google Scholar]
  75. MetzlerK.D. GoosmannC. LubojemskaA. ZychlinskyA. PapayannopoulosV. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis.Cell Rep.20148388389610.1016/j.celrep.2014.06.04425066128
    [Google Scholar]
  76. LiP. LiM. LindbergM.R. KennettM.J. XiongN. WangY. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps.J. Exp. Med.201020791853186210.1084/jem.2010023920733033
    [Google Scholar]
  77. GuptaA.K. GiaglisS. HaslerP. HahnS. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A.PLoS One201495e9708810.1371/journal.pone.009708824819773
    [Google Scholar]
  78. WongS.L. DemersM. MartinodK. GallantM. WangY. GoldfineA.B. KahnC.R. WagnerD.D. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.Nat. Med.201521781581910.1038/nm.388726076037
    [Google Scholar]
  79. ZhuY. XiaX. HeQ. XiaoQ.A. WangD. HuangM. ZhangX. Diabetes-associated neutrophil NETosis: Pathogenesis and interventional target of diabetic complications.Front. Endocrinol. (Lausanne)202314120246310.3389/fendo.2023.120246337600700
    [Google Scholar]
  80. RaziyevaK. KimY. ZharkinbekovZ. KassymbekK. JimiS. SaparovA. Immunology of acute and chronic wound healing.Biomolecules202111570010.3390/biom1105070034066746
    [Google Scholar]
  81. AhmedA.S. AntonsenE.L. Immune and vascular dysfunction in diabetic wound healing.J. Wound Care201625Sup7S35S4610.12968/jowc.2016.25.Sup7.S3529027849
    [Google Scholar]
  82. AbikoY. SelimovicD. The Mechanism of Protracted Wound Healing on Oral Mucosa in Diabetes The mechanism of protracted wound healing on oral mucosa in diabetes. Review.Bosn. J. Basic Med. Sci.201010318619110.17305/bjbms.2010.268320846123
    [Google Scholar]
  83. TellecheaA. LealE.C. KafanasA. AusterM.E. KuchibhotlaS. OstrovskyY. TecilazichF. BaltzisD. ZhengY. CarvalhoE. ZabolotnyJ.M. WengZ. PetraA. PatelA. PanagiotidouS. Pradhan-NabzdykL. TheoharidesT.C. VevesA. Mast cells regulate wound healing in diabetes.Diabetes20166572006201910.2337/db15‑034027207516
    [Google Scholar]
  84. BevanD. GherardiE. FanT.P. EdwardsD. WarnR. Diverse and potent activities of HGF/SF in skin wound repair.J. Pathol.2004203383183810.1002/path.157815221943
    [Google Scholar]
  85. NishikoriY. ShiotaN. OkunishiH. The role of mast cells in cutaneous wound healing in streptozotocin-induced diabetic mice.Arch. Dermatol. Res.2014306982383510.1007/s00403‑014‑1496‑025218083
    [Google Scholar]
  86. GriebG. SimonsD. EckertL. HemmrichM. SteffensG. BernhagenJ. PalluaN. Levels of macrophage migration inhibitory factor and glucocorticoids in chronic wound patients and their potential interactions with impaired wound endothelial progenitor cell migration.Wound Repair Regen.201220570771410.1111/j.1524‑475X.2012.00817.x22812717
    [Google Scholar]
  87. EbaidH. Abdel-salamB. HassanI. Al-TamimiJ. MetwalliA. AlhazzaI. Camel milk peptide improves wound healing in diabetic rats by orchestrating the redox status and immune response.Lipids Health Dis.201514113210.1186/s12944‑015‑0136‑926498022
    [Google Scholar]
  88. DoganS. DemirerS. KepenekciI. ErkekB. KiziltayA. HasirciN. MüftüoğluS. NazikoğluA. RendaN. DincerU.D. ElhanA. KuterdemE. Epidermal growth factor-containing wound closure enhances wound healing in non-diabetic and diabetic rats.Int. Wound J.20096210711510.1111/j.1742‑481X.2009.00584.x19432660
    [Google Scholar]
  89. KuraitisD. RosenthalN. BohE. McBurneyE. Macrophages in dermatology: Pathogenic roles and targeted therapeutics.Arch. Dermatol. Res.2022314213314010.1007/s00403‑021‑02207‑033641015
    [Google Scholar]
  90. DelavaryB.M. van der VeerW.M. van EgmondM. NiessenF.B. BeelenR.H.J. Macrophages in skin injury and repair.Immunobiology2011216775376210.1016/j.imbio.2011.01.00121281986
    [Google Scholar]
  91. Martí-CarvajalA.J. GluudC. NicolaS. Simancas-RacinesD. ReveizL. OlivaP. Cedeño-TabordaJ. Growth factors for treating diabetic foot ulcers.Cochrane Libr.2015201510CD00854810.1002/14651858.CD008548.pub226509249
    [Google Scholar]
  92. LauH.C. KimA. Pharmaceutical perspectives of impaired wound healing in diabetic foot ulcer.J. Pharm. Investig.201646540342310.1007/s40005‑016‑0268‑6
    [Google Scholar]
  93. ZhangJ. ZhouQ. ZengW. WuL. ZhaoS. ChenW. LuoC. ShenM. ZhangJ. TangC.E. Growth factors in the pathogenesis of diabetic foot ulcers.Front. Biosci.201823131031710.2741/459328930549
    [Google Scholar]
  94. GardnerJ.C. WuH. NoelJ.G. RamserB.J. PitstickL. SaitoA. NikolaidisN.M. McCormackF.X. Keratinocyte growth factor supports pulmonary innate immune defense through maintenance of alveolar antimicrobial protein levels and macrophage function.Am. J. Physiol. Lung Cell. Mol. Physiol.20163109L868L87910.1152/ajplung.00363.201526919897
    [Google Scholar]
  95. PastarI. OjehN. GlinosG.D. StojadinovicO. Tomic-CanicM. Physiology and pathophysiology of wound healing in diabetes.The Diabetic Foot. VevesA. GiuriniJ.M. GuzmanR.J. ChamSpringer International Publishing201810913010.1007/978‑3‑319‑89869‑8_7
    [Google Scholar]
  96. ZhangQ. FangW. MaL. WangZ.D. YangY.M. LuY.Q. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes.Medicine (Baltimore)20189715e041510.1097/MD.000000000001041529642210
    [Google Scholar]
  97. NardiG.M. FerraraE. ConvertiI. CesaranoF. ScaccoS. GrassiR. GnoniA. GrassiF.R. RaponeB. Does diabetes induce the Vascular Endothelial Growth Factor (VEGF) expression in periodontal tissues? A systematic review.Int. J. Environ. Res. Public Health2020178276510.3390/ijerph1708276532316357
    [Google Scholar]
  98. FrankS. HübnerG. BreierG. LongakerM.T. GreenhalghD.G. WernerS. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing.J. Biol. Chem.199527021126071261310.1074/jbc.270.21.126077759509
    [Google Scholar]
  99. GorenI. MüllerE. SchiefelbeinD. GutweinP. SeitzO. PfeilschifterJ. FrankS. Akt1 controls insulin-driven VEGF biosynthesis from keratinocytes: Implications for normal and diabetes-impaired skin repair in mice.J. Invest. Dermatol.2009129375276410.1038/jid.2008.23018668138
    [Google Scholar]
  100. KulwasA. DrelaE. JundziłłW. GóralczykB. Ruszkowska-CiastekB. RośćD. Circulating endothelial progenitor cells and angiogenic factors in diabetes complicated diabetic foot and without foot complications.J. Diabetes Complications201529568669010.1016/j.jdiacomp.2015.03.01325872462
    [Google Scholar]
  101. BotusanI.R. SunkariV.G. SavuO. CatrinaA.I. GrünlerJ. LindbergS. PereiraT. Ylä-HerttualaS. PoellingerL. BrismarK. CatrinaS.B. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice.Proc. Natl. Acad. Sci. USA200810549194261943110.1073/pnas.080523010519057015
    [Google Scholar]
  102. BaiQ. HanK. DongK. ZhengC. ZhangY. LongQ. LuT. Potential applications of nanomaterials and technology for diabetic wound healing.Int. J. Nanomedicine2020159717974310.2147/IJN.S27600133299313
    [Google Scholar]
  103. ZhengS.Y. WanX.X. KambeyP.A. LuoY. HuX.M. LiuY.F. ShanJ.Q. ChenY.W. XiongK. Therapeutic role of growth factors in treating diabetic wound.World J. Diabetes202314436439510.4239/wjd.v14.i4.36437122434
    [Google Scholar]
  104. BennettS.P. GriffithsG.D. SchorA.M. LeeseG.P. SchorS.L. Growth factors in the treatment of diabetic foot ulcers.Br. J. Surg.200390213314610.1002/bjs.401912555288
    [Google Scholar]
  105. HardwickeJ.T. HartJ. BellA. DuncanR. ThomasD.W. MoseleyR. The effect of dextrin–rhEGF on the healing of full-thickness, excisional wounds in the (db/db) diabetic mouse.J. Control. Release2011152341141710.1016/j.jconrel.2011.03.01621435363
    [Google Scholar]
  106. DolatiS. YousefiM. PishgahiA. NourbakhshS. PourabbasB. ShakouriS.K. Prospects for the application of growth factors in wound healing.Growth Factors2020381253410.1080/08977194.2020.182049933148072
    [Google Scholar]
  107. BarrientosS. StojadinovicO. GolinkoM.S. BremH. Tomic-CanicM. Perspective article: Growth factors and cytokines in wound healing.Wound Repair Regen.200816558560110.1111/j.1524‑475X.2008.00410.x19128254
    [Google Scholar]
  108. BrownG.L. NanneyL.B. GriffenJ. CramerA.B. YanceyJ.M. CurtsingerL.J.III HoltzinL. SchultzG.S. JurkiewiczM.J. LynchJ.B. Enhancement of wound healing by topical treatment with epidermal growth factor.N. Engl. J. Med.19893212767910.1056/NEJM1989071332102032659995
    [Google Scholar]
  109. WeiY. LiJ. HuangY. LeiX. ZhangL. YinM. DengJ. WangX. FuX. WuJ. The clinical effectiveness and safety of using epidermal growth factor, fibroblast growth factor and granulocyte-macrophage colony stimulating factor as therapeutics in acute skin wound healing: A systematic review and meta-analysis.Burns Trauma202210tkac00210.1093/burnst/tkac00235265723
    [Google Scholar]
  110. ParkK.H. HanS.H. HongJ.P. HanS.K. LeeD.H. KimB.S. AhnJ.H. LeeJ.W. Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: A phase III multicenter, double-blind, randomized, placebo-controlled trial.Diabetes Res. Clin. Pract.201814233534410.1016/j.diabres.2018.06.00229902542
    [Google Scholar]
  111. ZubairM. AhmadJ. Role of growth factors and cytokines in diabetic foot ulcer healing: A detailed review.Rev. Endocr. Metab. Disord.201920220721710.1007/s11154‑019‑09492‑130937614
    [Google Scholar]
  112. EzhilarasuH. VishalliD. DheenS.T. BayB.H. SrinivasanD.K. Nanoparticle-based therapeutic approach for diabetic wound healing.Nanomaterials2020106123410.3390/nano1006123432630377
    [Google Scholar]
  113. GökşenS. BalabanlıB. Coşkun-CevherŞ. Application of platelet derived growth factor-BB and diabetic wound healing: The relationship with oxidative events.Free Radic. Res.201751549850510.1080/10715762.2017.132771528480814
    [Google Scholar]
  114. BeerH.D. LongakerM.T. WernerS. Reduced expression of PDGF and PDGF receptors during impaired wound healing.J. Invest. Dermatol.1997109213213810.1111/1523‑1747.ep123191889242497
    [Google Scholar]
  115. BeerH-D. FässlerR. WernerS. Glucocorticoid-regulated gene expression during cutaneous wound repair.Vitam. Horm.200021723910.1016/S0083‑6729(00)59008‑6
    [Google Scholar]
  116. BlakytnyR. JudeE. The molecular biology of chronic wounds and delayed healing in diabetes.Diabet. Med.200623659460810.1111/j.1464‑5491.2006.01773.x16759300
    [Google Scholar]
  117. LobmannR. ZemlinC. MotzkauM. ReschkeK. LehnertH. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing.J. Diabetes Complications200620532933510.1016/j.jdiacomp.2005.08.00716949521
    [Google Scholar]
  118. MoriyaJ. WuX. Zavala-SolorioJ. RossJ. LiangX.H. FerraraN. Platelet-derived growth factor C promotes revascularization in ischemic limbs of diabetic mice.J. Vasc. Surg.20145951402140910.1016/j.jvs.2013.04.05323856609
    [Google Scholar]
  119. WhiteM.J.V. BriquezP.S. WhiteD.A.V. HubbellJ.A. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes.NPJ Regen. Med.2021617610.1038/s41536‑021‑00189‑134795305
    [Google Scholar]
  120. TsuboiR. RifkinD.B. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice.J. Exp. Med.1990172124525110.1084/jem.172.1.2452358777
    [Google Scholar]
  121. VaidyanathanL. Growth factors in wound healing: A review.Biomed. Pharmacol. J.20211431469148010.13005/bpj/2249
    [Google Scholar]
  122. VevesA. GiuriniJ.M. LoGerfoF.W. The diabetic foot: Medical and surgical management.3rd edNew York, N.YHumana Press201210.1007/978‑1‑61779‑791‑0
    [Google Scholar]
  123. HozzeinW.N. BadrG. Al GhamdiA.A. SayedA. Al-WailiN.S. GarraudO. Topical application of propolis enhances cutaneous wound healing by promoting TGF-beta/Smad-mediated collagen production in a streptozotocin-induced type I diabetic mouse model.Cell. Physiol. Biochem.201537394095410.1159/00043022126381245
    [Google Scholar]
  124. IqhrammullahM. DutaT.F. AlinaM. QanitaI. NaufalM.A. HeniraN. TsurayyaG. FathimaR. RizkiA.Y.K. AmirahS. Role of lowered level of serum vitamin D on diabetic foot ulcer and its possible pathomechanism: A systematic review, meta-analysis, and meta-regression.Diabetes. Epidemiol. Manag.20241310017510.1016/j.deman.2023.100175
    [Google Scholar]
  125. MaY. GongY. WuY. ZhaoQ. FuR. ZhangX. LiY. ZhiX. 1,25(OH)2D3 improves diabetic wound healing by modulating inflammation and promoting angiogenesis.J. Steroid Biochem. Mol. Biol.202423910647710.1016/j.jsbmb.2024.10647738340904
    [Google Scholar]
  126. AltieriB. GrantW.B. Della CasaS. OrioF. PontecorviA. ColaoA. SarnoG. MuscogiuriG. Vitamin D and pancreas: The role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer.Crit. Rev. Food Sci. Nutr.201757163472348810.1080/10408398.2015.113692227030935
    [Google Scholar]
  127. Cohen-LahavM. ShanyS. TobvinD. ChaimovitzC. DouvdevaniA. Vitamin D decreases NFκB activity by increasing IκBα levels.Nephrol. Dial. Transplant.200621488989710.1093/ndt/gfi25416455676
    [Google Scholar]
  128. GiuliettiA. van EttenE. OverberghL. StoffelsK. BouillonR. MathieuC. Monocytes from type 2 diabetic patients have a pro-inflammatory profile.Diabetes Res. Clin. Pract.2007771475710.1016/j.diabres.2006.10.00717112620
    [Google Scholar]
  129. IsmailovaA. WhiteJ.H. Vitamin D, infections and immunity.Rev. Endocr. Metab. Disord.202223226527710.1007/s11154‑021‑09679‑534322844
    [Google Scholar]
  130. LowryM.B. GuoC. ZhangY. FantaconeM.L. LoganI.E. CampbellY. ZhangW. LeM. IndraA.K. Ganguli-IndraG. XieJ. GalloR.L. KoefflerH.P. GombartA.F. A mouse model for vitamin D-induced human cathelicidin antimicrobial peptide gene expression.J. Steroid Biochem. Mol. Biol.202019810555210.1016/j.jsbmb.2019.10555231783153
    [Google Scholar]
  131. TiwariS. PratyushD.D. GuptaS.K. SinghS.K. Vitamin D deficiency is associated with inflammatory cytokine concentrations in patients with diabetic foot infection.Br. J. Nutr.2014112121938194310.1017/S000711451400301825331710
    [Google Scholar]
  132. LinJ. MoX. YangY. TangC. ChenJ. Association between vitamin D deficiency and diabetic foot ulcer wound in diabetic subjects: A meta-analysis.Int. Wound J.2023201556210.1111/iwj.1383635567425
    [Google Scholar]
  133. SaminanS. GustiN. AmirahS. IqhrammullahM. Role of polymorphism in vitamin D receptor gene on diabetic foot ulcer: A systematic review and meta-analysis.J. Pharm. Pharmacogn. Res.202412234836210.56499/jppres23.1790_12.2.348
    [Google Scholar]
  134. Usategui-MartínR. De Luis-RománD.A. Fernández-GómezJ.M. Ruiz-MambrillaM. Pérez-CastrillónJ.L. Vitamin D receptor (VDR) gene polymorphisms modify the response to vitamin D supplementation: A systematic review and meta-analysis.Nutrients202214236010.3390/nu1402036035057541
    [Google Scholar]
  135. ArmstrongD.G. JudeE.B. The role of matrix metalloproteinases in wound healing.J. Am. Podiatr. Med. Assoc.2002921121810.7547/87507315‑92‑1‑1211796794
    [Google Scholar]
  136. Gary SibbaldR. WooK.Y. The biology of chronic foot ulcers in persons with diabetes.Diabetes Metab. Res. Rev.200824S1Suppl. 1S25S3010.1002/dmrr.84718442179
    [Google Scholar]
  137. RavantiL. KähäriV.M. Matrix metalloproteinases in wound repair (review).Int. J. Mol. Med.20006439140710.3892/ijmm.6.4.39110998429
    [Google Scholar]
  138. MazumdarA. SanjanaS. GuptaV. systemic correlation between wound and diabetes.Int. J. Health Sci.20226S48091811510.53730/ijhs.v6nS4.10615
    [Google Scholar]
  139. McLennanS.V. BonnerJ. MilneS. LoL. CharltonA. KurupS. JiaJ. YueD.K. TwiggS.M. The anti-inflammatory agent Propolis improves wound healing in a rodent model of experimental diabetes.Wound Repair Regen.200816570671310.1111/j.1524‑475X.2008.00421.x19128266
    [Google Scholar]
  140. MurphyG. NagaseH. Progress in matrix metalloproteinase research.Mol. Aspects Med.200829529030810.1016/j.mam.2008.05.00218619669
    [Google Scholar]
  141. WallS.J. BevanD. ThomasD.W. HardingK.G. EdwardsD.R. MurphyG. Differential expression of matrix metalloproteinases during impaired wound healing of the diabetes mouse.J. Invest. Dermatol.20021191919810.1046/j.1523‑1747.2002.01779.x12164930
    [Google Scholar]
  142. RohaniM.G. ParksW.C. Matrix remodeling by MMPs during wound repair.Matrix Biol.201544-4611312110.1016/j.matbio.2015.03.00225770908
    [Google Scholar]
  143. LobmannR. PapT. AmbroschA. WaldmannK. KönigW. LehnertH. Differential effects of PDGF-BB on matrix metalloproteases and cytokine release in fibroblasts of Type 2 diabetic patients and normal controls in vitro. J. Diabetes Complications200620210511210.1016/j.jdiacomp.2005.05.01316504839
    [Google Scholar]
  144. CaleyM.P. MartinsV.L.C. O’TooleE.A. Metalloproteinases and wound healing.Adv. Wound Care (New Rochelle)20154422523410.1089/wound.2014.058125945285
    [Google Scholar]
  145. DamD.H.M. PallerA.S. Gangliosides in Diabetic Wound Healing.Prog. Mol. Biol. Transl. Sci.201822923910.1016/bs.pmbts.2017.12.006
    [Google Scholar]
  146. PatelS. PragatiS.D. KanwarJ.R. DwivediK. SinghM.R. Pathogenesis and molecular targets in treatment of diabetic wounds.Obesity and Diabetes. FaintuchJ. FaintuchS. ChamSpringer International Publishing202074775810.1007/978‑3‑030‑53370‑0_55
    [Google Scholar]
  147. O’BrienB.A. GengX. OrteuC.H. HuangY. GhoreishiM. ZhangY. BushJ.A. LiG. FinegoodD.T. DutzJ.P. A deficiency in the in vivo clearance of apoptotic cells is a feature of the NOD mouse.J. Autoimmun.200626210411510.1016/j.jaut.2005.11.00616431079
    [Google Scholar]
  148. WetzlerC. KämpferH. StallmeyerB. PfeilschifterJ. FrankS. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair.J. Invest. Dermatol.2000115224525310.1046/j.1523‑1747.2000.00029.x10951242
    [Google Scholar]
  149. Perez-FavilaA. Martinez-FierroM.L. Rodriguez-LazaldeJ.G. Cid-BaezM.A. Zamudio-OsunaM.J. Martinez-BlancoM.R. Mollinedo-MontañoF.E. Rodriguez-SanchezI.P. Castañeda-MirandaR. Garza-VelozI. Current therapeutic strategies in diabetic foot ulcers.Medicina (Kaunas)2019551171410.3390/medicina5511071431731539
    [Google Scholar]
  150. MieczkowskiM. Mrozikiewicz-RakowskaB. KowaraM. KleibertM. CzupryniakL. The problem of wound healing in diabetes—from molecular pathways to the design of an animal model.Int. J. Mol. Sci.20222314793010.3390/ijms2314793035887276
    [Google Scholar]
  151. PrompersL. SchaperN. ApelqvistJ. EdmondsM. JudeE. MauricioD. UccioliL. UrbancicV. BakkerK. HolsteinP. JirkovskaA. PiaggesiA. Ragnarson-TennvallG. ReikeH. SpraulM. Van AckerK. Van BaalJ. Van MerodeF. FerreiraI. HuijbertsM. Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study.Diabetologia200851574775510.1007/s00125‑008‑0940‑018297261
    [Google Scholar]
  152. ZhuS. YuY. RenY. XuL. WangH. LingX. JinL. HuY. ZhangH. MiaoC. GuoK. The emerging roles of neutrophil extracellular traps in wound healing.Cell Death Dis.2021121198410.1038/s41419‑021‑04294‑334686654
    [Google Scholar]
  153. TorregrossaM. KakpenovaA. SimonJ.C. FranzS. Modulation of macrophage functions by ECM-inspired wound dressings: A promising therapeutic approach for chronic wounds.Biol. Chem.2021402111289130710.1515/hsz‑2021‑014534390641
    [Google Scholar]
  154. KrzyszczykP. SchlossR. PalmerA. BerthiaumeF. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes.Front. Physiol.2018941910.3389/fphys.2018.0041929765329
    [Google Scholar]
  155. FuS.P. WuX.C. YangR.L. ZhaoD.Z. ChengJ. QianH. AoJ. ZhangQ. ZhangT. The role and mechanisms of mesenchymal stem cells regulating macrophage plasticity in spinal cord injury.Biomed. Pharmacother.202316811563210.1016/j.biopha.2023.11563237806094
    [Google Scholar]
  156. DuscherD. BarreraJ. WongV.W. MaanZ.N. WhittamA.J. JanuszykM. GurtnerG.C. Stem cells in wound healing: The future of regenerative medicine? A mini-review.Gerontology201662221622510.1159/00038187726045256
    [Google Scholar]
  157. GaoD. ZhangY. BowersD.T. LiuW. MaM. Functional hydrogels for diabetic wound management.APL Bioeng.20215303150310.1063/5.004668234286170
    [Google Scholar]
  158. ChereddyK.K. LopesA. KoussoroplisS. PayenV. MoiaC. ZhuH. SonveauxP. CarmelietP. des RieuxA. VandermeulenG. PréatV. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds.Nanomedicine20151181975198410.1016/j.nano.2015.07.00626238081
    [Google Scholar]
  159. YoonC.S. JungH.S. KwonM.J. LeeS.H. KimC.W. KimM.K. LeeM. ParkJ.H. Sonoporation of the minicircle-VEGF(165) for wound healing of diabetic mice.Pharm. Res.200926479480110.1007/s11095‑008‑9778‑x18998201
    [Google Scholar]
  160. BremH. KodraA. GolinkoM.S. EnteroH. StojadinovicO. WangV.M. SheahanC.M. WeinbergA.D. WooS.L.C. Paul EhrlichH. Tomic-CanicM. Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing.J. Invest. Dermatol.200912992275228710.1038/jid.2009.2619282838
    [Google Scholar]
  161. LosiP. BrigantiE. ErricoC. LisellaA. SanguinettiE. ChielliniF. SoldaniG. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice.Acta Biomater.2013987814782110.1016/j.actbio.2013.04.01923603001
    [Google Scholar]
  162. ChengB. LiuH.W. FuX.B. SunT.Z. ShengZ.Y. Recombinant human platelet-derived growth factor enhanced dermal wound healing by a pathway involving ERK and c-fos in diabetic rats.J. Dermatol. Sci.200745319320110.1016/j.jdermsci.2006.11.01417270401
    [Google Scholar]
  163. AcharR.A.N. SilvaT.C. AcharE. MartinesR.B. MachadoJ.L.M. Use of insulin-like growth factor in the healing of open wounds in diabetic and non-diabetic rats.Acta Cir. Bras.201429212513110.1590/S0102‑8650201400020000924604317
    [Google Scholar]
  164. PengY. WuS. TangQ. LiS. PengC. KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner.J. Biol. Chem.2019294218361837010.1074/jbc.RA118.00618930894415
    [Google Scholar]
  165. YangY. XiaT. ZhiW. WeiL. WengJ. ZhangC. LiX. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor.Biomaterials201132184243425410.1016/j.biomaterials.2011.02.04221402405
    [Google Scholar]
  166. El GazaerlyH. ElbardiseyD.M. EltokhyH.M. TeaamaD. Effect of transforming growth factor Beta 1 on wound healing in induced diabetic rats.Int. J. Health Sci. (Qassim)20137216017210.12816/000604024421745
    [Google Scholar]
  167. ZhangJ. HuW. DiaoQ. WangZ. MiaoJ. ChenX. XueZ. Therapeutic effect of the epidermal growth factor on diabetic foot ulcer and the underlying mechanisms.Exp. Ther. Med.20191731643810.3892/etm.2018.713330783432
    [Google Scholar]
  168. QianZ. WangH. BaiY. WangY. TaoL. WeiY. FanY. GuoX. LiuH. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release.ACS Appl. Mater. Interfaces20201250556595567410.1021/acsami.0c1714233327053
    [Google Scholar]
  169. Hosseini MansoubN. GürdalM. KaradadaşE. KabadayiH. VatanseverS. ErcanG. The role of PRP and adipose tissue-derived keratinocytes on burn wound healing in diabetic rats.Bioimpacts20178151210.15171/bi.2018.0229713597
    [Google Scholar]
  170. KimS.W. ZhangH.Z. GuoL. KimJ.M. KimM.H. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities.PLoS One201277e4110510.1371/journal.pone.004110522815931
    [Google Scholar]
  171. KongP. XieX. LiF. LiuY. LuY. Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats.Biochem. Biophys. Res. Commun.2013438241041910.1016/j.bbrc.2013.07.08823899518
    [Google Scholar]
  172. XuQ. AS. GaoY. GuoL. Creagh-FlynnJ. ZhouD. GreiserU. DongY. WangF. TaiH. LiuW. WangW. WangW. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing.Acta Biomater.201875637410.1016/j.actbio.2018.05.03929803782
    [Google Scholar]
  173. IronsR.F. CahillK.W. RattiganD.A. MarcotteJ.H. FromerM.W. ChangS. ZhangP. BehlingE.M. BehlingK.C. CaputoF.J. Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model.J. Vasc. Surg.2018686115S125S10.1016/j.jvs.2018.01.06529753580
    [Google Scholar]
  174. NguyenT.T. JonesJ.I. WolterW.R. PérezR.L. SchroederV.A. ChampionM.M. HesekD. LeeM. SuckowM.A. MobasheryS. ChangM. Hyperbaric oxygen therapy accelerates wound healing in diabetic mice by decreasing active matrix metalloproteinase-9.Wound Repair Regen.202028219420110.1111/wrr.1278231736209
    [Google Scholar]
  175. PengZ. NguyenT.T. SongW. AndersonB. WolterW.R. SchroederV.A. HesekD. LeeM. MobasheryS. ChangM. Selective MMP-9 inhibitor (R)-ND-336 alone or in combination with Linezolid accelerates wound healing in infected diabetic mice.ACS Pharmacol. Transl. Sci.20214110711710.1021/acsptsci.0c0010433615165
    [Google Scholar]
  176. GooyitM. PengZ. WolterW.R. PiH. DingD. HesekD. LeeM. BoggessB. ChampionM.M. SuckowM.A. MobasheryS. ChangM. A chemical biological strategy to facilitate diabetic wound healing.ACS Chem. Biol.20149110511010.1021/cb400546824053680
    [Google Scholar]
  177. BabaeiS. AnsarihadipourH. NakhaeiM. DarabiM. BayatP. SakhaeiM. BaazmM. MohammadhoseinyA. Effect of Omegaven on mast cell concentration in diabetic wound healing.J. Tissue Viability201726212513010.1016/j.jtv.2016.12.00128162861
    [Google Scholar]
  178. MirzaR.E. FangM.M. EnnisW.J. KohT.J. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes.Diabetes20136272579258710.2337/db12‑145023493576
    [Google Scholar]
  179. PierceG.F. TarpleyJ.E. YanagiharaD. MustoeT.A. FoxG.M. ThomasonA. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair.Am. J. Pathol.19921406137513881376557
    [Google Scholar]
  180. SolerP.M. WrightT.E. SmithP.D. MaggiS.P. HillD.P. KoF. JimenezP.A. RobsonM.C. In vivo characterization of keratinocyte growth factor-2 as a potential wound healing agent.Wound Repair Regen.19997317217810.1046/j.1524‑475X.1999.00172.x10417753
    [Google Scholar]
  181. NiezgodaJ.A. Van GilsC.C. FrykbergR.G. HoddeJ.P. Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers.Adv. Skin Wound Care200518525826610.1097/00129334‑200506000‑0001215942317
    [Google Scholar]
  182. BranskiL.K. GauglitzG.G. HerndonD.N. JeschkeM.G. A review of gene and stem cell therapy in cutaneous wound healing.Burns200935217118010.1016/j.burns.2008.03.00918603379
    [Google Scholar]
  183. MulderG. TallisA.J. MarshallV.T. MozingoD. PhillipsL. PierceG.F. ChandlerL.A. SosnowskiB.K. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): Results of a Phase 1/2 trial.Wound Repair Regen.200917677277910.1111/j.1524‑475X.2009.00541.x19821960
    [Google Scholar]
  184. MorganJ.R. BarrandonY. GreenH. MulliganR.C. Expression of an exogenous growth hormone gene by transplantable human epidermal cells.Science198723748211476147910.1126/science.36292503629250
    [Google Scholar]
  185. HumpertP. BärtschU. KonradeI. HammesH.P. MorcosM. KasperM. BierhausA. NawrothP. Locally applied mononuclear bone marrow cells restore angiogenesis and promote wound healing in a type 2 diabetic patient.Exp. Clin. Endocrinol. Diabetes2005113953854010.1055/s‑2005‑87288616235157
    [Google Scholar]
  186. DubskyM. JirkovskaA. BemR. FejfarovaV. PagacovaL. SixtaB. VargaM. LangkramerS. SykovaE. JudeE.B. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment.Diabetes Metab. Res. Rev.201329536937610.1002/dmrr.239923390092
    [Google Scholar]
  187. ShiQ. QianZ. LiuD. SunJ. WangX. LiuH. XuJ. GuoX. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model.Front. Physiol.2017890410.3389/fphys.2017.0090429163228
    [Google Scholar]
  188. SarthiS. BhardwajH. Kumar JangdeR. Advances in nucleic acid delivery strategies for diabetic wound therapy.J. Clin. Transl. Endocrinol.20243710036610.1016/j.jcte.2024.10036639286540
    [Google Scholar]
  189. AminA.H. Abd ElmageedZ.Y. NairD. PartykaM.I. KadowitzP.J. BelmadaniS. MatrouguiK. Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice.Lab. Invest.201090798599610.1038/labinvest.2010.8620440273
    [Google Scholar]
  190. ChildsB.G. DurikM. BakerD.J. van DeursenJ.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy.Nat. Med.201521121424143510.1038/nm.400026646499
    [Google Scholar]
  191. MaksimovaN.V. MichenkoA.V. KrasilnikovaO.A. KlabukovI.D. GadaevI.Y. KrasheninnikovM.E. BelkovP.A. LyundupA.V. Mesenchymal stromal cells therapy alone does not lead to the complete restoration of the skin parameters in diabetic foot patients within a 3-year follow-up period.Bioimpacts2021121515510.34172/bi.2021.2216735087716
    [Google Scholar]
  192. NalisaD.L. MoneruzzamanM. ChangweG.J. MobetY. LiL.P. MaY.J. JiangH.W. Stem cell therapy for diabetic foot ulcers: Theory and practice.J. Diabetes Res.2022202211210.1155/2022/602874336524153
    [Google Scholar]
  193. YuS.P. WeiZ. WeiL. Preconditioning strategy in stem cell transplantation therapy.Transl. Stroke Res.201341768810.1007/s12975‑012‑0251‑023914259
    [Google Scholar]
  194. Moeinabadi-BidgoliK. BabajaniA. YazdanpanahG. FarhadihosseinabadiB. JamshidiE. BahramiS. NiknejadH. Translational insights into stem cell preconditioning: From molecular mechanisms to preclinical applications.Biomed. Pharmacother.202114211202610.1016/j.biopha.2021.11202634411911
    [Google Scholar]
  195. von KobbeC. Targeting senescent cells: Approaches, opportunities, challenges.Aging (Albany NY)20191124128441286110.18632/aging.10255731789602
    [Google Scholar]
  196. WillerthS.M. Sakiyama-ElbertS.E. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery.StemJournal20191112510.3233/STJ‑180001
    [Google Scholar]
  197. VeithA.P. HendersonK. SpencerA. SligarA.D. BakerA.B. Therapeutic strategies for enhancing angiogenesis in wound healing.Adv. Drug Deliv. Rev.20191469712510.1016/j.addr.2018.09.01030267742
    [Google Scholar]
  198. RaiV. MoellmerR. AgrawalD.K. Stem cells and angiogenesis: Implications and limitations in enhancing chronic diabetic foot ulcer Healing.Cells20221115228710.3390/cells1115228735892584
    [Google Scholar]
  199. CoalsonE. BishopE. LiuW. FengY. SpeziaM. LiuB. ShenY. WuD. DuS. LiA.J. YeZ. ZhaoL. CaoD. LiA. HagagO. DengA. LiuW. LiM. HaydonR.C. ShiL. AthivirahamA. LeeM.J. WolfJ.M. AmeerG.A. HeT.C. ReidR.R. Stem cell therapy for chronic skin wounds in the era of personalized medicine: From bench to bedside.Genes Dis.20196434235810.1016/j.gendis.2019.09.00831832514
    [Google Scholar]
  200. AhmedM. ReffatS.A. HassanA. EskanderF. Platelet-rich plasma for the treatment of clean diabetic foot ulcers.Ann. Vasc. Surg.20173820621110.1016/j.avsg.2016.04.02327522981
    [Google Scholar]
  201. ElsaidA. El-SaidM. EmileS. YoussefM. KhafagyW. ElshobakyA. Randomized controlled trial on autologous platelet-rich plasma versus saline dressing in treatment of non-healing diabetic foot ulcers.World J. Surg.20204441294130110.1007/s00268‑019‑05316‑031811339
    [Google Scholar]
  202. KouhkheilR. FridoniM. AbdollhifarM.A. AminiA. BayatS. GhoreishiS.K. ChienS. KazemiM. BayatM. Impact of photobiomodulation and condition medium on mast cell counts, degranulation, and wound strength in infected skin wound healing of diabetic rats.Photobiomodul. Photomed. Laser Surg.2019371170671410.1089/photob.2019.469131589095
    [Google Scholar]
  203. ErdoğanA. DüzgünA.P. ErdoğanK. ÖzkanM.B. CoşkunF. Efficacy of hyperbaric oxygen therapy in diabetic foot ulcers based on Wagner classification.J. Foot Ankle Surg.20185761115111910.1053/j.jfas.2018.05.01130368425
    [Google Scholar]
  204. Anguiano-HernandezY.M. Contreras-MendezL. Hernandez-CuetoM.A. Alvarado-YaahJ.E. Muñoz-MedinaJ.E. Santillan-VerdeM.A. Barbosa-CabreraR.E. Delgado-QuintanaA. Trejo-RosasS. Santacruz-TinocC.E. Gonzalez-IbarraJ. Gonzalez-BonillaC.R. Modification of HIF-1α, NF-κB, IGFBP-3, VEGF and adiponectin in diabetic foot ulcers treated with hyperbaric oxygen.Undersea Hyperb. Med.2019461354410.22462/01.03.2019.431154683
    [Google Scholar]
  205. ViswanathanV. JuttadaU. BabuM. Efficacy of recombinant human epidermal growth factor (Regen-D 150) in healing diabetic foot ulcers: A hospital-based randomized controlled trial.Int. J. Low. Extrem. Wounds202019215816410.1177/153473461989279131878810
    [Google Scholar]
  206. XuJ. MinD. GuoG. LiaoX. FuZ. Experimental study of epidermal growth factor and acidic fibroblast growth factor in the treatment of diabetic foot wounds.Exp. Ther. Med.20181565365537010.3892/etm.2018.613129904416
    [Google Scholar]
  207. UchiH. IgarashiA. UrabeK. KogaT. NakayamaJ. KawamoriR. TamakiK. HirakataH. OhuraT. FurueM. Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer.Eur. J. Dermatol.200919546146810.1684/ejd.2009.075019638336
    [Google Scholar]
  208. JaiswalS.S. GambhirR.P.S. AgrawalA. HarishS. Efficacy of topical recombinant human platelet derived growth factor on wound healing in patients with chronic diabetic lower limb ulcers.Indian J. Surg.2010721273110.1007/s12262‑010‑0005‑823133200
    [Google Scholar]
  209. HanftJ.R. PollakR.A. BarbulA. GilsC. KwonP.S. GrayS.M. LynchC.J. SembaC.P. BreenT.J. Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers.J. Wound Care20081713037, 34-3710.12968/jowc.2008.17.1.2791718210954
    [Google Scholar]
  210. MohammadiM.H. MolaviB. MohammadiS. NikbakhtM. MohammadiA.M. MostafaeiS. NorooznezhadA.H. Ghorbani AbdegahA. GhavamzadehA. Evaluation of wound healing in diabetic foot ulcer using platelet-rich plasma gel: A single-arm clinical trial.Transfus. Apheresis Sci.201756216016410.1016/j.transci.2016.10.02027839965
    [Google Scholar]
  211. PrakasamN. A clinical study of platelet rich plasma versus conventional dressing in management of diabetic foot ulcers.Int. Surg. J.20185321010.18203/2349‑2902.isj20184069
    [Google Scholar]
  212. MaksimovaN. KrasheninnikovM. ZhangY. PonomarevE. PomytkinI. MelnichenkoG. LyundupA. Early passage autologous mesenchymal stromal cells accelerate diabetic wound re-epithelialization: A clinical case study.Cytotherapy201719121548155010.1016/j.jcyt.2017.08.01728986173
    [Google Scholar]
  213. MoonK.C. SuhH.S. KimK.B. HanS.K. YoungK.W. LeeJ.W. KimM.H. Potential of allogeneic adipose-derived stem cell–hydrogel complex for treating diabetic foot ulcers.Diabetes201968483784610.2337/db18‑069930679183
    [Google Scholar]
  214. KiranaS. StratmannB. PranteC. ProhaskaW. KoerperichH. LammersD. GastensM.H. QuastT. NegreanM. StirbanO.A. NandreanS.G. GöttingC. MinartzP. KleesiekK. TschoepeD. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients.Int. J. Clin. Pract.201266438439310.1111/j.1742‑1241.2011.02886.x22284892
    [Google Scholar]
  215. TanakaR. MasudaH. KatoS. ImagawaK. KanabuchiK. NakashioyaC. YoshibaF. FukuiT. ItoR. KoboriM. WadaM. AsaharaT. MiyasakaM. Autologous G-CSF-mobilized peripheral blood CD34+ cell therapy for diabetic patients with chronic nonhealing ulcer.Cell Transplant.201423216717910.3727/096368912X65800723107450
    [Google Scholar]
  216. SubrammaniyanR. AmalorpavanathanJ. ShankarR. RajkumarM. BaskarS. ManjunathS.R. SenthilkumarR. MuruganP. SrinivasanV.R. AbrahamS. Application of autologous bone marrow mononuclear cells in six patients with advanced chronic critical limb ischemia as a result of diabetes: Our experience.Cytotherapy201113899399910.3109/14653249.2011.57996121671823
    [Google Scholar]
  217. SerenaT.E. BullockN.M. ColeW. LantisJ. LiL. MooreS. PatelK. SaboM. WahabN. PriceP. Topical oxygen therapy in the treatment of diabetic foot ulcers: A multicentre, open, randomised controlled clinical trial.J. Wound Care202130Sup5S7S1410.12968/jowc.2021.30.Sup5.S733979229
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998368222250509185511
Loading
/content/journals/cdr/10.2174/0115733998368222250509185511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test